Complete Bias and White LED Power Supplies for Small TFT Displays

Abstract

General Description The MAX1578/MAX1579 provide four regulated outputs to meet all the voltage requirements for small activematrix TFT-LCD displays in handheld devices where minimum external components and high efficiency are required. Each device consists of three advanced charge pumps for LCD bias power and a step-up converter for driving up to 8 series white LEDs for backlighting. The input voltage range is from 2.7 V to 5.5 V . The charge pumps provide fixed $+5 \mathrm{~V},+15 \mathrm{~V}$, and -10 V for the LCD bias circuits. No external diodes are needed. A high-efficiency, fractional ($1.5 x / 2 x$) charge pump followed by a low-dropout linear regulator provides +5 V to power the source driver. Automatic mode changing achieves the highest conversion efficiency. Two multistage, high-voltage charge pumps generate +15 V and -10V to provide VON and VOFF, respectively. Utilizing a unique clocking scheme and internal drivers, these charge pumps eliminate parasitic charge-current glitches and reduce maximum input current, resulting in low electromagnetic emissions. The outputs are sequenced during startup and shutdown. In shutdown, the outputs are discharged to zero. The high-efficiency inductor step-up converter drives up to 8 white LEDs in series with a constant current to provide backlighting. The series connection allows the LED currents to be identical for uniform brightness and minimizes the number of traces to the LEDs. The MAX1578 regulates constant LED current over the entire temperature range. The MAX1579 features a temperature derating function to avoid overdriving the white LEDs during high ambient temperatures, enabling higher drive current below $+42^{\circ} \mathrm{C}$. The MAX1578/MAX1579 are available in space-saving 24-lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ thin QFN packages.

Applications

PDAs, Palmtops	LCD Displays with
Smart Phones	White LED Backlight
Internet Appliances	

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1578ETG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Thin QFN $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ (T2444-4)
MAX1578ETG +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Thin QFN $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ (T2444-4)

+ Denotes lead-free package.
Ordering Information continued at end of data sheet.

Features

- Four Regulators in One Package
- Bias Power Using Charge Pumps +5 V at 25 mA for Source Driver +15 V at $100 \mu \mathrm{~A}$ for Von -10 V at $100 \mu \mathrm{~A}$ for Voff No External Diodes Required Output Sequencing
POS, NEG, and MAIN Are Autodischarged During Shutdown
- LED Backlight Power Using Boost Converter Series LED Connection for Uniform Illumination Supports Up to 8 LEDs at 25 mA (max) 900 mW (max) Power
PWM or Analog Dimming Control Overvoltage Protection
Low Input/Output Ripple
Soft-Start with Zero Inrush Current
Fast 1MHz PWM Operation for Small Component Size
Temperature Derating Function (MAX1579)
- High Efficiency

Bias: $83 \%(5.0 \mathrm{~V}$ at $25 \mathrm{~mA}, 15 \mathrm{~V} /-10 \mathrm{~V}$ at $100 \mu \mathrm{~A})$ LED: 84\% (6 LEDs at 20mA)

- Uses Only Ceramic Capacitors and Only One Inductor
- Independent Enable Inputs for LED and Bias Power
- Thermal-Shutdown Protection
- $1 \mu \mathrm{~A}$ Shutdown Current
- Tiny 4mm x 4mm Thin QFN Package

Pin Configuration

See Figure 3 for Typical Application Circuit.

Complete Bias and White LED Power Supplies for Small TFT Displays

ABSOLUTE MAXIMUM RATINGS

NEG, CD2 to GND .. 0.3 V to -12 V
C1P, C2P to GND
-0.3 V to $\left(\mathrm{V}_{\mathrm{IN}}+6 \mathrm{~V}\right)$
PMP, PMPB to GND-0.3V to (VMAIN + 0.3V)
GND to PGND ..-0.3V to +0.3V
ILX ..1.0ARMS
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 24-Pin $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Thin QFN
(derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
.1667 mW
Short-Circuit Duration (MAIN, POS, NEG).......................................inuous
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature
$+150^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$

NEG to CD2... +0.3 V to -6 V
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Circuit of Figure 3, $\mathrm{VIN}=3 \mathrm{~V}, \mathrm{CTRL}=\mathrm{ONBIAS}=I \mathrm{~N}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IN Operating Supply Range			2.7		5.5	V
IN Undervoltage-Lockout (UVLO) Threshold	Rising edge, 30mV hysteresis		2.1	2.35	2.6	V
IN Quiescent Current	Switching			3	5	mA
IN Shutdown Current	$\mathrm{V}_{\text {CTRL }}=$ VONBIAS $=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.4	1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		1		
Thermal Shutdown	Rising temperature, $20^{\circ} \mathrm{C}$ hysteresis (typ)			+160		${ }^{\circ} \mathrm{C}$

MAIN CHARGE PUMP WITH LINEAR REGULATOR

Main Pump Efficiency	ILOAD $=25 \mathrm{~mA}, \mathrm{~V}$ IN $=3.9 \mathrm{~V}$		83		\%
VDd Charge-Pump Open-Loop Output Impedance	$\mathrm{V}_{\text {IN }} \geq 3.8 \mathrm{~V}$ in 1.5 x mode		9	20	Ω
	$\mathrm{V}_{\text {IN }} \geq 3.0 \mathrm{~V}$ in 2.0 x mode		7.5	20	
Operating Frequency		200	250	300	kHz
VDD Output Voltage	Charge-pump pause threshold	5.2	5.5	5.7	V
VIN Falling Switchover to 2.0x Mode		3.75	3.85	3.95	V
VIN Rising Switchover to 1.5x Mode		3.8	3.9	4.0	V
Quiescent Current (Charge Pumps Only)	$\mathrm{V}_{\text {CTRL }}=0 \mathrm{~V}, \mathrm{ONBIAS}=\mathrm{IN}$		0.87	1.30	mA
Vmaln Regulation Voltage	$0.1 \mathrm{~mA}<\mathrm{I}$ LOAD $<25 \mathrm{~mA}$	4.9	5.0	5.1	V
Discharge Switch Resistance at $\mathrm{V}_{\text {MAIN }}$	Vonbias $=0 \mathrm{~V}$		1	3	k Ω

POS, NEG CHARGE PUMPS

Operating Frequency		12.0	15.6	19.5
Duty Cycle		50		$\%$
POS Pump Efficiency	ILOAD $=100 \mu \mathrm{~A}$	97	$\%$	
POS Output Voltage	ILOAD $=0$ to $100 \mu \mathrm{~A}$	13.9	14.7	15.3
POS Discharge Switch Resistance	VONBIAS $=0 \mathrm{~V}$	V		
NEG Pump Efficiency	ILOAD $=-100 \mu \mathrm{~A}$	9	6	$\mathrm{k} \Omega$

Complete Bias and White LED Power Supplies for Small TFT Displays

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 3, $\mathrm{V} I \mathrm{~N}=3 \mathrm{~V}, \mathrm{CTRL}=\mathrm{ONBIAS}=I \mathrm{~N}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Note 1)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
NEG Output Voltage	LLOAD $=0$ to -100 $\mu \mathrm{A}$			-10.2	-9.8	-9.3	V
NEG Discharge Switch Resistance	VONBIAS $=0 \mathrm{~V}$				1.5	3	k ת
LOGIC INPUT (ONBIAS)							
Logic Input Low Voltage						0.72	V
Logic Input High Voltage				1.6			V
Input Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.01	1	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			1			
LED BACKLIGHTING							
Efficiency	LOAD $=6$ LEDs in series at 20mA			84			\%
OUT Voltage Range	(Note 2)			$\begin{aligned} & \left(\mathrm{V}_{\mathrm{IN}}-\right. \\ & \left.\mathrm{V}_{\mathrm{D} 1}\right) \end{aligned}$		32	V
Overvoltage-Lockout (OVLO) Threshold	Vout rising, 2V hysteresis			32	34	36	V
OUT Input Bias Current	$\mathrm{V}_{\text {OUT }}=32 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}>0.24 \mathrm{~V}$			10	20	32	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {CTRL }}=0$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	1	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		
ERROR AMPLIFIER							
CTRL to CS Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{CTRL}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.295	0.300	0.305	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.292	0.300	0.308	
CS Input Bias Current	$V_{\text {CS }}=V_{\text {CTRL }} / 5$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.01	1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.03			
CTRL Input Resistance	$V_{\text {CTRL }}<1.0 \mathrm{~V}$	MAX1578		250	500	780	k Ω
		MAX1579	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	250	500	780	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		185		
CTRL Dual ModeTM Threshold	5 mV hysteresis			100	170	240	mV
CTRL Shutdown Delay	(Note 3)			6.5	8.2	10.5	ms
CS to COMP Transconductance	VCOMP $=1.0 \mathrm{~V}$			32	60	90	$\mu \mathrm{S}$
CS Regulation Derating Function Start Temperature	$\mathrm{V}_{\text {CTRL }}=3 \mathrm{~V}, \mathrm{MAX1579}$ only			+42			${ }^{\circ} \mathrm{C}$
CS Regulation Derating Function Slope	$\mathrm{V}_{\text {CTRL }}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+65^{\circ} \mathrm{C}, \mathrm{MAX1579}$ only			-6			$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
CS Maximum Brightness Clamp Voltage	MAX1578, $\mathrm{V}_{\text {CTRL }}=3 \mathrm{~V}$			310	327	345	mV
	$\mathrm{MAX1579}, \mathrm{~V}_{\text {CTRL }}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			322	340	358	
CS Maximum Brightness Voltage at CTRL	MAX1578			1.635			V
	MAX1579			1.70			
OSCILLATOR							
Operating Frequency	fBOOST			0.8	1.0	1.2	MHz
Minimum Duty Cycle	PWM mode			12			\%
	Pulse skipping			0			
Maximum Duty Cycle	$\mathrm{CTRL}=\mathrm{IN}, \mathrm{CS}=\mathrm{GND}$			92	95		\%

Dual Mode is a trademark of Maxim Integrated Products, Inc.

Complete Bias and White LED Power Supplies for Small TFT Displays

ELECTRICAL CHARACTERISTICS (continued)
(Circuit of Figure 3, $\mathrm{VIN}_{\mathrm{I}}=3 \mathrm{~V}, \mathrm{CTRL}=\mathrm{ONBIAS}=I \mathrm{~N}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
N-CHANNEL SWITCH						
LX On-Resistance	$\mathrm{LLX}=190 \mathrm{~mA}$			0.82	1.5	Ω
LX Leakage Current	$V_{L X}=28 \mathrm{~V}, \mathrm{CTRL}=\mathrm{GND}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	5	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		1		
LX Current Limit	Duty cycle $=90 \%$		500	700	900	mA

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
Note 2: $V_{D 1}$ is the forward-voltage drop of diode D1 in Figure 3.
Note 3: Time from CTRL going below the Dual-Mode threshold to IC shutdown.
(Circuit of Figure 3, VIN $=3.6 \mathrm{~V}$, ILED $=20 \mathrm{~mA}, 4 \mathrm{LEDs}, \mathrm{CTRL}=\mathrm{IN}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LED EFFICIENCY vs. VIN

LED CURRENT vs. VCTRL

Complete Bias and White LED Power Supplies for Small TFT Displays

Typical Operating Characteristics (continued)
(Circuit of Figure 3, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, $\operatorname{\text {LED}}=20 \mathrm{~mA}, 4 \mathrm{LEDs}, \mathrm{CTRL}=\mathrm{IN}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Complete Bias and White LED Power Supplies for Small TFT Displays

Typical Operating Characteristics (continued)

(Circuit of Figure 3, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, $\operatorname{LLED}=20 \mathrm{~mA}, 4 \mathrm{LEDs}, \mathrm{CTRL}=I \mathrm{~N}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	MAIN	LDO Output and the POS and NEG Charge-Pump Inputs. VMAIN is regulated to 5 V . Bypass to GND with a $1 \mu \mathrm{~F}$ capacitor. Output is internally discharged with a $1 \mathrm{k} \Omega$ resistor when VONBIAS $=0 \mathrm{~V}$.
2	CU1	POS Charge-Pump Capacitor Connection 1. Connect a $1 \mu \mathrm{~F}$ capacitor between CU1 and PMP.
3	CU2	POS Charge-Pump Capacitor Connection 2. Connect a $1 \mu \mathrm{~F}$ capacitor between CU2 and PMPB.
4	CU3	POS Charge-Pump Capacitor Connection 3. Connect a $1 \mu \mathrm{~F}$ capacitor between CU3 and GND.
5	POS	Output of Positive ($3 x$) Charge Pump. Bypass POS to GND with a $1 \mu \mathrm{~F}$ capacitor. POS is internally discharged with a $3 \mathrm{k} \Omega$ resistor when VONBIAS $=0 \mathrm{~V}$.
6	PMP	Charge-Pump Capacitor Connection. Connect a $1 \mu \mathrm{~F}$ capacitor between PMP and CU1 and another $1 \mu \mathrm{~F}$ capacitor between PMP and CD1.
7	PMPB	Charge-Pump Capacitor Connection. Connect a $1 \mu \mathrm{~F}$ capacitor between PMPB and CU2 and another $1 \mu \mathrm{~F}$ capacitor between PMPB and CD2. PMPB is 180° out of phase with PMP.
8	CD1	NEG Charge-Pump Capacitor Connection 1. Connect a $1 \mu \mathrm{~F}$ capacitor and a $200 \Omega \pm 5 \%$ resistor in series between CD1 and PMP.
9	CD2	NEG Charge-Pump Capacitor Connection 2. Connect a $1 \mu \mathrm{~F}$ capacitor and a $200 \Omega \pm 5 \%$ resistor in series between CD2 and PMPB.
10	NEG	Output of Inverting ($-2 x$) Charge Pump. Bypass NEG to GND with a $1 \mu \mathrm{~F}$ capacitor. Output is internally discharged with a $1.5 \mathrm{k} \Omega$ resistor when VONBIAS $=0 \mathrm{~V}$.

Complete Bias and White LED Power Supplies for Small TFT Displays

Pin Description (continued)

PIN	NAME	FUNCTION
11	ONBIAS	Logic Input to Enable VDD, MAIN, POS, and NEG Charge Pumps. Drive ONBIAS high to enable all the charge pumps. Connect to GND to disable the charge pumps.
12	GND	Ground. Connect to PGND and the exposed pad directly under the IC.
13	COMP	LED Driver Compensation. Connect a $0.1 \mu \mathrm{~F}$ from COMP to GND. CCOMP stabilizes the driver and sets the soft-start time.
14	CS	Current-Sense Feedback Input. Connect a resistor from CS to GND to set the LED current. For the MAX1578, CS regulates to $\mathrm{V}_{\text {CTRL }} / 5$ or 0.327 V , whichever is lower. For the MAX1579, CS regulates to $V_{\text {CTRL }} / 5$ or 0.340 V , whichever is lower.
15	CTRL	LED Brightness Control Input. Connect CTRL to a 0.24 V to 1.65 V input to set the brightness of the external LEDs. Hold CTRL below 100 mV for more than 10.5 ms , to shut down the LED driver. Drive CTRL with a 200 Hz to 200 kHz unfiltered PWM dimming signal for DC LED current that is proportional to the signal's duty cycle.
16	OUT	Overvoltage Sense Input. The MAX1578/MAX1579 turn off the n-channel MOSFET when Vout exceeds 34V. Once Vout drops below 32V, the IC re-enters soft-start. Bypass OUT to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
17	LX	Inductor Connection. Connect to the switched side of the external inductor as well as the anode of the external diode. LX is high impedance during shutdown.
18	PGND	Power Ground. Connect to GND and the exposed pad directly under the IC.
19	C1N	Main Charge-Pump Transfer Capacitor Negative Connection 1. Connect a $2.2 \mu \mathrm{~F}$ capacitor between C1N and C1P.
20	C2N	Main Charge-Pump Transfer Capacitor Negative Connection 2. Connect a 2.2μ F capacitor between C2N and C2P.
21	IN	Power-Supply Input. Connect to a 2.7V to 5.5 V input supply. Bypass IN to GND with a $4.7 \mu \mathrm{~F}$ capacitor.
22	C2P	Main Charge-Pump Transfer Capacitor Positive Connection 2. Connect a $2.2 \mu \mathrm{~F}$ capacitor between C2P and C2N.
23	C1P	Main Charge-Pump Transfer Capacitor Positive Connection 1. Connect a $2.2 \mu \mathrm{~F}$ capacitor between C1P and C1N.
24	$V_{\text {DD }}$	Regulated Main Charge-Pump Output. $V_{D D}$ is regulated to 5.5 V . Bypass $V_{D D}$ to $G N D$ with a $4.7 \mu \mathrm{~F}$ capacitor. V_{DD} is connected to IN when ONBIAS is pulled low.
-	EP	Exposed Paddle. Connect directly to a ground plane, GND, and PGND directly under the IC.

Complete Bias and White LED Power Supplies for Small TFT Displays

Complete Bias and White LED Power Supplies for Small TFT Displays

Detailed Description

Bias Power and UVLO
The MAX1578/MAX1579 contain an LED driver boost converter and three charge pumps for LCD bias. The undervoltage-lockout (UVLO) feature disables the LED boost converter and the charge pumps when the input voltage is below 2.35 V (typ). Once VIN rises above 2.35 V , and VCTRL and VONBIAS are high, the boost converter and charge pumps are enabled, respectively.

Charge-Pump Output Sequencing
The outputs of the MAX1578/MAX1579 charge pumps are sequenced to turn on and off in a predictable fashion. The turn-on sequence is as follows (Figure 1):

1) When ONBIAS is high, the MAIN regulator (5V) is enabled.
2) When VMAIN exceeds 4.6 V , the NEG charge pump $(-10 \mathrm{~V})$ is enabled.
3) When VNEG reaches -8 V , the POS charge pump $(+15 \mathrm{~V})$ is enabled.
The turn-off sequence is as follows (Figure 2):
4) When ONBIAS is driven low, the NEG charge pump $(-10 \mathrm{~V})$ is disabled.
5) Once $\mathrm{V}_{\mathrm{NEG}}$ is discharged to -0.87 V , the POS charge pump (+15V) is disabled.
6) Once VPOS falls to 0.87 V , the MAIN regulator (+5 V) is disabled and discharged.

Figure 1. Charge-Pump Turn-On Sequence

Figure 2. Charge-Pump Turn-Off Sequence

MAIN Charge Pump
The MAX1578/MAX1579 include a charge pump that uses two external capacitors to provide +5.5 V output (VDD) that is used to power the regulated LDO +5 V output (MAIN). The control logic configures the pump to switch automatically between $1.5 x$ and $2 x$ modes to maximize efficiency. If VDD exceeds 5.5 V , the charge pump stops switching. When ONBIAS is driven low, $V_{D D}$ is connected to IN.

A low-dropout linear regulator regulates the output of the main charge pump to +5 V at MAIN. The MAIN output is capable of sourcing as much as 25 mA to an external load and also supplies the POS and NEG charge pumps. Drive ONBIAS low to disable the MAIN, POS, and NEG outputs. During shutdown, MAIN is discharged to GND with an internal $1 \mathrm{k} \Omega$ resistor.

POS/NEG Charge Pumps

The MAX1578/MAX1579 include a positive and negative charge pump for LCD bias. The POS and NEG charge pumps are powered from VMAIN. The POS and NEG charge pumps operate at 15.6 kHz with a 50% duty cycle.

NEG Charge Pump (-10V Supply)
The NEG charge pump uses capacitors at CD1 and CD2 to generate -10V ($-2 \times$ VMAIN). Connect $1 \mu \mathrm{~F}$ ceramic capacitors and $200 \Omega \pm 5 \%$ resistors in series between CD1 and PMP and between CD2 and PMPB. Drive ONBIAS high to enable MAIN, NEG, and POS. During shutdown, the NEG output is discharged to GND with an internal $1.5 \mathrm{k} \Omega$ resistor.

POS Charge Pump (+15V Supply)
The POS charge pump uses capacitors at CU1, CU2, and CU3 to generate +15 V ($3 \times$ VMAIN). Connect $1 \mu \mathrm{~F}$ ceramic capacitors between CU1 and PMP, between CU2 and PMPB, and between CU3 and GND. Drive ONBIAS high to enable MAIN, NEG, and POS. During shutdown, POS is discharged to GND with an internal $3 \mathrm{k} \Omega$ resistor.

LED Backlighting Power
LED power is supplied by an internal MOSFET, 1 MHz boost converter. The boost converter is capable of driving up to 8 series LEDs at 25 mA .
The output of the boost converter is regulated to maintain a constant voltage at CS, and therefore a constant current through the LEDs. Once VIN is increased above the UVLO voltage (2.35 V) and VCTRL is above 0.17 V , the boost converter enters soft-start and charges the output to its regulation voltage. An overvoltage-protection circuit shuts down the boost converter if VOUT exceeds 34 V .

Complete Bias and White LED Power Supplies for Small TFT Displays

Soft-Start

The LED boost converter utilizes a soft-start function to eliminate inrush current during startup. Once the boost converter is enabled, LX begins switching at the minimum duty cycle until CCOMP is charged to 1.25 V . Once this occurs, the duty cycle increases to further charge the output until VCS reaches 20% of $V_{C T R L}$. The softstart time is adjustable using the capacitor from COMP to GND. Calculate the required COMP capacitor as:

$$
\mathrm{C}_{\mathrm{COMP}}=\frac{12 \mu \mathrm{~A} \times \mathrm{t}_{\mathrm{SS}}}{1.25 \mathrm{~V}}
$$

where tss is the desired soft-start time in seconds.

Overvoltage Protection

The output of the LED boost converter is protected from overvoltage conditions by internal overvoltage circuitry. If Vout exceeds 34V, the LX switching terminates. Once Vout falls below 32V, LX switches normally and soft-start is re-initiated.

Ambient Temperature Derating Function

 (MAX1579)The MAX1579 limits the maximum LED current depending on the die temperature. $V_{C S}$ is limited to 340 mV up to $+42^{\circ} \mathrm{C}$. Once the temperature reaches $+42^{\circ} \mathrm{C}$, the maximum VCS declines by $6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ until the minimum 40 mV threshold is reached at $+100^{\circ} \mathrm{C}$. Due to the package's exposed paddle, the die temperature is always very close to the PC board temperature.
The temperature derating function allows the LED current to be safely set higher at normal operating temperatures, thereby allowing either a brighter display or fewer LEDs to be used for normal display brightness.

Shutdown

The MAX1578/MAX1579 include a low-quiescent-current shutdown mode. To enter shutdown, drive CTRL below 0.1 V for longer than 10.5 ms and drive ONBIAS low. The quiescent current is reduced to less than $1 \mu \mathrm{~A}$ when the boost converter and charge pumps are disabled.
To disable the LED boost converter, drive CTRL below 0.1 V for longer than 10.5 ms . During shutdown, the internal boost switch from LX to PGND is high impedance; however, a DC path exists from IN to OUT through the external inductor and Schottky diode. Drive CTRL with an analog voltage between 0.24 V and 1.65 V or a 200 Hz to 200 kHz digital PWM dimming signal for normal operation. The quiescent current is reduced to $870 \mu \mathrm{~A}$ when the boost converter is shut down and the charge pumps are enabled.

Drive ONBIAS low to shut down the internal POS and NEG charge pumps and disable the MAIN LDO output. On-chip pulldown resistors discharge these outputs during shutdown. Drive ONBIAS high for normal operation. VDD is connected to IN when ONBIAS is low. The quiescent current is reduced to $430 \mu \mathrm{~A}$ when the charge pumps are shut down and the boost converter is enabled.

Applications Information

Adjusting LED Current

Set the maximum LED current using a resistor from CS to GND. Calculate the resistance as follows:

$$
\begin{aligned}
& R_{C S}=\frac{330 \mathrm{mV}}{I_{\mathrm{LED}}} \text { for the MAX1578 } \\
& R_{\mathrm{CS}}=\frac{340 \mathrm{mV}}{l_{\mathrm{LED}}} \text { for the MAX1579 }
\end{aligned}
$$

where ILED is the desired maximum current through the LEDs in Amps when VCTRL is 1.65 V .

LED Dimming Control Using a DAC
$V_{\text {CTRL }}$ controls the LED drive current. The voltage at CS regulates to 20% of VCTRL to control the current through the LEDs and, therefore, the brightness. Drive CTRL using a DAC with an output voltage between 0.24 V and 1.65 V to control the brightness of the LEDs. Increasing V_{C} TRL beyond 1.65 V results in no further brightness increase. Hold CTRL below 100 mV for longer than 10.5 ms to shut down the boost converter.

LED Dimming Using Direct PWM into CTRL

Another useful technique for LED dimming control is the application of a logic-level PWM signal applied directly to CTRL. LED current may be varied from zero to full scale. The frequency range of the PWM signal is from 200 Hz to 200 kHz , while 0% duty cycle corresponds to zero current and 100% duty cycle corresponds to full current. The error amplifier and compensation capacitor form a lowpass filter so PWM dimming results in DC current to the LEDs without the need for any additional RC filters. See the Typical Operating Characteristics.

Input/Output Ripple

For LED drivers, input and output ripple may be important. Input ripple depends on the source supply's output impedance. Adding a lowpass filter to the input further reduces input ripple. Alternately, increasing CIN to $10 \mu \mathrm{~F}$ cuts input ripple in half. Likewise, an output filter or higher output capacitance value reduces output ripple.

Complete Bias and White LED Power Supplies for Small TFT Displays

Component Selection

Use only ceramic capacitors with an X5R, X7R, or better dielectric. See Table 1 for a list of recommended components.

Capacitor Selection

Use low-ESR ceramic capacitors. Recommended values for the capacitors are shown in Table 1. To ensure stability over a wide temperature range, ceramic capacitors with an X5R or X7R dielectric are recommended. Place these capacitors as close to the IC as possible.

Inductor Selection

Recommended inductor values range from $10 \mu \mathrm{H}$ to $47 \mu \mathrm{H}$. A $22 \mu \mathrm{H}$ inductor optimizes the efficiency for most applications while maintaining low 15 mV P-P input ripple. With input voltages near 5 V , a larger value of inductance can be more efficient. To prevent core saturation, ensure that the inductor-saturation current rating exceeds the peak inductor current for the application. Calculate the peak inductor current with the following formula:

$$
I_{\text {PEAK }}=\frac{V_{\text {OUT }(M A X)} \times\left.\right|_{\text {LED }(M A X)}}{0.8 \times V_{\text {IN(MIN })}}+\frac{V_{\text {IN(MIN })} \times 0.8 \mu \mathrm{~S}}{2 \times \mathrm{L}}
$$

Schottky Diode Selection
The MAX1578/MAX1579 require a high-speed rectification diode (D1) for optimum performance. A Schottky diode is recommended due to its fast recovery time and low forward-voltage drop. Ensure that the diode's average and peak current ratings exceed the average output current and the peak inductor current, respectively. In addition, the diode's reverse breakdown voltage must exceed Vout. The RMS diode current is calculated as:

$$
\operatorname{IDIODE(RMS)}=\sqrt{\text { IOUT } \times \operatorname{lPEAK}}
$$

PC Board Layout and Routing

Due to fast switching waveforms, careful PC board layout is required. An evaluation kit (MAX1578EVKIT) is available to speed design. When laying out a board, minimize trace lengths between the IC and R1, the
inductor, the diode, the input capacitor, and the output capacitor. Keep traces short, direct, and wide. Keep noisy traces, such as the LX node trace, away from CS. The IN bypass capacitor (CIN) should be placed as close to the IC as possible. The transfer capacitors for the charge pumps should be located as close as possible to the IC. PGND and GND should be connected directly to the exposed paddle underneath the IC. The ground connections of CIN and COUT should be as close together as possible. The traces from IN to the inductor and from the Schottky diode to the LEDs may be longer. The MAX1579 evaluation kit contains a sample layout to speed designs.

Chip Information

TRANSISTOR COUNT: 3801
PROCESS: BiCMOS

Complete Bias and White LED Power Supplies for Small TFT Displays

Table 1. Recommended Components for the Typical Application Circuit

DESIGNATION	DESCRIPTION
C1, C8	$4.7 \mu F, 6.3 V ~ X 5 R ~ c e r a m i c ~ c a p a c i t o r s ~(0603) ~$ Murata GRM188R60J475KE19
C2	$0.1 \mu F, 6.3 V$ X5R ceramic capacitor (0402) TDK C1005X5R1A104K
C3	$0.1 \mu F, 50 V$ X7R ceramic capacitor (0603) TDK C1608X7R1H104K
C4, C5, C12	$1 \mu F, 16 V$ X7R ceramic capacitors (0805) TDK C2012X7R1C105K
C6, C7	$2.2 \mu F, 6.3 V$ X5R ceramic capacitors (0603) Taiyo Yuden JMK107BJ225KA
C9, C10, C11,	$1 \mu F, 6.3 V$ X5R ceramic capacitors (0402) Murata GRM155R60J105KE19
D1 C14	$40 V, 0.5 A$ Schottky diode International Rectifier MBRX0540
D2-D7	White LEDs Nichia NSCW215T
L1	$22 \mu H, ~ 250 m A ~ i n d u c t o r ~(1210) ~$ Murata LQH32CN220K53
R1	$22.1 \Omega \pm 1 \%$ resistor (0402)
R2, R3	$200 \Omega \pm 5 \%$ resistors (0402)

Figure 3. Typical Application Circuit

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX1579ETG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Thin QFN $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ (T2444-4)
MAX1579ETG +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Thin QFN $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ (T2444-4)

+ Denotes lead-free package.

Complete Bias and White LED Power Supplies for Small TFT Displays

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. OMENSIONNG \& TOLERANCING CONFORN TO ASNE Y14.5N-1994.
2. ALL DMENSIONS ARE IN MLUMEIERS. ANGLES ARE IN DEGREES.
3. NIS THE TOTA M MMEER OF TERUNALS.
4. THE TERMNAL H1 DENTRER ANO TERMMAL NUMBERING COMENTION SHALL CONFORM TO

THE ZONE NOCATED. THE TERMMNL 1 IDENTFIER WAY EE ETHER A NOLD OR WARKED FEATURE
C. ODMENSION b APPLES TO METALUZED TERUNAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm
B. ND AND NE REFER TO THE NuMBER OF TERMNLS ON EACH D AND E SDE RESPECTVELY.
7. DEPOPLIATION IS POSSIBLE N A STMMEIRCCAL FASHON.
8. COPLANARTIY APPLLES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. ORANNG CONFORUS TO JEOEC NO220, EXCEPT FOR T2444-3, T2444-4 ANO T2844-1
\triangle NARKING IS FOR PACKAGE ORIENTATION REEERENCE ONLY.
11. COPLANARTY SHALL NOT EXCEED 0.08 mm
12. WARPAGE SHALL NOT EXCEEND 0.10 mm
14. LEAD CENTERLINES TO be AT TRUE POSTIIN AS DEENNED by basic omension "e", ± 0.05.
14. NUMEER of LEADS SHOWN ARE FOR REEERENCE ONLY
drawing nat ta scale-

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 MX877RTR ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 MPQ7220GF-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P

