
Abstract

General Description The MAX1586/MAX1587 power-management ICs are optimized for devices using Intel XScale ${ }^{\circledR}$ microprocessors, including Smart Phones, PDAs, internet appliances, and other portable devices requiring substantial computing and multimedia capability at low power. The ICs integrate seven high-performance, low-operatingcurrent power supplies along with supervisory and management functions. Included are three step-down DC-DC outputs, three linear regulators, and a seventh always-on output. DC-DC converters power I/O, DRAM, and the CPU core. The I/O supply can be preset to 3.3 V or adjusted to other values. The DRAM supply on the A and C devices is preset for 1.8 V or 2.5 V , while the MAX1586B DRAM supply is preset for 3.3 V or 2.5 V . The DRAM supply on all parts can also be adjusted with external resistors. The CPU core supply is serial programmed for dynamic voltage management and, on C devices, can supply up to 0.9A. Linear-regulated outputs are provided for SRAM, PLL, and USIM supplies. To minimize quiescent current, critical power supplies have bypass "sleep" LDOs that can be activated when output current is very low. Other functions include separate on/off control for all DC-DC converters, low-battery and dead-battery detection, a reset and power-OK output, a backup-battery input, and a two-wire serial interface.

All DC-DC outputs use fast, 1 MHz PWM switching and small external components. They operate with fixed-frequency PWM control and automatically switch from PWM to skip-mode operation at light loads to reduce operating current and extend battery life. The core output can be forced into PWM mode at all loads to minimize noise. A 2.6 V to 5.5 V input voltage range allows 1 -cell lithium-ion (Li+), 3-cell NiMH, or a regulated 5 V input. The MAX1587 is available in a tiny $6 \mathrm{~mm} \times 6 \mathrm{~mm}$, 40-pin thin QFN package. The MAX1586 features an additional linear regulator (V6) for VCC_USIM and lowbattery and dead-battery comparators. The MAX1586 is available in a $7 \mathrm{~mm} \times 7 \mathrm{~mm}, 48$-pin thin QFN package

Applications

PDA, Palmtop, and Wireless Handhelds Third-Generation Smart Cell Phones Internet Appliances and Web-Books

Pin Configurations and Selector Guide appear at end of data sheet.

Simplified Functional Diagram

High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

ABSOLUTE MAXIMUM RATINGS
IN, IN45, IN6, $\overline{M R}, \overline{L B O}, \overline{D B O}, \overline{R S O}, ~ P O K, ~ S C L, ~ S D A, ~$
BKBT, V7, SLP, SRAD, PWM3 to GND...............-0.3V to +6V REF, CC_, ON_, FB_, DBI, LBI, V1, V2, RAMP, BYP,
$\overline{\mathrm{MR}}$ to GND ...-0.3V to (VIN +0.3 V)
PV1, PV2, PV3, SLPIN to IN..................................... 0.3 V to +0.3 V
V4, V5 to GND ..-0.3V to (VIN45 + 0.3V)
V6 to GND ...-0.3V to (VIN6 + 0.3V)
PV1 to PG1 ... -0.3 V to +6.0 V
PV2 to PG2 ..-0.3V to +6.0 V
PV3 to PG3 ..-0.3V to +6.0 V
LX1 Continuous Current....................................-1.30A to +1.30A
LX2 Continuous Current.......................................-0.9A to +0.9A

[^0]
ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{BKBT}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LB}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DBI}}=1.35 \mathrm{~V}\right.$, circuit of Figure $5, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
PV1, PV2, PV3, SLPIN, IN Supply Voltage Range	PV1, PV2, PV3, IN, and SLPIN must connect together externally			2.6		5.5	V
IN45, IN6 Supply Voltage Range				2.4		5.5	V
IN Undervoltage-Lockout (UVLO) Threshold	VIN rising			2.25	2.40	2.55	V
	VIN falling			2.200	2.35	2.525	
Quiescent Current	$\begin{aligned} & \text { No load (IPV1 + } \\ & \text { IPV2 + IPV3 + IIN + } \\ & \text { ISLPIN + IIN45 + } \\ & \text { IIN6) } \end{aligned}$	Only V7 on, VIN below DBI threshold $\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$	MAX1586		32		$\mu \mathrm{A}$
			MAX1587		5		
		REG1 and REG2 on in switch mode, REG3 off	MAX1586		130		
			MAX1587		130		
		REG1 and REG2 on in sleep mode, REG3 off	MAX1586		60		
			MAX1587		60		
		All REGs on	MAX1586		225		
			MAX1587		200		
BKBT Input Current	ON1 = 0				4		$\mu \mathrm{A}$
	ON1 = IN				0.8		
REF Output Voltage	0 to $10 \mu \mathrm{~A}$ load			1.2375	1.25	1.2625	V
SYNCHRONOUS-BUCK PWM REG1							
REG1 Voltage Accuracy	FB1 = GND, 3.6V $\leq \mathrm{V}_{\mathrm{PV} 1} \leq 5.5 \mathrm{~V}$, load $=0$ to 1300 mA			3.25	3.3	3.35	V
FB1 Voltage Accuracy	FB1 used with external resistors, $3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 1} \leq 5.5 \mathrm{~V}$, load = 0 to 1300 mA			1.231	1.25	1.269	V
FB1 Input Current	FB1 used with external resistors					100	nA
Error-Amplifier Transconductance	Referred to FB				87		$\mu \mathrm{S}$
Dropout Voltage (Note 1)	Load $=800 \mathrm{~mA}$				180	280	mV
	Load $=1300 \mathrm{~mA}$				293	450	

High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{BKB}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DBI}}=1.35 \mathrm{~V}\right.$, circuit of Figure $5, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5}^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
p-Channel On-Resistance	ILX1 $=-180 \mathrm{~mA}$			0.18	0.3	Ω
	$\mathrm{LLX} 1=-180 \mathrm{~mA}, \mathrm{VPV} 1=2.6 \mathrm{~V}$			0.21	0.35	
n-Channel On-Resistance	$\mathrm{LLX1} 10180 \mathrm{~mA}$			0.13	0.225	Ω
	$\mathrm{LLX1}=180 \mathrm{~mA}, \mathrm{~V}_{\text {PV1 }}=2.6 \mathrm{~V}$		$0.15 \quad 0.25$			
Current-Sense Transresistance				0.5		V/A
p-Channel Current-Limit Threshold			-1.55	-1.80	-2.10	A
PWM Skip-Mode Transition Load Current	Decreasing load current (Note 2)		30			mA
OUT1 Maximum Output Current	$2.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 1} \leq 5.5 \mathrm{~V}$ (Note 3)		1.3			A
LX1 Leakage Current	$\mathrm{VPV}^{\prime}=5.5 \mathrm{~V}, \mathrm{LX} 1=\mathrm{GND}$ or PV1, $\mathrm{V}_{\mathrm{ON} 1}=0 \mathrm{~V}$		-20	+0.1	+20	$\mu \mathrm{A}$
SYNCHRONOUS-BUCK PWM REG2						
REG2 Voltage Accuracy	FB2 $=\mathrm{GND}, 3.6 \mathrm{~V} \leq \mathrm{V}_{\text {PV }} \leq 5.5 \mathrm{~V}$, load $=0$ to 900 mA		2.463	2.5	2.537	V
	$\begin{aligned} & \text { MAX1586A, MAX1587A, FB2 }=\mathrm{IN}, 3.6 \mathrm{~V} \leq \mathrm{VPV}_{2} \leq 5.5 \mathrm{~V} \text {, } \\ & \text { load }=0 \text { to } 900 \mathrm{~mA} \end{aligned}$		1.773	1.8	1.827	
	$\begin{aligned} & \text { MAX1586B, FB2 }=\mathrm{IN}, 3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 2} \leq 5.5 \mathrm{~V}, \\ & \text { load }=0 \text { to } 900 \mathrm{~mA} \end{aligned}$		3.25	3.3	3.35	
FB2 Voltage Accuracy	FB2 used with external resistors, $3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 2} \leq 5.5 \mathrm{~V}$, load $=0$ to 900 mA		1.231	1.25	1.269	V
FB2 Input Current	FB2 used with external resistors, $\mathrm{V}_{\mathrm{FB} 2}=1.25 \mathrm{~V}$				100	nA
Error-Amplifier Transconductance	Referred to FB		87			$\mu \mathrm{S}$
Dropout Voltage	Load $=900 \mathrm{~mA}$ (Note 1)			243	380	mV
p-Channel On-Resistance	ILX2 $=-180 \mathrm{~mA}$			0.225	0.375	Ω
	$\mathrm{LLX2} 2=-180 \mathrm{~mA}, \mathrm{~V}_{\text {PV2 }}=2.6 \mathrm{~V}$			0.26	0.425	
n-Channel On-Resistance	$\mathrm{LLX2} 2=180 \mathrm{~mA}$			0.15	0.25	Ω
	l LX2 $=180 \mathrm{~mA}, \mathrm{~V}_{\text {PV2 }}=2.6 \mathrm{~V}$			0.17	0.275	
Current-Sense Transresistance			0.7			V/A
p-Channel Current-Limit Threshold			-1.1	-1.275	-1.50	A
PWM Skip-Mode Transition Load Current	Decreasing load current (Note 2)			30		mA
OUT2 Maximum Output Current	$2.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 2} \leq 5.5 \mathrm{~V}$ (Note 3)		0.9			A
LX2 Leakage Current	$\mathrm{V}_{\mathrm{PV} 2}=5.5 \mathrm{~V}, \mathrm{LX} 2=\mathrm{GND}$ or PV2, V ON2 $=0 \mathrm{~V}$		-10	+0.1	+10	$\mu \mathrm{A}$
SYNCHRONOUS-BUCK PWM REG3						
REG3 Output Voltage Accuracy	REG3 from 0.7 V to $1.475 \mathrm{~V}, 2.6 \mathrm{~V} \leq$ $\mathrm{V}_{\mathrm{PV} 3} \leq 5.5 \mathrm{~V}$	MAX1586A, MAX1586B, MAX1587A load $=0$ to 500mA	-1.5		+1.5	\%
		MAX1586C, MAX1587C, load $=0$ to 900 mA	-1.5		+1.5	
Error-Amplifier Transconductance				68		$\mu \mathrm{S}$

High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{BKBT}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LB}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DBI}}=1.35 \mathrm{~V}\right.$, circuit of Figure $5, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

4

High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{BKB}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DBI}}=1.35 \mathrm{~V}\right.$, circuit of Figure $5, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5}^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{BKBT}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DBI}}=1.35 \mathrm{~V}\right.$, circuit of Figure $5, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. $)$ (Note 5)

PARAMETER	CONDITIONS	MIN	MAX	UNITS
PV1, PV2, PV3, SLPIN, IN Supply Voltage Range	PV1, PV2, PV3, IN, and SLPIN must connect together externally	2.6	5.5	V
IN45, IN6 Supply Voltage Range		2.4	5.5	V
IN Undervoltage-Lockout (UVLO) Threshold	$V_{\text {IN }}$ rising	2.25	2.55	V
	VIN falling	2.200	2.525	
SYNCHRONOUS-BUCK PWM REG1				
REG1 Voltage Accuracy	FB1 $=$ GND, 3.6V $\leq \mathrm{V}_{\mathrm{PV} 1} \leq 5.5 \mathrm{~V}$, load $=0$ to 1300 mA	3.25	3.35	V
	FB1 $=1 \mathrm{~N}, 3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 1} \leq 5.5 \mathrm{~V}$, load $=0$ to 1300 mA	2.955	3.045	
FB1 Voltage Accuracy	FB1 used with external resistors, $3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 1} \leq 5.5 \mathrm{~V}$, load $=0$ to 1300 mA	1.231	1.269	V
FB1 Input Current	FB1 used with external resistors		100	nA
Dropout Voltage	Load $=800 \mathrm{~mA}$ (Note 1)		280	mV
	Load $=1300 \mathrm{~mA}$ (Note 1)		450	
p-Channel On-Resistance	ILX1 $=-180 \mathrm{~mA}$		0.3	Ω
	$\mathrm{ILX}^{\prime} 1=-180 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PV} 1}=2.6 \mathrm{~V}$		0.35	
n-Channel On-Resistance	$\mathrm{LLX} 1=180 \mathrm{~mA}$		0.225	Ω
	$\mathrm{ILX}^{1}=180 \mathrm{~mA}, \mathrm{~V}_{\text {PV1 }}=2.6 \mathrm{~V}$		0.25	
p-Channel Current-Limit Threshold		-1.55	-2.10	A
OUT1 Maximum Output Current	$2.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 1} \leq 5.5 \mathrm{~V}$ (Note 3)	1.30		A
LX1 Leakage Current	$\mathrm{VPV}^{\prime}=5.5 \mathrm{~V}, \mathrm{LX} 1=\mathrm{GND}$ or PV1, $\mathrm{V}_{\text {ON1 }}=0 \mathrm{~V}$	-10	+10	$\mu \mathrm{A}$
SYNCHRONOUS-BUCK PWM REG2				
REG2 Voltage Accuracy	$\mathrm{FB} 2=\mathrm{GND}, 3.6 \mathrm{~V} \leq \mathrm{VPV} 2 \leq 5.5 \mathrm{~V}$, load $=0$ to 900 mA	2.463	2.537	V
	```MAX1586A, MAX1587A, FB2 = IN, 3.6V \leq VPV2 \leq5.5V, load = 0 to 900mA```	1.773	1.827	
	$\begin{aligned} & \text { MAX1586B, FB2 }=\mathrm{IN}, 3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 2} \leq 5.5 \mathrm{~V}, \\ & \text { load }=0 \text { to } 900 \mathrm{~mA} \end{aligned}$	3.25	3.35	
FB2 Voltage Accuracy	FB2 used with external resistors, $3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 2} \leq 5.5 \mathrm{~V}$, load $=0$ to 900 mA	1.231	1.269	V
FB2 Input Current	FB2 used with external resistors, $\mathrm{V}_{\mathrm{FB} 2}=1.25 \mathrm{~V}$		100	nA
Dropout Voltage	Load $=900 \mathrm{~mA}$ ( Note 1)		380	mV
p-Channel On-Resistance	ILX2 $=-180 \mathrm{~mA}$		0.375	$\Omega$
	$\mathrm{ILX2}^{2}=-180 \mathrm{~mA}, \mathrm{~V}_{\text {PV2 }}=2.6 \mathrm{~V}$		0.425	
n-Channel On-Resistance	ILX2 $=-180 \mathrm{~mA}$		0.25	$\Omega$
	$\mathrm{ILX2}^{2}=-180 \mathrm{~mA}, \mathrm{~V}_{\text {PV2 }}=2.6 \mathrm{~V}$		0.275	
p-Channel Current-Limit Threshold		-1.1	-1.50	A
OUT2 Maximum Output Current	$2.6 \mathrm{~V} \leq \mathrm{VPV} 2^{5} 5.5 \mathrm{~V}$ (Note 3)	0.9		A
LX2 Leakage Current	$\mathrm{V}_{\mathrm{PV} 2}=5.5 \mathrm{~V}, \mathrm{LX} 2=\mathrm{GND}$ or PV2, $\mathrm{V}_{\text {ON2 }}=0 \mathrm{~V}$	-10	+10	$\mu \mathrm{A}$

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{BKB}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DBI}}=1.35 \mathrm{~V}\right.$, circuit of Figure $5, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted. $)($ Note 5)


## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{BKB}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DBI}}=1.35 \mathrm{~V}\right.$, circuit of Figure $5, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted. $)($ Note 5)


LOGIC INPUTS AND OUTPUTS

$\overline{\mathrm{LBO}}, \overline{\mathrm{DBO}}, \mathrm{POK}, \overline{\mathrm{RSO}}$, SDA Output Low Level	$2.6 \mathrm{~V} \leq \mathrm{V} 7 \leq 5.5 \mathrm{~V}$, sinking 1 mA		0.4	V
$\overline{\mathrm{LBO}}, \overline{\mathrm{DBO}}, \mathrm{POK}, \overline{\mathrm{RSO}}$, SDA Output Low Level	$\mathrm{V} 7=1 \mathrm{~V}$, sinking 100 A		0.4	V
$\overline{\mathrm{LBO}}, \overline{\mathrm{DBO}}, \mathrm{POK}, \overline{\mathrm{RSO}}$ Output-High Leakage Current	$\mathrm{Pin}=5.5 \mathrm{~V}$		0.2	$\mu \mathrm{A}$
ON_, SCL, SDA, $\overline{S L P}, ~ P W M 3, ~ \overline{M R}$, SRAD Input High Level	$2.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	1.6		V
ON_, SCL, SDA, $\overline{S L P}, ~ P W M 3, \overline{M R}$, SRAD Input Low Level	$2.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$		0.4	V
ON_, SCL, SDA, $\overline{\text { SLP }}, ~ P W M 3, \overline{M R}$, SRAD Input Leakage Current	Pin = GND, 5.5V	-1	+1	$\mu \mathrm{A}$
SERIAL INTERFACE				
Clock Frequency			400	kHz
Bus-Free Time Between START and STOP		1.3		$\mu \mathrm{S}$
Hold Time Repeated START Condition		0.6		$\mu \mathrm{S}$
CLK Low Period		1.3		$\mu \mathrm{S}$
CLK High Period		0.6		$\mu \mathrm{s}$
Setup Time Repeated START Condition		0.6		$\mu \mathrm{s}$
DATA Hold Time		0		$\mu \mathrm{s}$
DATA Setup Time		100		ns
Setup Time for STOP Condition		0.6		$\mu \mathrm{s}$

## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

## ELECTRICAL CHARACTERISTICS (continued)

Note 1: Dropout voltage is guaranteed by the p-channel switch resistance and assumes a maximum inductor resistance of $45 \mathrm{~m} \Omega$.
Note 2: The PWM-skip-mode transition has approximately 10 mA of hysteresis.
Note 3: The maximum output current is guaranteed by the following equation:

$$
\operatorname{IOUT}(M A X)=\frac{I_{\text {LIM }}-\frac{V_{\text {OUT }}(1-D)}{2 \times f \times L}}{1+\left(R_{N}+R_{L}\right) \frac{(1-D)}{2 \times f \times L}}
$$

where:

$$
D=\frac{V_{\text {OUT }}+I_{\text {OUT(MAX) }}\left(R_{N}+R_{L}\right)}{V_{\text {IN }}+I_{\text {OUT(MAX) }}\left(R_{N}-R_{P}\right)}
$$

and $\quad R_{N}=n$-channel synchronous rectifier $R_{D S}(O N)$
$R \mathrm{R}=\mathrm{p}$-channel power switch RDS(ON)
$R L=$ external inductor ESR
IOUT(MAX) = maximum required load current
$f=$ operating frequency minimum
$\mathrm{L}=$ external inductor value
ILIM can be substituted for IOUT(MAX) (desired) when solving for D . This assumes that the inductor ripple current is small relative to the absolute value.
Note 4: POK only indicates the status of supplies that are enabled (except V 7 ). When a supply is turned off, POK does not trigger low. When a supply is turned on, POK immediately goes low until that supply reaches regulation. POK is forced low when all supplies (except V7) are disabled.
Note 5: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

```
(Circuit of Figure 6, VIN = 3.6V, TA = +25'`
```





LOAD CURRENT (mA)

REG2 2.5V OUTPUT EFFICIENCY vs. LOAD CURRENT


REG3 1.3V OUTPUT WITH FORCED-PWM EFFICIENCY vs. LOAD CURRENT


REG2 SLEEP LDO 2.5V OUTPUT EFFICIENCY vs. LOAD CURRENT


LOAD CURRENT (mA)

REG3 1.3V OUTPUT EFFICIENCY vs. LOAD CURRENT


REG3 1.3V OUTPUT WITH FORCED-PWM EFFICIENCY vs. LOAD CURRENT


QUIESCENT CURRENT vs. SUPPLY VOLTAGE


# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

Typical Operating Characteristics (continued)
(Circuit of Figure 6, V IN $=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


SWITCHING FREQUENCY
vs. INPUT VOLTAGE


REG1 SWITCHING WAVEFORMS


CHANGE IN OUTPUT VOLTAGE
vs. LOAD CURRENT


REFERENCE VOLTAGE
vs. TEMPERATURE


REG1 SWITCHING WAVEFORMS


## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

(Circuit of Figure $6, \mathrm{~V}_{I N}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

Typical Operating Characteristics (continued)
(Circuit of Figure 6, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


REG3 LOAD-TRANSIENT RESPONSE


REG3 OUTPUT VOLTAGE CHANGING FROM 1.3V TO 1.0V WITH DIFFERENT VALUES OF CRAmp


200 $\mu \mathrm{s} / \mathrm{div}$

$200 \mu \mathrm{~s} / \mathrm{div}$

REG3 LOAD-TRANSIENT RESPONSE


## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

Pin Description

PIN		NAME	FUNCTION
$\begin{aligned} & \text { MAX } \\ & 1586 \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & 1587 \end{aligned}$		
1	-	LBI	Dual Mode'TM, Low-Battery Input. Connect to IN to set the low-battery threshold to 3.6V (no resistors needed). Connect LBI to a resistor-divider for an adjustable LBI threshold. When $\mathrm{V}_{\mathrm{IN}}$ is below the set threshold, $\overline{\mathrm{LBO}}$ output switches low. $\overline{\mathrm{LBO}}$ is deactivated and forced low when VIN is below the dead-battery (DBI) threshold and when all REGs are disabled.
2	40	CC1	REG1 Compensation Node. Connect a series resistor and capacitor from CC1 to GND to compensate the regulation loop. See the Compensation and Stability section.
3	1	FB1	REG1 Feedback Input. Connect FB1 to GND to set V1 to 3.3V. Connect FB1 to external feedback resistors for other output voltages.
4	2	BKBT	Input Connection for Backup Battery. This input can also accept the output of an external boost converter.
5	3	V7	Also known as VCC_BATT. V7 is always active if main or backup power is present. It is the first regulator that powers up. V7 has two states:   1) $V 7$ tracks $V 1$ if $O N 1$ is high and $V 1$ is in regulation.   2) V 7 tracks $\mathrm{V}_{\text {BKBT }}$ when ON 1 is low or V 1 is out of regulation.
6	4	V1	REG1 Voltage-Sense Input. Connect directly to the REG1 output voltage. The output voltage is set by FB1 to either 3.3V or adjustable with resistors.
7	5	SLPIN	Input to V1 and V2 Sleep Regulators. The input to the standby regulators at V1 and V2. Connect SLPIN to IN.
8	6	V2	REG2 Voltage-Sense Input. Connect directly to the REG2 output voltage. The output voltage is set by FB2 to either $1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ (MAX1586A, MAX1587A), 3.3V/2.5V (MAX1586B), or adjustable with resistors.
9	7	FB2	REG2 Feedback Input. Connect to GND to set V2 to 2.5 V on all devices. Connect FB2 to IN to set V2 to 1.8 V on the MAX1586A and MAX1587A. Connect FB2 to IN to set V2 to 3.3 V on the MAX1586B. Connect FB2 to external feedback resistors for other voltages.
10	8	CC2	REG2 Compensation Node. Connect a series resistor and capacitor from CC2 to GND to compensate the regulation loop. See the Compensation and Stability section.
11	9	POK	Power-OK Output. Open-drain output that is low when any of the $\mathrm{V} 1-\mathrm{V} 6$ outputs are below their regulation threshold. When all activated outputs are in regulation, POK is high impedance. POK maintains a valid low output with V7 as low as 1V. POK does not flag an out-of-regulation condition while REG3 is transitioning between voltages set by serial programming. POK also does not flag for any REG channel that has been turned off; however, if all REG channels are off (V1-V6), then POK is forced low. If $\mathrm{V}_{\mathrm{IN}}$ < VUVLO, then POK is low. POK is expected to connect to nVCC_FAULT.
12	10	SCL	Serial Clock Input
13	11	SDA	Serial Data Input. Data is read on the rising edge of SCL. Serial data programs the REG3 (core) and REG6 (VCC_USIM) voltage. REG3 and REG6 can be programmed even when off, but at least one of the ON_ pins must be logic-high to activate the serial interface. On power-up, REG3 defaults to 1.3 V and REG6 defaults to OV .
14	12	PWM3	Force V3 to PWM at All Loads. Connect PWM3 to GND for normal operation (skip mode at light loads). Drive or connect high for forced-PWM operation at all loads for V3 only.
15	-	$\overline{\mathrm{LBO}}$	Low-Battery Output. Open-drain output that goes low when VIN is below the threshold set by LBI.

Dual Mode is a trademark of Maxim Integrated Products, Inc.

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

Pin Description (continued)

PIN		NAME	FUNCTION
$\begin{aligned} & \text { MAX } \\ & 1586 \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & 1587 \end{aligned}$		
16	13	PV2	REG2 Power Input. Bypass to PG2 with a $4.7 \mu \mathrm{~F}$ or greater low-ESR capacitor. PV1, PV2, PV3, and IN must connect together externally.
17	14	LX2	REG2 Switching Node. Connects to REG2 inductor.
18	15	PG2	REG2 Power Ground. Connect directly to a power-ground plane. Connect PG1, PG2, PG3, and GND together at a single point as close as possible to the IC.
19	16	IN	Main Battery Input. This input provides power to the IC.
20	17	RAMP	V3 Ramp-Rate Control. A capacitor connected from RAMP to GND sets the rate-of-change when V3 is changed. The output impedance of RAMP is $100 \mathrm{k} \Omega$. FB3 regulates to $1.28 \times$ V $_{\text {RAMP }}$.
21	18	GND	Analog Ground
22	19	REF	Reference Output. Output of the 1.25V reference. Bypass to GND with a $0.1 \mu \mathrm{~F}$ or greater capacitor.
23	20	BYP	Low-Noise LDO Bypass. Low-noise bypass pin for V4 LDO. Connect a $0.01 \mu \mathrm{~F}$ capacitor from BYP to GND.
24	-	$\overline{\mathrm{DBO}}$	Dead or Missing Battery Output. $\overline{\mathrm{DBO}}$ is an open-drain output that goes low when $\mathrm{V}_{\mathrm{IN}}$ is below the threshold set by DBI. $\overline{\mathrm{DBO}}$ does not deactivate any MAX1586/MAX1587 regulator outputs. $\overline{\mathrm{DBO}}$ is expected to connect to nBATT_FAULT on Intel CPUs.
25	21	ON2	On/Off Input for REG2. Drive high to turn on. When enabled, the REG2 output soft-starts. ON2 has hysteresis so an RC can be used to implement manual sequencing with respect to other inputs. It is expected that ON1, ON2, and ON6 are connected to SYS_EN.
26	-	ON4	On/Off Input for REG4. Drive high to turn on. When enabled, the REG4 output activates. ON4 has hysteresis so an RC can be used to implement manual sequencing with respect to other inputs. It is expected that ON4 is connected to PWR_EN.
27	23	V4	Also Known as VCC_PLL. 1.3V, 35mA linear-regulator output for PLL. Regulator input is IN45.
28	24	IN45	Power Input to V4 and V5 LDOs. Typically connected to V2, but can also connect to IN or another voltage from 2.5 V to $\mathrm{V}_{\mathrm{IN}}$.
29	25	V5	Also Known as VCC_SRAM. 1.1V, 35mA linear-regulator output for CPU SRAM. Regulator input is IN45.
30	-	ON5	On/Off Input for REG5. Drive high to turn on. When enabled, the MAX1586/MAX1587 soft-starts the REG5 output. ON5 has hysteresis so an RC can be used to implement manual sequencing with respect to other inputs. It is expected that ON5 is connected to PWR_EN.
31	26	PG3	REG3 Power Ground. Connect directly to a power-ground plane. Connect PG1, PG2, PG3, and GND together at a single point as close as possible to the IC.
32	27	LX3	REG3 Switching Node. Connects to the REG3 inductor.
33	28	PV3	REG3 Power Input. Bypass to PG3 with a $4.7 \mu \mathrm{~F}$ or greater low-ESR ceramic capacitor. PV1, PV2, PV3, and IN must connect together externally.
34	34	ON3	On/Off Input for REG3 (Core). Drive high to turn on. When enabled, the REG3 output ramps up. ON3 has hysteresis so an RC can be used to implement manual sequencing with respect to other inputs. It is expected that ON3 is driven from CPU SYS_EN.

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

Pin Description (continued)

PIN		NAME	FUNCTION
$\begin{aligned} & \text { MAX } \\ & 1586 \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & 1587 \end{aligned}$		
35	29	SRAD	Serial Address Bit. SRAD allows the serial address of the MAX1586/MAX1587 to be changed in case it conflicts with another serial device. If $S R A D=G N D, A 1=0$. If $S R A D=I N, A 1=1$.
36	30	$\overline{\mathrm{RSO}}$	Open-Drain Reset Output. Deasserts when V7 exceeds 2.55 V (typ rising). Has 65 ms delay before release. $\overline{\mathrm{RSO}}$ is expected to connect to nRESET on the CPU.
37	31	$\overline{\mathrm{MR}}$	Manual Reset Input. A low input at $\overline{\mathrm{MR}}$ causes the $\overline{\mathrm{RSO}}$ output to go low and also resets the V3 output to its default 1.3 V setting. $\overline{\mathrm{MR}}$ impacts no other MAX1586/MAX1587 functions.
38	32	CC3	REG3 Compensation Node. Connect a series resistor and capacitor from CC3 to GND to compensate the regulation loop. See the Compensation and Stability section.
39	33	FB3	REG3 Feedback-Sense Input. Connect directly to the REG3 output voltage. Output voltage is set by the serial interface.
40	-	ON6	On/Off Input for REG6. Drive high to turn on. When enabled, the REG6 output activates. ON6 has hysteresis so an RC can be used to implement manual sequencing with respect to other inputs. It is expected that ON1, ON2, and ON6 are connected to SYS_EN.
41	-	V6	Also known as VCC_USIM. Linear-regulator output. This voltage is programmable through the $I^{2} \mathrm{C}$ interface to $0 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.0 V . The default voltage is 0 V . REG6 is activated when $\mathrm{ON6}$ is high.
42	-	IN6	Power Input to the V6 LDO. Typically connected to V1, but can also connect to IN.
43	36	PG1	REG1 Power Ground. Connect directly to a power-ground plane. Connect PG1, PG2, PG3, and GND together at a single point as close as possible to the IC.
44	37	LX1	REG1 Switching Node. Connects to the REG1 inductor.
45	38	PV1	REG1 Power Input. Bypass to PG2 with a $4.7 \mu$ F or greater low-ESR ceramic capacitor. PV1, PV2, PV3, and IN must connect together externally.
46	35	ON1	On/Off Input for REG1. Drive high to turn on REG1. When enabled, the REG1 output soft-starts. ON1 has hysteresis so an RC can be used to implement manual sequencing with respect to other inputs. It is expected that ON1, ON2, and ON6 connect to SYS_EN.
47	39	$\overline{\text { SLP }}$	Sleep Input. $\overline{\mathrm{SLP}}$ selects which regulators ON1 and ON2 turn on. $\overline{\mathrm{SLP}}=$ high is normal operation (ON1 and ON2 are the enables for the V1 and V2 DC-DC converters). $\overline{\mathrm{SLP}}=$ low is sleep operation (ON1 and ON2 are the enables for the V1 and V2 LDOs).
48	-	DBI	Dual Mode, Dead-Battery Input. Connect DBI to IN to set the dead-battery falling threshold to 3.15V (no resistors needed). Connect DBI to a resistor-divider for an adjustable DBI threshold.
-	22	ON45	On/Off Input for REG4 and REG5. Drive high to turn on. When enabled, the REG4 and REG5 outputs activate. ON45 has hysteresis so an RC can be used to implement manual sequencing with respect to other inputs. It is expected that ON45 is connected to PWR_EN.
EP	EP	EP	Exposed Metal Pad. Connect the exposed pad to ground. Connecting the exposed pad to ground does not remove the requirement for proper ground connections to the appropriate ground pins.

## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones



Figure 1. MAX1586 Functional Diagram (The MAX1587 omits some features. See the Pin Description section.)

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

Detailed Description
The MAX1586/MAX1587 power-management ICs are optimized for devices using Intel XScale microprocessors, including third-generation smart cell phones, PDAs, internet appliances, and other portable devices requiring substantial computing and multimedia capability at low power. The MAX1586A/MAX1586B/ MAX1587A comply with Intel Processor Power specifications.
The ICs integrate seven high-performance, low-operat-ing-current power supplies along with supervisory and management functions. Regulator outputs include three step-down DC-DC outputs (V1, V2, and V3), three linear regulators ( $\mathrm{V} 4, \mathrm{~V} 5$, and V 6 ), and one always-on output, V7 (Intel VCC_BATT). The V1 step-down DC-DC converter provides 3.3 V or adjustable output voltage for I/O and peripherals. The V2 step-down DC-DC converter on the MAX1586A and MAX1587A is preset for 1.8 V or 2.5 V , while the MAX1586B V2 supply is preset for 3.3 V or 2.5 V . V2 can also be adjusted with external resistors on all parts. The V3 step-down DC-DC converter provides a serial-programmed output for powering microprocessor cores. The three linear regulators (V4, V5, and V6) provide power for PLL, SRAM, and USIM.
To minimize sleep-state quiescent current, V1 and V2 have bypass "sleep" LDOs that can be activated to minimize battery drain when output current is very low. Other functions include separate on/off control for all DC-DC converters, low-battery and dead-battery detection, a power-OK output, a backup-battery input, and a two-wire serial interface.
All DC-DC outputs use fast, 1 MHz PWM switching and small external components. They operate with fixed-frequency PWM control and automatically switch from PWM to skip-mode operation at light loads to reduce operating current and extend battery life. The V3 core output is capable of forced-PWM operation at all loads. The 2.6 V to 5.5 V input voltage range allows $1-\mathrm{cell} \mathrm{Li}+$, 3 -cell NiMH, or a regulated 5 V input.
The following power-supply descriptions include the Intel terms for the various voltages in parenthesis. For example, the MAX1586/MAX1587 V1 output is referred to as VCC_IO in Intel documentation. See Figure 1.

## V1 and V2 (VCC_IO, VCC_MEM) Step-Down DC-DC Converters

V 1 is a 1 MHz current-mode step-down converter. The V 1 output voltage can be preset to 3.3 V or adjusted using a resistor voltage-divider. V1 supplies loads up to 1300 mA .

V2 is also a 1 MHz current-mode step-down converter. The V2 step-down DC-DC converter on the MAX1586A and MAX1587A is preset for 1.8 V or 2.5 V , while the MAX1586B V2 supply is preset for 3.3 V or 2.5 V . V2 can also be adjusted with external resistors on all parts. V2 supplies loads up to 900 mA .
Under moderate to heavy loading, the converters operate in a low-noise PWM mode with constant frequency and modulated pulse width. Switching harmonics generated by fixed-frequency operation are consistent and easily filtered. Efficiency is enhanced under light loading ( $<30 \mathrm{~mA}$ typ), by assuming an Idle ModetM during which the converter switches only as needed to service the load.

## Synchronous Rectification

Internal n-channel synchronous rectifiers eliminate the need for external Schottky diodes and improve efficiency. The synchronous rectifier turns on during the second half of each cycle (off-time). During this time, the voltage across the inductor is reversed, and the inductor current falls. In normal operation (not forced PWM), the synchronous rectifier turns off at the end of the cycle (at which time another on-time begins) or when the inductor current approaches zero.

## 100\% Duty-Cycle Operation

If the inductor current does not rise sufficiently to supply the load during the on-time, the switch remains on, allowing operation up to $100 \%$ duty cycle. This allows the output voltage to maintain regulation while the input voltage approaches the regulation voltage. Dropout voltage is approximately 180 mV for an 800 mA load on V1 and 220 mV for an 800 mA load on V2. During dropout, the high-side p-channel MOSFET turns on, and the controller enters a low-current-consumption mode. The device remains in this mode until the regulator channel is no longer in dropout.

Sleep LDOs In addition to the high-efficiency step-down converters, V1 and V2 can also be supplied with low-quiescent current, low-dropout (LDO) linear regulators that can be used in sleep mode or at any time when the load current is very low. The sleep LDOs can source up to 35 mA . To enable the sleep LDOs, drive $\overline{\text { SLP }}$ low. When $\overline{\text { SLP }}$ is high, the switching step-down converters are active. The output voltage of the sleep LDOs is set to be the same as the switching step-down converters as described in the Setting the Output Voltages section. SLPIN is the input to the V1 and V2 sleep LDOs and must connect to IN.

Idle Mode is a trademark of Maxim Integrated Products, Inc.

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

## V3 (VCC_CORE) Step-Down DC-DC Converter

V3 is a 1 MHz current-mode step-down converter. The MAX1586A, MAX1586B, and MAX1587A supply loads up to 500 mA from V3 while the MAX1586C and MAX1587C supply loads up to 1A.
The V3 output is set by the $1^{2} \mathrm{C}$ serial interface to between 0.7 V and 1.475 V in 25 mV increments. The default output voltage on power-up and after a reset is 1.3V. See the Serial Interface section for programming details. See the Applications Information for instructions on how to increase the V3 output voltage.

## Forced PWM on REG3

Under moderate to heavy loading, the V3 always operates in a low-noise PWM mode with constant frequency and modulated pulse width. Switching harmonics generated by fixed-frequency operation are consistent and easily filtered.
With light loads ( $<30 \mathrm{~mA}$ ) and PWM3 low, V3 operates in an enhanced-efficiency Idle Mode during which the converter switches only as needed to service the load. With PWM3 high, V3 operates in low-noise forced-PWM mode under all load conditions.

## Linear Regulators (V4, V5, and V6) V4 (VCC_PLL)

V4 is a linear regulator that provides a fixed 1.3 V output and supplies loads up to 35 mA . The power input for the V 4 and V 5 linear regulators is IN45, which is typically connected to V2. To enable V4 on the MAX1586, drive ON4 high, or drive ON4 low for shutdown. On the MAX1587, the enable pins for V4 and V5 are combined. Drive ON45 high to enable V4 and V5, or drive ON45 low for shutdown. V4 is intended to connect to VCC_PLL.

V5 (VCC_SRAM)
V 5 is a linear regulator that provides a fixed $1.1 \mathbf{V}$ output and supplies loads up to 35 mA . The power input for the

V4 and V5 linear regulators is IN45, which is typically connected to V2. To enable V5 on the MAX1586, drive ON5 high, or drive ON5 low for shutdown. On the MAX1587, the enable pins for V4 and V5 are combined. Drive ON45 high to enable V4 and V5, or drive ON45 low for shutdown. V5 is intended to connect to VCC_SRAM.

## V6 (VCC_USIM—MAX1586 Only)

V6 is a linear regulator on the MAX1586 that supplies loads up to 35 mA . The V6 output voltage is programmed with the $\mathrm{I}^{2} \mathrm{C}$ serial interface to $0 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.0V. The power-up default for V6 is 0V. See the Serial Interface section for details on changing the voltage. The power input for the V6 linear regulator is IN6, which is typically connected to V1. To enable V6, drive ON6 high, or drive ON6 low for shutdown. V6 is intended to connect to VCC_USIM.

## V7 Always-On Output (VCC_BATT)

The V7 output is always active if V 1 is enabled and in regulation or if backup power is present. When ON1 is high and V 1 is in regulation, V 7 is sourced from V 1 by an internal MOSFET switch. When ON1 is low or V 1 is out of regulation, V 7 is sourced from BKBT by a second on-chip MOSFET. V7 can supply loads up to 30 mA . V7 is intended to connect to VCC_BATT on Intel CPUs.
Due to variations in system implementation, BKBT and V7 can be utilized in different ways. See the BackupBattery and V7 Configurations section for information on how to use BKBT and V7.

Quiescent Operating Current in Various States
The MAX1586/MAX1587 are designed for optimum efficiency and minimum operating current for all typical operating modes, including sleep and deep sleep. These states are outlined in Table 1.

Table 1. Quiescent Operating Current in Various States

OPERATING   POWER MODE	DESCRIPTION	TYPICAL MAX1586/MAX1587   NO-LOAD OPERATING CURRENT
RUN	All supplies on and running	$200 \mu \mathrm{~A}$ MAX1587,
IDLE	All supplies on and running, peripherals on	

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

## Voltage Monitors, Reset, and Undervoltage-Lockout Functions

Undervoltage Lockout

When the input voltage is below 2.35 V (typ), an under-voltage-lockout (UVLO) circuit disables the IC. The inputs remain high impedance while in UVLO, reducing battery load under this condition. All serial registers are maintained with the input voltage down to at least 2.35 V .

## Reset Output ( $\overline{\mathrm{RSO}}$ ) and $\overline{M R}$ Input

 The reset output ( $\overline{\mathrm{RSO}})$ is low when the $\overline{\mathrm{MR}}$ input is low or when V 7 is below 2.425 V . V 7 is powered from V 1 (when enabled) or the backup-battery input (BKBT). RSO normally goes low:1) When power is first applied in configurations with no separate backup battery (external diode from IN to BKBT).
2) When power is removed in configurations with no separate backup battery (external diode from IN to BKBT).
3) If the backup battery falls below 2.425 V when V 1 is off or out of regulation.
4) When the manual reset button is pressed $(\overline{\mathrm{MR}}$ goes low).
If $\mathrm{V}_{\text {IN }}$ is $>2.4 \mathrm{~V}$, an internal timer delays the release of $\overline{\mathrm{RSO}}$ for 65 ms after V7 rises above 2.3 V . However, if VIN $<2.4 \mathrm{~V}$ when V 7 exceeds 2.3 V , or if V IN and V 7 rise at the same time, $\overline{\mathrm{RSO}}$ deasserts immediately with no 65 ms delay. There is no delay in the second case because the timer circuitry is deactivated to minimize operating current during VIN undervoltage lockout.
If it is desired to have a $65 \mathrm{~ms} \overline{\mathrm{RSO}}$ release delay for any sequence of $\mathrm{VIN}^{\prime}$ and V , the circuit in Figure 2 may be used. An RC connected from IN to $\overline{\mathrm{MR}}$ delays the rise of $\overline{\mathrm{MR}}$ until after VIN powers up. The 65ms timer is valid for either sequence of V 7 and VIN and does not release until 65 ms after both are up. The only regulator output that affects $\overline{\mathrm{RSO}}$ is V 7 . $\overline{\mathrm{RSO}}$ will not respond to $\mathrm{V} 1-\mathrm{V} 6$, which are monitored by POK. Also, $\overline{\mathrm{RSO}}$ is high impedance and does not function if BKBT is not powered.
$\overline{\mathrm{MR}}$ is a manual reset input for hardware reset. A low input at $\overline{\mathrm{MR}}$ causes the $\overline{\mathrm{RSO}}$ output to go low for at least 65ms and also resets the V3 output to its default 1.3V setting. $\overline{M R}$ impacts no other MAX1586/MAX1587 functions.

## Dead-Battery and Low-Battery ComparatorsDBI, LBI (MAX1586 Only)

The DBI and LBI inputs monitor input power (usually a battery) and trigger the $\overline{\mathrm{DBO}}$ and $\overline{\mathrm{LBO}}$ outputs. The dead-battery comparator triggers $\overline{\mathrm{DBO}}$ when the battery


Figure 2. An RC delay connected from IN to $\overline{M R}$ ensures that the $65 \mathrm{~ms} \overline{\mathrm{RSO}}$ release delay remains in effect for any sequence of VIN and V7.


Figure 3. Setting the Low-Battery and Dead-Battery Thresholds with One Resistor Chain. The values shown set a DBI threshold of 3.3 V and an LBI threshold of 3.5 V (no resistors are needed for the factory preset thresholds).
(VIN) discharges to the dead-battery threshold. The factory-set 3.15 V threshold is selected by connecting DBI to $I N$, or the threshold can be programmed with a resistor-divider at DBI. The low-battery comparator has a factory-set 3.6 V threshold that is selected by connecting LBI to IN , or its threshold can be programmed with a resistor-divider at LBI.

One three-resistor-divider can set both DBI and LBI (R1, R2, and R3 in Figure 3) according to the following equations:

1) Choose R3 to be less than $250 \mathrm{k} \Omega$.
2) 

$$
\mathrm{R} 1=\mathrm{R} 3 \frac{\mathrm{~V}_{\mathrm{LB}}}{\mathrm{~V}_{\mathrm{LBITH}}}\left(1-\frac{\mathrm{V}_{\mathrm{DBITH}}}{\mathrm{~V}_{\mathrm{DB}}}\right)
$$

3) 

$$
\mathrm{R} 2=\mathrm{R} 3 \times\left(\frac{\mathrm{V}_{\mathrm{DBITH}}}{\mathrm{~V}_{\mathrm{LBITH}}} \frac{\mathrm{~V}_{\mathrm{LB}}}{\mathrm{~V}_{\mathrm{DB}}}-1\right)
$$

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 



Figure 4. Setting the Low-Battery and Dead-Battery Thresholds with Separate Resistor-Dividers. The values shown set a DBI threshold of 3.3V and an LBI threshold of 3.5 V (no resistors are needed for factory-preset thresholds).
where VLB is the desired low-battery detection voltage and $V_{D B}$ is the desired dead-battery detection voltage. VLBITH is the LBI threshold ( 1.0 V typ) and VDBITH is the DBI threshold (1.232V typ).
Alternately, LBI and DBI can be set with separate two-resistor-dividers. Choose the lower resistor of the divider chain to be $250 \mathrm{k} \Omega$ or less (R5 and R7 in Figure 4). The equations for upper divider-resistors as a function of each threshold are then:

$$
\begin{aligned}
& R 4=R 5 \times\left(\frac{V_{\text {DB }}}{V_{\text {DBITH }}}-1\right) \\
& R 6=R 7 \times\left(\frac{V_{\text {LB }}}{V_{\text {LBITH }}}-1\right)
\end{aligned}
$$

When resistors are used to set $V_{L B}$, the threshold at LBI is 1.00 V . When resistors are used to set $\mathrm{V}_{\mathrm{DB}}$, the threshold at DBI is 1.232 V . A resistor-set threshold can also be used for only one of DBI or LBI. The other threshold can then be factory set by connecting the appropriate input to IN .
If BKBT is not powered, $\overline{\mathrm{DBO}}$ does not function and is high impedance. $\overline{\mathrm{DBO}}$ is expected to connect to nBATT_FAULT on Intel CPUs. If BKBT is not powered, $\overline{\mathrm{LBO}}$ does not function and is high impedance.


#### Abstract

Power-OK Output (POK) POK is an open-drain output that goes low when any activated regulator ( $\mathrm{V} 1-\mathrm{V} 6$ ) is below its regulation threshold. POK does not monitor V7. When all active output voltages are within $10 \%$ of regulation, POK is high impedance. POK does not flag an out-of-regulation condition while V3 is transitioning between voltages set by serial programming or when any regulator channel has been turned off. POK momentarily goes low when any regulator is turned on, but returns high when that regulator reaches regulation. When all regulators (V1-V6) are off, POK is forced low. If the input voltage is below the UVLO threshold, POK is held low and maintains a valid low output with VIN as low as 1 V . If BKBT is not powered, POK does not function and is high impedance.

\section*{Connection to Processor and Power Sequencing}


 Typical processor connections have only power-control pins, typically labeled PWR_EN and SYS_EN. The MAX1586/MAX1587 provide numerous on/off control pins for maximum flexibility. In a typical application, many of these pins are connected together. ON1, ON2, and ON6 typically connect to SYS_EN. ON3, ON4, and ON5 typically connect to PWR_EN. V7 remains on as long as the main or backup power is connected. Sequencing is not performed internally on the MAX1586/MAX1587; however, all ON_ inputs have hysteresis and can connect to RC networks to set sequencing. For typical connections to Intel CPUs, no external sequencing is required.
## Backup-Battery Input

The backup-battery input (BKBT) provides backup power for V7 when V1 is disabled. Normally, a primary or rechargeable backup battery is connected to this pin. If a backup battery is not used, then BKBT should connect to IN through a diode or external regulator. See the Backup-Battery and V7 Configurations section for information on how to use BKBT and V7.

## Serial Interface

An $I^{2} \mathrm{C}$-compatible, two-wire serial interface controls REG3 on the MAX1587, and REG3 and REG6 on the MAX1586. The serial interface operates when VIN exceeds the 2.40 V UVLO threshold and at least one of ON1-ON6 is asserted. The serial interface is shut down to minimize off-current drain when no regulators are enabled.

## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

## Table 2. V3 and V6 Serial Programming Codes

D7	D6	$\begin{gathered} \text { D5 } \\ 0=\text { PROG V3 } \\ 1=\text { PROG V6 } \end{gathered}$	D4	D3	D2	D1	D0	OUTPUT   (V)	DESCRIPTION
X	X	0	0	0	0	0	0	0.700	V3, CORE vOLTAGES
		0	0	0	0	0	1	0.725	
		0	0	0	0	1	0	0.750	
		0	0	0	0	1	1	0.775	
		0	0	0	1	0	0	0.800	
		0	0	0	1	0	1	0.825	
		0	0	0	1	1	0	0.850	
		0	0	0	1	1	1	0.875	
		0	0	1	0	0	0	0.900	
		0	0	1	0	0	1	0.925	
		0	0	1	0	1	0	0.950	
		0	0	1	0	1	1	0.975	
		0	0	1	1	0	0	1.000	
		0	0	1	1	0	1	1.025	
		0	0	1	1	1	0	1.050	
		0	0	1	1	1	1	1.075	
		0	1	0	0	0	0	1.100	
		0	1	0	0	0	1	1.125	
		0	1	0	0	1	0	1.150	
		0	1	0	0	1	1	1.175	
		0	1	0	1	0	0	1.200	
		0	1	0	1	0	1	1.225	
		0	1	0	1	1	0	1.250	
		0	1	0	1	1	1	1.275	
		0	1	1	0	0	0	1.300	
		0	1	1	0	0	1	1.325	
		0	1	1	0	1	0	1.350	
		0	1	1	0	1	1	1.375	
		0	1	1	1	0	0	1.400	
		0	1	1	1	0	1	1.425	
		0	1	1	1	1	0	1.450	
		0	1	1	1	1	1	1.475	
		1	X	X	X	0	0	0	V6, USI
		1	X	X	X	0	1	1.8	VOLTAGES
		1	X	X	X	1	0	2.5	[MAX1586
		1	X	X	X	1	1	3.0	ONLY]

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 



Figure 5. ${ }^{2}$ C-Compatible Serial-Interface Timing Diagram

The serial interface consists of a serial data line (SDA) and a serial clock line (SCL). Standard $\mathrm{I}^{2} \mathrm{C}$-compatible write-byte commands are used. Figure 5 shows a timing diagram for the $1^{2} \mathrm{C}$ protocol. The MAX1586/ MAX1587 are slave-only devices, relying upon a master to generate a clock signal. The master (typically a microprocessor) initiates data transfer on the bus and generates SCL to permit data transfer. A master device communicates to the MAX1586/MAX1587 by transmitting the proper address followed by the 8 -bit data code (Table 2). Each transmit sequence is framed by a START (A) condition and a STOP (L) condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse.
Table 2 shows the serial data codes used to program V3 and V6. The default power-up voltage for V3 is 1.3 V and for V 6 is 0 V .

Bit Transfer One data bit is transferred during each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high are control signals (see the START and STOP Conditions section). Both SDA and SCL idle high when the bus is not busy.

## START and STOP Conditions

When the serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-tolow transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 5). A START condition from the master signals the beginning of a transmission to the MAX1586/ MAX1587. The master terminates transmission by issuing a not acknowledge followed by a STOP condition
(see the Acknowledge Bit (ACK) section). The STOP condition frees the bus.
When a STOP condition or incorrect address is detected, the MAX1586/MAX1587 internally disconnect SCL from the serial interface until the next START condition, minimizing digital noise and feedthrough.

## Acknowledge Bit (ACK)

The acknowledge bit (ACK) is the ninth bit attached to every 8 -bit data word. The receiving device always generates ACK. The MAX1586/MAX1587 generate an ACK when receiving an address or data by pulling SDA low during the ninth clock period. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time.

## Serial Address

A bus master initiates communication with a slave device by issuing a START condition followed by the 7 -bit slave address (Table 3). When idle, the MAX1586/MAX1587 wait for a START condition followed by its slave address. The serial interface compares each address value bit by bit, allowing the interface to power down immediately if an incorrect address is detected.

Table 3. Serial Address

SRAD	A7	A6	A5	$\mathbf{A 4}$	A3	A2	A1	$\mathbf{A 0}$
$\mathbf{R D} / \mathbf{W}$								
0	0	0	1	0	1	0	0	0
1	0	0	1	0	1	0	1	0

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

The LSB of the address word is the read/write $(R \bar{W})$ bit. $R \bar{W}$ indicates whether the master is writing or reading (RD/W $0=$ write, RD/W $1=$ read). The MAX1586/ MAX1587 only support the SEND BYTE format; therefore, $R D \bar{W}$ is required to be 0 .
After receiving the proper address, the MAX1586/ MAX1587 issue an ACK by pulling SDA low for one clock cycle. The MAX1586/MAX1587 have two userprogrammed addresses (Table 3). Address bits A7 through A2 are fixed, while A1 is controlled by SRAD. Connecting SRAD to GND sets A1 $=0$. Connecting SRAD to $\operatorname{IN}$ sets A1 $=1$.

## V3 Output Ramp-Rate Control

When V3 is dynamically changed with the serial interface, the output voltage changes at a rate controlled by a capacitor (CRAMP) connected from RAMP to ground. The voltage change is a conventional RC exponential described by:

$$
\operatorname{Vo}(\mathrm{t})=\operatorname{Vo}(0)+\mathrm{dV}\left(1-\exp \left(-\mathrm{t} /\left(100 \mathrm{k} \Omega \text { CrAMP }^{2}\right)\right)\right.
$$

A useful approximation is that it takes approximately 2.2 RC time constants for V3 to move from $10 \%$ to $90 \%$ of the voltage difference. For CRAMP $=1500 \mathrm{pF}$, this time is $330 \mu \mathrm{~s}$. For 1 V to 1.3 V change, this equates to $1 \mathrm{mV} / \mathrm{\mu s}$. See the Typical Operating Characteristics for examples of different ramp-rate settings.
The maximum capacitor value that can be used at RAMP is 2200pF. If larger values are used, the V3 ramp rate is still controlled according to the above equation, but when V3 is first activated, POK indicates an "in regulation" condition before V 3 reaches its final voltage.
The RAMP pin is effectively the reference for REG3. FB3 regulates to 1.28 times the voltage on RAMP.

## Design Procedure

## Setting the Output Voltages

 The outputs V1 and V2 have preset output voltages, but can also be adjusted using a resistor voltage-divider. To set V1 to 3.3V, connect FB1 to GND. V2 can be preset to 1.8 V or 2.5 V on the MAX1586A and MAX1587A. To set V2 to 1.8 V on the MAX1586A and MAX1587A, connect FB2 to IN . To set to 2.5 V , connect FB2 to GND. V2 can preset to 3.3 V or 2.5 V on the MAX1587B. To set V2 to 3.3 V on the MAX1587B, connect FB2 to IN . To set to 2.5 V , connect FB 2 to GND .To set V1 or V2 to other than the preset output voltages, connect a resistor voltage-divider from the output voltage to the corresponding FB input. The FB_ input bias current is less than 100nA, so choose the low-side (FB_-to-GND) resistor (RL) to be $100 \mathrm{k} \Omega$ or less. Then calculate the high-side (output-to-FB_) resistor (RH) using:

$$
R_{H}=R L\left[\left(\text { VOUt }^{2} 1.25\right)-1\right]
$$

The V3 (VCC_CORE) output voltage is set from 0.7 V to 1.475 V in 25 mV steps by the ${ }^{2} \mathrm{C}$ serial interface. See the Serial Interface section for details.
Linear regulator V4 provides a fixed 1.3 V output voltage. Linear regulator V 5 provides a fixed 1.1 V output voltage. V4 and V5 voltages are not adjustable.
The output voltage of linear regulator V6 (VCC_USIM) is set to $0 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.0 V by the $\mathrm{I}^{2} \mathrm{C}$ serial interface. See the Serial Interface section for details.
Linear regulator V7 (VCC_BATT) tracks the voltage at V 1 as long as ON1 is high and V 1 is in regulation. When ON1 is low or V1 is not in regulation, V7 switches to the backup battery (VBKBT).

## Inductor Selection

The external components required for the step-down are an inductor, input and output filter capacitors, and a compensation RC network.
The MAX1586/MAX1587 step-down converters provide best efficiency with continuous inductor current. A reasonable inductor value (LIDEAL) is derived from:

$$
\text { LIDEAL }=[2(\mathrm{~V} \text { IN }) \times \mathrm{D}(1-\mathrm{D})] /(\text { lout }(\mathrm{MAX}) \times \text { fosc })
$$

This sets the peak-to-peak inductor current at $1 / 2$ the DC inductor current. D is the duty cycle:

$$
\mathrm{D}=\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\mathrm{IN}}
$$

Given LIDEAL, the peak-to-peak inductor ripple current is $0.5 \times$ IOUT. The peak inductor current is $1.25 \times$ IOUT(MAX). Make sure the saturation current of the inductor exceeds the peak inductor current and the rated maximum DC inductor current exceeds the maximum output current (IOUT(MAX)). Inductance values larger than LIDEAL can be used to optimize efficiency or to obtain the maximum possible output current. Larger inductance values accomplish this by supplying a given load current with a lower inductor peak current. Typically, output current and efficiency are improved for inductor values up to about two times LIDEAL. If the inductance is raised too much, however, the inductor size may become too large, or the increased inductor resistance may reduce efficiency more than the gain derived from lower peak current.
Smaller inductance values allow smaller inductor sizes, but also result in larger peak inductor current for a given load. Larger output capacitance may then be needed to suppress the increase in output ripple caused by larger peak current.

## Capacitor Selection

 The input capacitor in a DC-DC converter reduces current peaks drawn from the battery or other input power
# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

source and reduces switching noise in the controller. The impedance of the input capacitor at the switching frequency should be less than that of the input source so high-frequency switching currents do not pass through the input source.
The output capacitor keeps output ripple small and ensures control-loop stability. The output capacitor must also have low impedance at the switching frequency. Ceramic, polymer, and tantalum capacitors are suitable, with ceramic exhibiting the lowest ESR and lowest high-frequency impedance.
Output ripple with a ceramic output capacitor is approximately:

$$
V_{\text {RIPPLE }}=\operatorname{l} \text { L(PEAK) }[1 /(2 \pi \times \text { fOSC } \times \text { COUT })]
$$

If the capacitor has significant ESR, the output ripple component due to capacitor ESR is:

$$
\left.\mathrm{V}_{\mathrm{RIPPLE}}(\mathrm{ESR})=I_{L(P E A K}\right) \times E S R
$$

Output capacitor specifics are also discussed in the Compensation and Stability section.

## Compensation and Stability

The relevant characteristics for REG1, REG2, and REG3 compensation are:

1) Transconductance (from FB_ to CC_), gmEA
2) Current-sense amplifier transresistance, RCS
3) Feedback regulation voltage, $\mathrm{V}_{\mathrm{FB}}(1.25 \mathrm{~V})$
4) Step-down output voltage, VOUT, in V
5) Output load equivalent resistance, RLOAD $=$ VOUT/ ILOAD
The key steps for step-down compensation are:
6) Set the compensation RC zero to cancel the RLOAD Cout pole.
7) Set the loop crossover at or below approximately 1/10th the switching frequency.
For example, with $\operatorname{VIN}(M A X)=5 \mathrm{~V}, \mathrm{VOUT}=2.5 \mathrm{~V}$ for REG2, and IOUT $=800 \mathrm{~mA}$, then RLOAD $=3.125 \Omega$. For REG2, RCS $=0.75 \mathrm{~V} / \mathrm{A}$ and $\mathrm{gmEA}=87 \mu \mathrm{~S}$.
Choose the crossover frequency, $\mathrm{f}_{\mathrm{C}} \leq \mathrm{fosc} / 10$. Choose 100 kHz . Then calculate the value of the compensation capacitor, CC:

$$
\begin{aligned}
\mathrm{CC} & =\left(\mathrm{V}_{\mathrm{FB}} / \mathrm{VOUT}^{2}\right) \times\left(\mathrm{RLOAD}^{2} / \mathrm{RCS}_{\mathrm{C}}\right) \times(\mathrm{gmEA} /(2 \pi \times \mathrm{fC})) \\
& =(1.25 / 2.5) \times(3.125 / 0.75) \times\left(87 \times 10^{-6 /(6.28}\right. \\
& \times 100,000))=289 \mathrm{pF}
\end{aligned}
$$

Choose 330pF, the next highest standard value.
Now select the compensation resistor, RC, so transientdroop requirements are met. As an example, if 3\% transient droop is allowed for the desired load step, the

Table 4. Compensation Parameters

PARAMETER	REG1	REG2	REG3
Error-Amplifier   Transconductance, gmEA	$87 \mu \mathrm{~S}$	$87 \mu \mathrm{~S}$	$68 \mu \mathrm{~S}$
Current-Sense Amp   Transresistance, RCS	$0.5 \mathrm{~V} / \mathrm{A}$	$0.75 \mathrm{~V} / \mathrm{A}$	$1.25 \mathrm{~V} / \mathrm{A}$

Table 5. Typical Compensation Values

COMPONENT OR   PARAMETER	REG1	REG2	REG3
VOUT	3.3 V	2.5 V	1.3 V
Output Current	1300 mA	900 mA	500 mA
Inductor	$3.3 \mu \mathrm{H}$	$6.8 \mu \mathrm{H}$	$10 \mu \mathrm{H}$
Load-Step Droop	$3 \%$	$3 \%$	$3 \%$
Loop Crossover Freq (fc)	100 kHz	100 kHz	100 kHz
Cc	330 pF	270 pF	330 pF
Rc	$240 \mathrm{k} \Omega$	$240 \mathrm{k} \Omega$	$240 \mathrm{k} \Omega$
Cout	$22 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$

input to the error amplifier moves $0.03 \times 1.25 \mathrm{~V}$, or 37.5 mV . The error-amplifier output drives $37.5 \mathrm{mV} \times$ gmea, or IEAO $=37.5 \mathrm{mV} \times 87 \mu \mathrm{~S}=3.26 \mu \mathrm{~A}$ across RC to provide transient gain. Find the value of RC that allows the required load-step swing from:

$$
\mathrm{R}_{\mathrm{C}}=\mathrm{RCS} \times \operatorname{lind}(\mathrm{PK}) / \operatorname{IEAO}
$$

where IIND(PK) is the peak inductor current. In a stepdown DC-DC converter, if LIDEAL is used, output current relates to inductor current by:

$$
\operatorname{IIND}(\mathrm{PK})=1.25 \times \mathrm{IOUT}
$$

So for an 800 mA output load step with V IN $=3.6 \mathrm{~V}$ and VOUT $=2.5 \mathrm{~V}$ :

$$
\mathrm{R}_{\mathrm{C}}=\mathrm{RCS} \times \operatorname{lIND}(\mathrm{PK}) / \operatorname{IEAO}=(0.75 \mathrm{~V} / \mathrm{A}) \times
$$

$$
(1.25 \times 0.8 A) / 3.26 \mu \mathrm{~A}=230 \mathrm{k} \Omega
$$

We choose $240 \mathrm{k} \Omega$. Note that the inductor does not limit the response in this case since it can ramp at (VIN Vout $) / \mathrm{L}$, or $(3.6 \mathrm{~V}-2.5 \mathrm{~V}) / 3.3 \mu \mathrm{H}=242 \mathrm{~mA} / \mu \mathrm{s}$.
The output filter capacitor is then selected so that the Cout Rload pole cancels the Rc Cc zero:

$$
\text { COUT } \times \text { RLOAD }=\text { RC } \times \text { CC }
$$

For the example:

$$
\begin{gathered}
\mathrm{RLOAD}=\mathrm{VOUT} \times \operatorname{lLOAD}=2.5 \mathrm{~V} / 0.8 \mathrm{~A}= \\
3.125 \Omega \\
\text { COUT }=\mathrm{RC} \times \mathrm{CC} / \mathrm{RLOAD}_{\mathrm{LO}}=240 \mathrm{k} \Omega \times 330 \mathrm{pF} / \\
3.125 \Omega=25 \mu \mathrm{~F}
\end{gathered}
$$

## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones



Figure 6. MAX1586 Typical Applications Circuit (The MAX1587 omits some features. See the Pin Description section.)

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 

We choose $22 \mu \mathrm{~F}$.
Recalculate $\mathrm{R}_{\mathrm{C}}$ using the selected Cout.

$$
\mathrm{RC}=\mathrm{COUT} \times \mathrm{RLOAD}^{\mathrm{C}} / \mathrm{Cc}=208 \mathrm{k} \Omega
$$

Note that the pole cancellation does not have to be exact. RC $\times$ Cc need only be within 0.75 to 1.25 times RLOAD $\times$ COUT. This provides flexibility in component selection.
If the output filter capacitor has significant ESR, a zero occurs at:

$$
\text { ZESR }=1 /(2 \pi \times \text { COUT } \times \text { RESR })
$$

If $Z_{E S R}>f_{C}$, it can be ignored, as is typically the case with ceramic or polymer output capacitors. If ZESR is less than fc , it should be cancelled with a pole set by capacitor Cp connected from CC_ to GND:

$$
\mathrm{CP}=\mathrm{COUT} \times \mathrm{RESR}^{2} / \mathrm{R}_{\mathrm{C}}
$$

If CP is calculated to $\mathrm{be}<10 \mathrm{pF}$, it can be omitted.

## Optimizing Transient Response

In applications that require load-transient response to be optimized in favor of minimum component values, increase the output filter capacitor to increase the $R$ in the compensation RC. From the equations in the previous section, doubling the output cap allows a doubling of the compensation $R$, which then doubles the transient gain.

## Applications Information <br> Extending the Maximum Core Voltage Range

The V3 output can be serially programmed to supply from 0.7 V to 1.475 V in 25 mV steps. In some cases, a higher CPU core voltage may be desired. The V3 voltage range can be increased by adding two resistors as shown in Figure 7.
R24 and R25 add a small amount of gain. They are set so that an internally programmed value of 1.475 V results in a higher actual output at V3. The resistors shown in Figure 7 set a maximum output of $1.55 \mathrm{~V}, 1.6 \mathrm{~V}$, or 1.65 V . All output steps are shifted and the step size is also slightly increased.
The output voltage for each programmed step of V3 in Figure 7 is:

$$
\begin{aligned}
& \mathrm{V} 3=\mathrm{V} 3 \mathrm{PROG}+\mathrm{R} 24[(\mathrm{~V} 3 \mathrm{PROG} / \mathrm{R} 25)+ \\
& (\mathrm{V} 3 \mathrm{PROG} / 185.5 \mathrm{k} \Omega)]
\end{aligned}
$$

where V 3 is the actual output voltage, V 3 PROG is the original programmed voltage from the "OUTPUT (V)"

**OTHER R24 VaLuES:
R24 $=5.5 \mathrm{k} \Omega$, V3: 0.759 V T0 1.60 V
R24 $=7.7 \mathrm{k} \Omega$, V3: 0.783 V T0 1.65V
Figure 7. Addition of R24 and R25 increases maximum core voltage. The values shown raise the maximum core from 1.475 V to 1.55 V .
column in Table 2, and $185.5 \mathrm{k} \Omega$ is the internal resistance of the FB3 pin.

Backup-Battery and V7 Configurations The MAX1586/MAX1587 include a backup-battery connection, BKBT, and an output, V7. These can be utilized in different ways for various system configurations.

Primary Backup Battery
A connection with a primary (nonrechargeable) lithium coin cell is shown in Figure 6. The lithium cell connects to BKBT directly. V7 powers the CPU VCC_BATT from either V1 (if enabled) or the backup battery. It is assumed whenever the main battery is good, V 1 is on (either with its DC-DC converter or sleep LDO) to supply V7.

## No Backup Battery (or Alternate Backup)

If no backup battery is used, or if an alternate backup and VCC_BATT scheme is used that does not use the MAX1586/MAX1587, then BKBT should be biased from IN with a small silicon diode (1N4148 or similar, as in Figure 8). BKBT must still be powered when no backup battery is used because $\overline{\mathrm{DBO}}, \overline{\mathrm{RSO}}$, and POK require this supply to function. If BKBT is not powered, these outputs do not function and are high impedance.

## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones



Figure 8. BKBT connection when no backup battery is used, or if an alternate backup scheme, not involving the MAX1586/MAX1587, is used.


Figure 9. A 1-cell rechargeable Li+ battery provides more backup power when a primary cell is insufficient. The cell is charged to 3.3V when V1 is active. Alternately, the battery can be charged from IN if the voltages are appropriate for the cell type.


Figure 10. A 1-cell NiMH battery can provide backup by boosting with a low-power DC-DC converter. A series resistor-diode trickle charges the battery when the main power is on.

## Rechargeable Li+ Backup Battery

If more backup power is needed and a primary cell has inadequate capacity, a rechargeable lithium cell can be accommodated as shown in Figure 9. A series resistor and diode charge the cell when the 3.3 V V1 supply is active. In addition to biasing V7, the rechargeable battery may be required to also power other supplies.

## Rechargeable NiMH Backup Battery

In some systems, a NiMH battery may be desired for backup. Usually this requires multiple cells because the typical NiMH cell voltage is only 1.2 V . By adding a small DC-DC converter (MAX1724), the low-battery voltage is boosted to 3 V to bias BKBT (Figure 10). The DC-DC converter's low operating current ( $1.5 \mu \mathrm{~A}$ typ) allows it to remain on constantly so the 3 V BKBT bias is always present. A resistor and diode trickle charge the NiMH cell when the main power is present.

PCB Layout and Routing Good PCB layout is important to achieve optimal performance. Conductors carrying discontinuous currents and any high-current path should be made as short and wide as possible. A separate low-noise ground plane containing the reference and signal grounds should connect to the power-ground plane at only one point to minimize the effects of power-ground currents. Typically, the ground planes are best joined right at the IC.
Keep the voltage feedback network very close to the IC, preferably within $0.2 \mathrm{in}(5 \mathrm{~mm})$ of the FB_ pin. Nodes with high dV/dt (switching nodes) should be kept as small as possible and should be routed away from high-impedance nodes such as FB_. Refer to the MAX1586 or MAX1587 evaluation kit data sheets for a full PCB example.

# High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones 


(For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.)

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
40 Thin QFN	T4066-5	$\underline{\mathbf{2 1 - 0 1 4 1}}$
48 Thin QFN	T4877-6	$\underline{\mathbf{2 1 - 0 1 4 4}}$

## High-Efficiency, Low-IQ PMICs with Dynamic Core for PDAs and Smart Phones

REVISION   NUMBER	REVISION   DATE	DESCRIPTION	PAGES   CHANGED
3	$12 / 08$	Corrected equations to calculate resistors in the Dead-Battery and Low-Battery   Comparators-DBI, LBI (MAX1586 Only) section.	20,21
4	$4 / 09$	Corrected typos	$20,21,23$,   25,27

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC


[^0]:    Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

