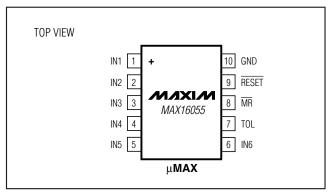


General Description

The MAX16055 precision hex voltage microprocessor (µP) supervisory circuit monitors up to six system-supply voltages and asserts a single reset when any one supply voltage drops below its preset threshold. The device significantly reduces system size and component count while improving reliability compared to multiple ICs or discrete components.

A variety of factory-trimmed threshold voltages are available to accommodate different supply voltages and tolerance with minimal external components. The MAX16055 includes internally fixed threshold options for monitoring 3.3V, 3.0V, 2.5V, 1.8V, 1.5V, 1.2V, 1.1V, 1.0V, and 0.9V supplies with -5% or -10% tolerance. The MAX16055 is also available with one to five adjustable threshold inputs to monitor voltages down to 0.5V.


A single active-low, open-drain output asserts when any monitored input falls below its associated threshold. The reset output features a weak internal pullup (typically 70µA) to supply input IN1. The reset output remains low for the reset timeout period (140ms, min) after all voltages rise above the selected thresholds. The reset output remains valid as long as either IN1 or IN2 input voltage is above 1V. The MAX16055 is available in a small 10-pin µMAX® (3mm x 3mm) package. The MAX16055 operates over the -40°C to +125°C automotive temperature range.

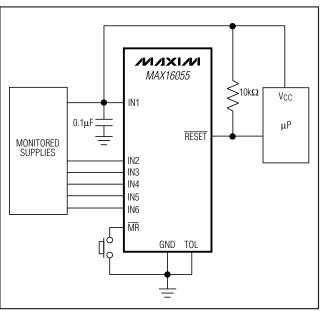
Applications

Telecommunications	Networking Equipment
High-End Printers	Industrial Equipment
Desktop and Notebook	Set-Top Boxes
Computers	Servers/Workstations
Data Storage Equipment	

μΜΑΧ is a registered trademark of Maxim Integrated Products, Inc.

Pin Configuration

Features


- ♦ Precision Factory-Set Reset Threshold Options 3.3V. 3.0V. 2.5V. 1.8V. 1.5V. 1.2V. 1.1V. 1.0V. and 0.9V
- ♦ Adjustable Voltage Threshold Monitors Down to 0.5V with 1.5% Accuracy
- ♦ Open-Drain RESET Output with 70µA Internal **Pullup**
- ♦ Fixed 140ms (min) Reset Timeout Period
- ♦ Manual Reset Input
- ♦ Reset Valid for IN1 ≥ 1V or IN2 ≥ 1V
- ♦ Tolerance Select (5%/10%) Input
- **♦ Immune to Short Supply Transients**

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX16055_AUB+*	-40°C to +125°C	10 μMAX

- +Denotes a lead(Pb)-free/RoHS-compliant package.
- *Insert the desired threshold option letter from the Selector Guide into the blank to complete the part number. Contact factory for availability.

Typical Operating Circuit

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

RESET, TOL, MR, IN_ to GND0.3V to +6V	Operating Temperature Range40°C to +125°C
Input/Output Current (all pins)	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation (TA = +70°C)	Junction Temperature+150°C
10-Pin µMAX (derate 5.6mW/°C above +70°C)444mW	Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN1} = 1V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{IN1} = 3.3V, T_A = +25^{\circ}\text{C}.)$ (Note 1)

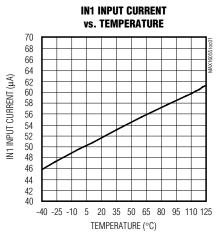
PARAMETER	SYMBOL	COND	MIN	TYP	MAX	UNIT	
Operating Voltage Range	V _{IN1}	(Note 2)	1.0		5.5	V	
		V _{IN} _ = nominal input voltage (for IN2–IN6; 3.3V, 3.0V, 2.5V, 1.8V, 1.5V, 1.2V, 1.1V, 1.0V, 0.9V supplies)			25	40	μΑ
Input Current (Note 3)	IIN_	V _{IN1} = nominal input supply)		55	115		
		V _{IN} _ = 0 to 0.5V or V _A thresholds)	-0.1		+0.1		
			3.3V, TOL = GND	3.00	3.08	3.15	
			3.3V, TOL = V _{IN1}	2.85	2.93	3.00	V
		V _{IN} _ decreasing	3.0V, TOL = GND	2.70	2.78	2.85	
			3.0V, TOL = V _{IN1}	2.55	2.63	2.70	
			2.5V, TOL = GND	2.25	2.32	2.38	
			2.5V, TOL = V _{IN1}	2.13	2.19	2.25	
			1.8V, TOL = GND	1.62	1.67	1.71	
			1.8V, TOL = V _{IN1}	1.53	1.58	1.62	
Throphold Voltago	\/		1.5V, TOL = GND	1.355	1.389	1.425	
Threshold Voltage	V _{TH}		1.5V, TOL = V _{IN1}	1.283	1.316	1.350	
			1.2V, TOL = GND	1.084	1.112	1.140	
			1.2V, TOL = V _{IN1}	1.027	1.053	1.08	
			1.1V, TOL = GND	0.993	1.019	1.045	
			1.1V, TOL = V _{IN1}	0.941	0.965	0.99	
			1.0V, TOL = GND	0.903	0.926	0.95	
			1.0V, TOL = V _{IN1}	0.856	0.878	0.90	
			0.9V, TOL = GND	0.813	0.834	0.855	
			0.9V, TOL = V _{IN1}	0.770	0.790	0.810	

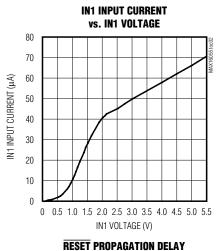
ELECTRICAL CHARACTERISTICS (continued)

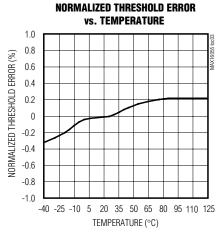
 $(V_{IN1} = 1V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{IN1} = 3.3V, T_A = +25^{\circ}\text{C}.)$ (Note 1)

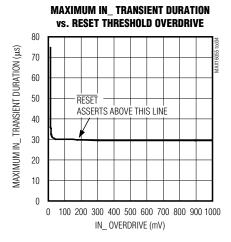
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNIT
Adjustable Threshold	\/	Val doorgoing	TOL = GND	0.491	0.5	0.506	V
Adjustable Tilleshold	V _{TH}	V _{IN} _ decreasing	TOL = V _{IN1}	0.465	0.472	0.479	V
Reset Threshold Hysteresis	VHYST	V _{IN} _ increasing relative	to V _{IN} _ decreasing		0.3		%V _{TH}
Reset Threshold Temperature Coefficient					60		ppm/°C
IN_ to Reset Delay	t _{RD}	V _{IN} _ falling at 10mV/μs to (V _{TH} - 50mV)	from (V _{TH} + 50mV)		20		μs
Reset Timeout Period	t _{RP}			140	200	280	ms
		$V_{IN1} = 5V$, $I_{SINK} = 2mA$				0.3	
RESET Output Low (Note 4)	VoL	V _{IN1} = 2.5V, I _{SINK} = 1.2mA				0.4	V
		$V_{IN1} = 1.0V$, $I_{SINK} = 50\mu A$				0.3	
RESET Output High	V _{OH}	$V_{IN1} > 2.55V$, $I_{SOURCE} = 6\mu A$ (min), \overline{RESET} not asserted		0.8 x V _{IN1}			V
RESET Output High Source Current	ГОН	V _{IN1} > 2.55V, RESET not asserted			70		μΑ
TOL Input Current		TOL = V _{IN1}				100	nA
MR, TOL Input Voltage Low	VIL					0.3 x V _{IN1}	V
MR, TOL Input Voltage High	VIH			0.7 x V _{IN1}			V
MR Minimum Pulse Width				1			μs
MR Glitch Rejection					100		ns
MR-to-RESET Delay					200		ns
MR Pullup Resistance				10	20	33	kΩ

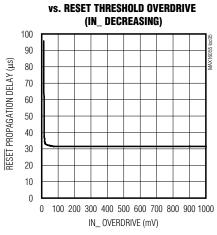
Note 1: 100% production tested at $T_A = +25$ °C. Limits over temperature guaranteed by design.

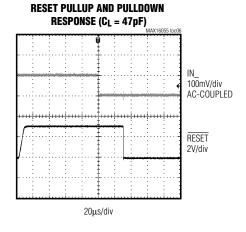

Note 2: The devices are powered from IN1.

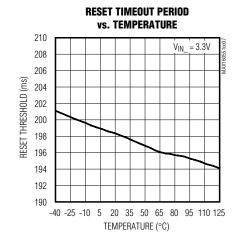

Note 3: Monitored IN1 voltage is also the device power supply.

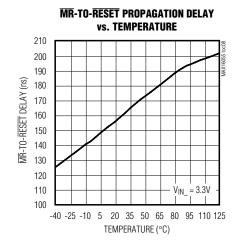

Note 4: RESET output is guaranteed to be in the correct state for IN1 or IN2 falling down to 1V.

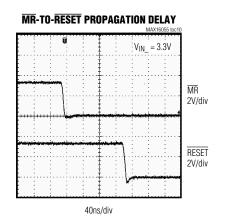

Typical Operating Characteristics


 $(V_{IN1} = 3.3V, T_A = +25$ °C, unless otherwise noted.)









Typical Operating Characteristics (continued)

 $(V_{IN1} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

RESET TIMEOUT DELAY MAX16055 toc09 IN_ 1V/div RESET 1V/div

Pin Description

PIN	NAME	FUNCTION
1	IN1	Voltage Input 1. IN1 is the power-supply input and voltage monitoring input for the device. Connect a 0.1µF bypass capacitor from IN1 to GND. Keep IN1 or IN2 > 1V to ensure RESET is valid.
2	IN2	Voltage Input 2. See the Selector Guide for voltage threshold. Keep IN1 or IN2 > 1V to ensure RESET is valid.
3	IN3	Voltage Input 3. See the Selector Guide for voltage threshold.
4	IN4	Voltage Input 4. See the Selector Guide for voltage threshold.
5	IN5	Voltage Input 5. See the Selector Guide for voltage threshold.
6	IN6	Voltage Input 6. See the Selector Guide for voltage threshold.
7	TOL	Threshold Tolerance Input. Connect TOL to GND to select thresholds 5% below nominal. Connect TOL to IN1 to select thresholds 10% below nominal.
8	MR	Active-Low Manual-Reset Input. When $\overline{\text{MR}}$ is low, $\overline{\text{RESET}}$ goes low and remains asserted for the reset timeout period after $\overline{\text{MR}}$ is pulled high. $\overline{\text{MR}}$ is internally pulled high by a $20\text{k}\Omega$ pullup resistor to IN1.
9	RESET	Active-Low Reset Output. RESET goes low when any input (IN_) goes below the specified threshold. After all inputs rise above the specified threshold voltages, RESET remains low for 140ms (min) before going high. The open-drain RESET output features a weak (70µA) internal pullup to IN1.
10	GND	Ground

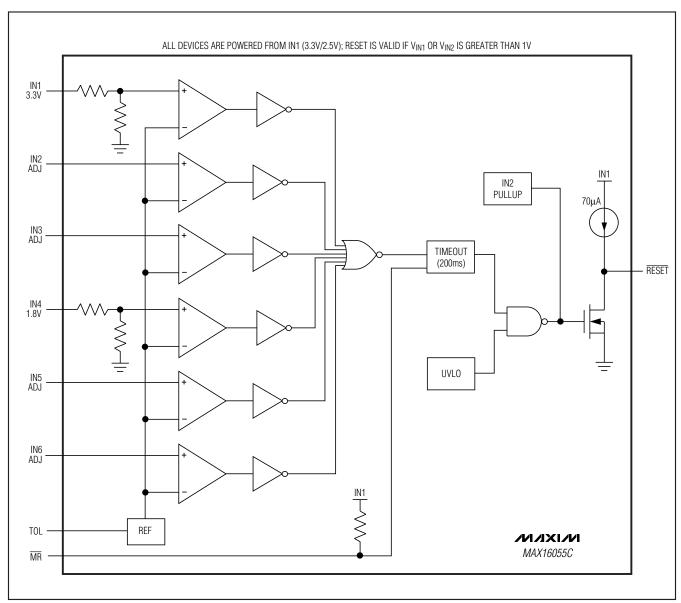


Figure 1. Functional Diagram

Detailed Description

The MAX16055 hex voltage μP supervisory circuit maintains system integrity in multisupply systems (Figure 1). The MAX16055 offers accurate, factory-fixed undervoltage threshold options for monitoring very low voltages. The MAX16055 also offers one to five adjustable thresholds for monitoring voltages down to 0.5V. See the *Selector Guide* for the available threshold options.

The MAX16055 includes an accurate voltage reference, precision comparators, and a series of accurate internal resistor-divider networks to set the factory-fixed reset threshold options for monitoring 3.3V, 3.0V, 2.5V, 1.8V, 1.5V, 1.2V, 1.1V, 1.0V, or 0.9V supplies. The resistor networks scale the specified IN_ threshold voltages to match the internal reference voltage. Adjustable threshold options allow the monitored voltage to be connected to the input of the internal comparator. Use an external voltage-divider to set the threshold voltage.

__ /VIXI/VI

The MAX16055 is immune to short IN_ transients. Each of the internal comparators provides a typical hysteresis of 0.3% with respect to the reset threshold. This built-in hysteresis improves the monitor's immunity to ambient noise without significantly reducing threshold accuracy. See the *Typical Operating Characteristics* for a glitch immunity graph labeled Maximum IN_ Transient Duration vs. Reset Threshold Overdrive.

Reset Output

The MAX16055 RESET output asserts low when any monitored IN_ voltage drops below the specified reset threshold. RESET remains low for the reset timeout period of 140ms (min) after all inputs rise above the respective thresholds (Figure 2). The RESET output is open drain with a weak internal pullup to the monitored IN1 supply (70μA typ). For many applications, no external pullup resistor is required to interface with other logic devices. Apply an external pullup resistor to any voltage from 0 to 5.5V when interfacing to different logic-supply voltages (Figure 3). Internal circuitry prevents reverse current flow from the external pullup voltage into the RESET output when RESET is not asserted. RESET asserts low upon power-up. After all IN_ inputs rise above the respective threshold voltages, RESET

remains low for the reset timeout period (Figure 4) before going high.

IN1 powers the MAX16055 and is also a monitored voltage. When any monitored supply drops below the threshold voltage, RESET asserts low and remains low while either IN1 or IN2 is above 1.0V.

Adjustable Thresholds

The MAX16055 includes monitor options with adjustable reset thresholds. The threshold voltage at each adjustable IN_ input is typically 0.5V. To monitor a voltage higher than 0.5V, connect a resistor-divider network to the circuit as shown in Figure 5:

$$V_{INTH} = 0.5V \times (R1 + R2)/R2$$

Therefore:

$$R1 = R2 ((V_{INTH}/0.5V) - 1)$$

Use high valued resistors ($\sim 100 k\Omega$) to minimize current through the external resistors. Use lower valued resistors for greater accuracy. The MAX16055 includes an internal voltage clamp (1.5V typ) at each of the adjustable voltage inputs. An input voltage higher than 1.5V induces a higher input current.

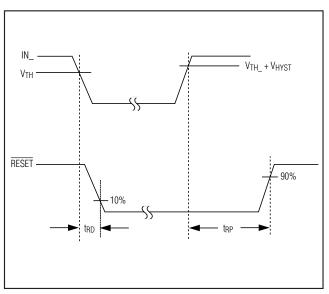


Figure 2. RESET Output Timing Diagram

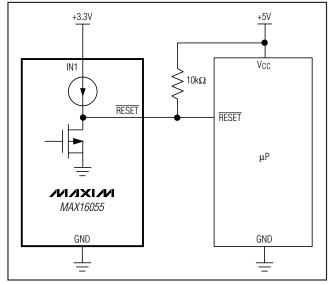


Figure 3. Interfacing with External Logic-Supply Voltage

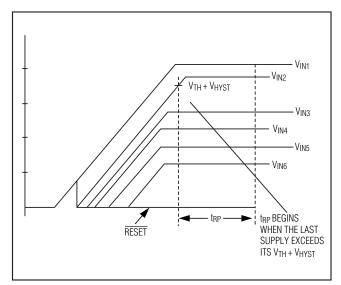


Figure 4. RESET Output with Various Input Voltages

Figure 5. Setting the Adjustable Threshold

Manual-Reset Input (MR)

Many μP -based products require manual-reset capability. A logic-low on \overline{MR} asserts \overline{RESET} low. \overline{RESET} remains asserted while \overline{MR} is low, and during the reset timeout period (140ms, min) after \overline{MR} returns high. The \overline{MR} input has an internal 20k Ω pullup resistor to IN1. Connect a normally open momentary switch from \overline{MR} to GND to create a manual-reset function. Connect a 0.1 μF capacitor from \overline{MR} to GND to provide additional noise immunity when driving \overline{MR} from long cables or when the device is used in a noisy environment.

Tolerance (TOL)

The MAX16055 features an adjustable threshold tolerance. Connect TOL to GND to set the threshold voltages 5% below the nominal value. Connect TOL to IN1 to set the threshold voltages 10% below the nominal value. See the *Electrical Characteristics* table. Do not leave TOL unconnected.

Applications Information

Unused Inputs

Connect unused monitor inputs to a supply voltage higher than the specified threshold voltage. Connect a $100 k\Omega$ resistor between an unused adjustable input and IN1 to limit the bias current. Use IN1 for normal operation (device power supply). Do not connect unused monitor inputs to ground. Do not leave unused monitor inputs unconnected.

Reset Output Pullup Resistor

When connecting a pullup resistor from RESET to a voltage rail lower than the voltage on IN1, the internal 70µA pullup current flows through the pullup resistor, causing the voltage at RESET to be higher than the voltage rail when RESET is deasserted. Ensure that the value of the pullup resistor is low enough that the voltage rise does not cause problems.

Power-Supply Bypassing and Grounding

IN1 powers the MAX16055. Connect a 0.1µF bypass capacitor from IN1 to ground. All monitored inputs are immune to short supply transients. Add bypass capacitors from IN2–IN6 to GND to improve noise immunity.

Selector Guide

PART*	NOMINAL INPUT VOLTAGE (V)					
(SUFFIX IN BOLD)	IN1	IN2	IN3	IN4	IN5	IN6
MAX16055 A	3.3	2.5	1.5	1.8	1.2	0.9
MAX16055 B	3.3	3.0	1.8	1.5	1.1	1.0
MAX16055 C	3.3	ADJ	ADJ	1.8	ADJ	ADJ
MAX16055 D	3.3	ADJ	1.5	ADJ	ADJ	ADJ
MAX16055 E	3.3	2.5	ADJ	1.8	ADJ	ADJ
MAX16055 F	3.3	2.5	1.5	ADJ	ADJ	ADJ
MAX16055 G	3.3	2.5	ADJ	ADJ	ADJ	ADJ
MAX16055 H	3.3	ADJ	ADJ	ADJ	ADJ	ADJ
MAX16055 I	2.5	ADJ	ADJ	ADJ	ADJ	ADJ
MAX16055 J	3.3	3.3	2.5	1.2	1.5	1.2

^{*}Adjustable voltage is based on the 0.5V internal threshold. External threshold voltage can be set using an external resistor-divider. (V_{ADJ} = 0.500V typ).

Chip Information

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 μMAX	U10+2	<u>21-0061</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

PROCESS: BiCMOS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 MD7044 MD7050 MD7015 MD7022 MD7028 MD7031 MD7042 MD7043 MD7047 MD7060