Digitally Adjustable LCD Bias Supplies

__General Description
_Features

- 1.8 V to 20 V Battery Input Voltage
- Automatic Disable when Display Logic is Shut Down
- Extremely Small QSOP Package
- 32-Level Internal DAC
- SMBus Serial Interface (MAX1621)
- Positive or Negative Output Voltage

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1620EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX1621EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP

Applications

Notebook Computers
Palmtop Computers
Personal Digital Assistants
Portable Data-Collection Terminals

Pin Configuration

SMBus is a trademark of Intel Corp.

Digitally Adjustable LCD Bias Supplies

ABSOLUTE MAXIMUM RATINGS

IDR
-30mA
PGND to AGND ... $\pm 0.3 \mathrm{~V}$
BATT, LX, LCDON to AGND-0.3V to 30 V
DHI, DLO to PGND....................................-0.3V to (VDD +0.3 V)
$\overline{I C D O N}$
$-10 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 667 mW
Operating Temperature Range
MAX1620EEE/MAX1621EEE
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) $300^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BA}} \mathrm{CT}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING REGULATOR					
VDD Operating Range		3.0		5.5	V
VDD Supply Current	Operating mode, output in regulation, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		150	250	$\mu \mathrm{A}$
	Shutdown mode, $\mathrm{V} \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		9	20	
Positive Output Voltage				27	V
Negative Output Voltage				-27	V
Undervoltage Lockout Threshold (Note 1)		1.5		2.8	V
BATT Input Current	$\mathrm{BAT}=12 \mathrm{~V}$, operating mode		13	20	$\mu \mathrm{A}$
	$\mathrm{BATT}=12 \mathrm{~V}$, shutdown mode			1	
LX Input Current	LX $=12 \mathrm{~V}$, operating mode		13	20	$\mu \mathrm{A}$
	$\mathrm{LX}=12 \mathrm{~V}$, shutdown mode			1	
BATT Operating Range (Note 2)		1.8		20	V
Microsecond-Volt Time Constant (k-factor)	$1.8 \mathrm{~V} \leq \mathrm{BATT} \leq 20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20		$\mu \mathrm{s}$-V
	$4 \mathrm{~V} \leq \mathrm{BATT} \leq 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16.5		23.5	
On-Resistance (DLO, DHI)	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$		7		Ω
	$V_{D D}=3.0 \mathrm{~V}$		14		
DHI Output Current (Note 3)	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		50		mA
DLO Output Current (Note 3)	$V_{D D}=5 \mathrm{~V}$		-25		mA
FB Regulation Voltage	$\mathrm{POL}=\mathrm{V}_{\mathrm{DD}}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.46	1.5	1.53	V
	$\mathrm{POL}=\mathrm{AGND}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	-8	0	8	mV
FB Input Current (Note 3)	$\mathrm{FB}=\mathrm{REF}+100 \mathrm{mV}$	-20		10	nA
	$\mathrm{FB}=-50 \mathrm{mV}$	-10		85	
$\overline{\text { LCDON }}$ Low, Sinking Current	VपCDON $=0.4 \mathrm{~V}, \mathrm{POK}=1.017 \mathrm{~V}$	-2	-6		mA
$\overline{\text { LCDON }}$ High, Leakage Current	V $\overline{\text { LCDON }}=28 \mathrm{~V}, \mathrm{POK}=0.967 \mathrm{~V}$			1	$\mu \mathrm{A}$
POK Threshold Voltage	Voltage on POK rising	0.967	0.992	1.017	V
POK Hysteresis			12		mV
REFERENCE AND DAC OUTPUT					
REF Voltage	No load	1.47	1.5	1.53	V
REF Load Regulation	$0 \mu \mathrm{~A} \leq \mathrm{I}$ REF $\leq 25 \mathrm{~mA}$		3	10	mV

Digitally Adjustable LCD Bias Supplies

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BAT}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
DOUT Maximum Output Voltage (Note 3)	$0 \mu \mathrm{~A} \leq \mathrm{I}$ DOUT $\leq 40 \mu \mathrm{~A}$	$\begin{aligned} & \text { REF - } \\ & 0.02 \end{aligned}$	$\begin{gathered} \text { REF + } \\ 0.02 \end{gathered}$	V
DOUT Minimum Output Voltage (Note 3)	$-20 \mu \mathrm{~A} \leq \mathrm{I}_{\text {DOUT }} \leq 0 \mu \mathrm{~A}$	0	0.007	V
DOUT Resolution	48.39 mV step size	5		Bits
DOUT Differential Nonlinearity	Guaranteed monotonic		± 1	LSB
DIGITAL INPUTS AND OUTPUTS				
UP, DN, SHDN, POL Input High Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	1.4		V
	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	2.3		
UP, DN, $\overline{\text { SHDN, }}$, POL Input Low Voltage			0.6	V
UP, DN, $\overline{\text { SHDN, POL Input Leakage Current }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$		± 1	$\mu \mathrm{A}$
SCL, SDA, SUS Input High Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	1.4		V
	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	2.3		
SCL, SDA, SUS Input Low Voltage			0.6	V
SCL, SDA, $\overline{\text { SUS }}$ Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$		± 1	$\mu \mathrm{A}$
SDA Output Low Voltage	ISDA $=-6 \mathrm{~mA}$		0.4	V

TIMING CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
MAX1620 (Figure 1)					
Pulse Width High (UP, DN)	t_{1}		1		$\mu \mathrm{s}$
Pulse Width Low (UP, DN)	t_{2}		1		$\mu \mathrm{s}$
Pulse Separation (UP, DN)	t_{3}		1		$\mu \mathrm{s}$
Counter Reset Time	t4		1		$\mu \mathrm{s}$
MAX1621 (Figures 2 and 3)					
SDA to SCL Data-Setup Time	tsu:DAT		500		ns
SCL to SDA Data-Hold Time	thD:DAT	(Note 4)	0		ns
SCL/SDA Rise Time	t_{R}	(Note 4)		1	$\mu \mathrm{s}$
SCL/SDA Fall Time	t_{F}	(Note 4)		300	ns
SCL Low Time	tLow		4.7		$\mu \mathrm{s}$
SCL High Time	tHIGH		4		$\mu \mathrm{s}$
Start Condition SCL to SDA Setup Time	tSU:STA		4.7		$\mu \mathrm{s}$
Start Condition SDA to SCL Hold Time	thD:STA		4		$\mu \mathrm{s}$
Stop Condition SCL_ to SDA_ Setup Time	tsu:STO		4		$\mu \mathrm{s}$
SCL Falling Edge to SDA Valid Master Clocking in Data	tDV			1	$\mu \mathrm{s}$

Digitally Adjustable LCD Bias Supplies

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATT}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits over this temperature range are guaranteed by design.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING REGULATOR					
VDD Operating Range		3.0		5.5	V
VDD Supply Current	Operating mode, output in regulation		150	250	$\mu \mathrm{A}$
	Shutdown mode, $\mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\mathrm{DD}}$			20	
Positive Output Voltage				27	V
Negative Output Voltage				-27	V
Undervoltage Lockout Threshold (Note 1)		1.5		2.8	V
BATT Operating Range (Note 2)		1.8		20	V
Microsecond-Volt Time Constant (k-factor)	$4 \mathrm{~V} \leq \mathrm{BATT} \leq 12 \mathrm{~V}$	16		24	$\mu \mathrm{s}-\mathrm{V}$
FB Regulation Voltage	$\mathrm{POL}=\mathrm{V}_{\mathrm{DD}}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.44	1.5	1.56	V
	$\mathrm{POL}=\mathrm{AGND}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	-10	0	10	mV
FB Input Current (Note 3)	$\mathrm{FB}=$ REF +100 mV	-30		10	nA
	$\mathrm{FB}=0 \mathrm{~V}-50 \mathrm{mV}$	-10		120	
POK Threshold Voltage	Voltage on POK rising	0.957	0.992	1.027	V
REFERENCE AND OUTPUT					
REF Voltage	No load	1.44	1.5	1.56	V
REF Load Regulation	$0 \mu \mathrm{~A} \leq \mathrm{I}_{\text {REF }} \leq 25 \mu \mathrm{~A}$		5	10	mV
DOUT Maximum Output Voltage (Note 3)	$0 \mu \mathrm{~A} \leq \mathrm{I}_{\text {DOUT }} \leq 40 \mu \mathrm{~A}$	$\begin{aligned} & \text { REF - } \\ & 0.02 \end{aligned}$		$\begin{aligned} & \text { REF + } \\ & 0.02 \end{aligned}$	V
DOUT Minimum Output Voltage (Note 3)	$-20 \mu \mathrm{~A} \leq \mathrm{I}$ DOUT $\leq 0 \mu \mathrm{~A}$	0		0.01	V
DOUT Differential Nonlinearity	Guaranteed monotonic			± 1	LSB
DIGITAL INPUTS AND OUTPUTS					
UP, DN, SHDN, POL Input High Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	1.4			V
	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	2.3			
UP, DN, $\overline{\text { SHDN }}$, POL Input Low Voltage				0.6	V
SCL, SDA, $\overline{\text { SUS }}$ Input High Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	1.4			V
	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	2.3			
SCL, SDA, SUS Input Low Voltage				0.6	V
SDA Output Low Voltage	ISDA $=-6 \mathrm{~mA}$			0.4	V

Digitally Adjustable LCD Bias Supplies

TIMING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATT}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits over this temperature range are guaranteed by design.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MAX1620 (Figure 1)						
Pulse Width High (UP, DN)	t_{1}		1			us
Pulse Width Low (UP, DN)	t_{2}		1			$\mu \mathrm{s}$
Pulse Separation (UP, DN)	t_{3}		1			$\mu \mathrm{s}$
Counter Reset Time	t4		1			$\mu \mathrm{s}$
MAX1621 (Figures 2 and 3)						
SDA_to SCL_Data-Setup Time	tsu:DAT		500			ns
SCL_ to SDA_Data-Hold Time	thD:DAT		0			ns
SCL/SDA Rise Time	tR				1	$\mu \mathrm{s}$
SCL/SDA Fall Time	t_{F}				300	ns
SCL Low Time	tLow		4.7			$\mu \mathrm{s}$
SCL High Time	tHIGH		4			$\mu \mathrm{s}$
Start Condition SCL_to SDA_ Setup Time	tsu:STA		4.7			$\mu \mathrm{s}$
Start Condition SDA_to SCL_ Hold Time	thD:STA		4			$\mu \mathrm{s}$
Stop Condition SCL_to SDA_ Setup Time	tsu:STO		4			$\mu \mathrm{s}$
SCL Falling Time to SDA Valid Master Clocking in Data	tDV				1	$\mu \mathrm{s}$

Note 1: The setting in the DAC is guaranteed to remain valid as long as VDD is greater than the UVLO threshold.
Note 2: BATT Operating Range is guaranteed by the Microsecond-Volt Time Constant specification.
Note 3: Current sourced from a pin is denoted as positive current. Current sunk into a pin is denoted as negative current.
Note 4: Guaranteed by design.
Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BA} T \mathrm{~T}}=10 \mathrm{~V}, \mathrm{~L} 1=100 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted..$)$

Digitally Adjustable LCD Bias Supplies

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BA} T \mathrm{~T}}=10 \mathrm{~V}, \mathrm{~L} 1=100 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Digitally Adjustable LCD Bias Supplies

Typical Operating Characteristics (continued)
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{B A T}=10 \mathrm{~V} L 1=100 \mu \mathrm{H}, \mathrm{V}_{\text {OUT }}=22.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Digitally Adjustable LCD Bias Supplies

PIN		NAME	FUNCTION
MAX1620	MAX1621		
1	-	DN	Logic-Level Input. A rising edge on DN decreases $\left\|\mathrm{V}_{\text {OUT }}\right\| . \mathrm{UP}=\mathrm{DN}=$ high resets the counter to mid-scale.
-	1	SDA	System Management Bus Serial-Data Input and Open-Drain Output
2	-	UP	Logic-Level Input. A rising edge on UP increases $\left\|V_{\text {OUT }}\right\| . U P=D N=$ high resets the counter to mid-scale.
-	2	SCL	System Management Bus Serial-Clock Input
3	3	BATT	Battery Voltage-Sense Input
4	-	$\overline{\text { SHDN }}$	Logic-Level Shutdown Input (active-low)
-	4	SUS	System Management Bus Suspend-Mode Input (active-low)
5	5	POK	Power OK Voltage-Sense Input, 1V threshold
6	6	REF	Reference Voltage Output. Bypass REF with $0.1 \mu \mathrm{~F}$ to AGND.
7	7	POL	Logic-Level Input. POL selects output voltage polarity: high = positive boost, low = negative boost.
8	8	$\overline{\text { LCDON }}$	Open-Drain Output. $\overline{\text { LCDON }}$ controls LCD with external PNP.
9	9	FB	Feedback Voltage Input
10	10	DOUT	DAC Output Voltage
11	11	VDD	IC Input Supply, 3.0V to 5.5V
12	12	AGND	Analog Ground
13	13	PGND	Power Ground
14	14	LX	Switching-Voltage Sense Input
15	15	DLO	External Transistor Drive, Low
16	16	DHI	External Transistor Drive, High

Digitally Adjustable LCD Bias Supplies

Figure 1. MAX1620 UP and DN Signal Timing

Figure 2. MAX1621 SMB Serial-Interface Timing-Address

Figure 3. MAX1621 SMB Serial-Interface Timing-Acknowledge
\qquad

Digitally Adjustable LCD Bias Supplies

Detailed Description

The MAX1620/MAX1621 are step-up power controllers that drive an external N-channel FET or NPN transistor to convert power from a 1.8 V to 20 V battery to a higher positive or negative voltage. They are configured as negative-output, inverting power controllers with one additional diode and one additional capacitor. Either configuration's output voltage can be adjusted with external resistors, or digitally adjusted with an internal digital-to-analog converter (DAC). The MAX1620 uses pin-defined controls for the DAC, while the MAX1621 communicates with the DAC via the SMBus ${ }^{\text {TM }}$ interface.

Operating Principle

The MAX1620/MAX1621 operate in discontinuousconduction mode (where the inductor current ramps to zero by the end of each switching cycle) and with a constant peak current, without requiring a currentsense resistor. Switch on-time is inversely proportional to the input voltage VBATT by a microsecond-volt constant, or k -factor, of $20 \mu \mathrm{~s}-\mathrm{V}$ (e.g., for V_{BA}, $=10 \mathrm{~V}$, on-time $=2 \mu \mathrm{~s}$).
For an ideal boost converter operating in discontinu-ous-conduction mode (no power losses), output current is proportional to input voltage and peak inductor current:

$$
\mathrm{I}_{\mathrm{OUT}}=\frac{1}{2} \times \mathrm{I}_{\mathrm{PK}} \times \mathrm{V}_{\mathrm{BATT}} / \mathrm{V}_{\mathrm{OUT}}
$$

IPK is proportional to on-time (tON), which, for these parts, is determined by the k -factor:
IPK = k-factor / L

Discontinuous conduction is detected by monitoring the LX node voltage. When the inductor's energy is completely delivered, the LX node voltage snaps back to the BATT voltage. When this crossing is sensed, another pulse is issued if the output is still out of regulation.

Positive Output Voltage

To select a positive output voltage, tie the polarity pin (POL) to VDD and use the typical boost topology shown in Figure 4. FB regulation voltage is 1.5 V . For optimum stability, VOUT should be greater than 1.1 (VBATT).

Negative Output Voltage

To select a negative output voltage, tie POL to GND (Figure 5). In this configuration, the internal error amplifier's output is inverted to provide the correct feedback polarity. FB regulation voltage is 0 V . D1, D2, C4, and C5 form an inverting charge pump to generate the negative voltage. This allows application of the positive boost switching topology to negative output voltages.
The negative output circuit has two possible connections. In the standard connection, D1's cathode is connected to BATT. This connection features the best output ripple performance, but \mid VOUT \mid must be limited to no more than $27 \mathrm{~V}-1.1$ (VBATT). If a larger negative voltage is needed, an alternative connection allows a maximum negative output of -27 V , but with the additional constraint that \mid VOUT $\mid>1.1 \mathrm{~V}$ BATT. To use the alternative circuit, connect D1's cathode to ground rather than BATT (Figure 6). Increase C4 to $2.2 \mu \mathrm{~F}$ to improve output ripple performance.
The negative charge pump limits the output current to the charge transferred each cycle multiplied by the

Figure 4. Typical Operating Circuit-Positive Output

Digitally Adjustable LCD Bias Supplies

Figure 5. Typical Operating Circuit-Negative Output

Figure 6. Alternative Negative Output-Maximum Voltage
maximum switching frequency. The following equation represents the output current for the ideal case (no power losses) of Figure 5:

$$
\text { loUT }=\frac{1}{2} \times(k-\text { factor } / L) \times V_{B A T T} /\left(V_{B A T T}+V_{\text {OUT }}\right)
$$

This means that a higher peak current is required to achieve the same output current in the negative output circuit as in the positive output circuit.
The output current for Figure 6 uses the same current equation as the positive boost.

Output Voltage Control

The output voltage is set with a voltage divider to the feedback pin (FB). For a positive output, the divider is referred to GND; for a negative output, the divider is referred to REF.
Output voltage can be adjusted with an internal DAC summing current into FB through an external resistor. The 5-bit DAC is controlled with a user-programmable up/down counter. On power-up or after a reset, the counter sets the DAC output to 10000 binary, or halfscale.

Digitally Adjustable LCD Bias Supplies

The MAX1620 controls the DAC counter with the UP and DN pins. A rising edge on UP increases |VOUT| by decrementing the counter and decreasing the DAC output voltage one step; a rising edge on DN decreases \mid Vout by incrementing the counter and increasing the DAC output voltage one step. Holding both UP and DN high resets the counter to half-scale. The counter will not roll over at either the FS or ZERO code. The control direction of UP and DN reverses for a negative output, to maintain the same control direction of the output voltage in absolute magnitude.
The MAX1621 controls the counter to the DAC through the SMBus interface. The counter is treated as a 5 -bit register and resets on power-up. The setting in the DAC is guaranteed to remain valid as long as $V_{D D}$ is greater than the UVLO threshold (see Note 1 in the Electrical Characteristics).
The MAX1620/MAX1621's open-drain DMOSFET ($\overline{\mathrm{LCDON}}$) can be used to disconnect the LCD panel from the positive bias voltage with an external transistor. The FET turns off (LCDON = float) if power-OK voltage (POK) falls below 1V. In the MAX1621, $\overline{\mathrm{LCDON}}$ can also be controlled by the SMB command. $\overline{\text { LCDON }}$ cannot switch negative output voltages.
To prevent uncontrolled boosting when the output is disconnected, the feedback resistors must sense the boosted voltage rather than the output of the $\overline{\text { LCDON }}$ switch (Figure 4).

Shutdown Mode

The MAX1620 shuts down when the SHDN pin is low. The internal reference and biasing circuitry turn off, and the supply current drops to $9 \mu \mathrm{~A}$. In shutdown, DOUT $=0 \mathrm{~V}$ and LCDON floats. UP/DN are ignored to preserve the DAC state for the MAX1620. Tie unused logic inputs to AGND for lowest operating current.
The MAX1621 can be shut down using the SMBus interface (Table 2).

Reset Modes

If the MAX1620 is not in shutdown mode, the DAC can be reset to mid-scale by holding UP and DN high. Midscale is 16 steps from the minimum DAC output and 15 steps from the maximum.

The MAX1620/MAX1621 reset the DAC counter to midscale at power-up or when $V_{D D}$ is below the undervoltage lockout threshold of 2.2 V (typ).

MAX1621 Digital Interface
A single byte of data written over the Intel SMBus controls the MAX1621. Figures 7 and 8 show example single-byte writes. The MAX1621 contains two 2-bit registers for storing configuration data, and one register for the 5 -bit DAC data. Tables 1 and 2 describe the data format for the configuration registers. The MAX1621 responds only to its own address (0101100 binary).
The REGSEL bit addresses the configuration registers. REGSEL = 0 for the SUS register; REGSEL $=1$ for the OPR register. Each configuration register consists of a $\overline{\text { SHDN }}$ bit and an LCDON bit. One of the two configuration registers is always active. The state of the SUS pin determines the active register. The OPR register is active with $\overline{\text { SUS }}=$ high. The $\overline{\text { SUS }}$ register is active with $\overline{\text { SUS }}=$ low.
Each byte written to the MAX1621 updates the DAC register. DAC data is preserved in shutdown and when toggling between configuration registers. Since there is only one DAC register, SUS cannot be used to toggle between two DAC codes.
Status information can be read from the MAX1621 using the SMBus read-byte protocol. Figure 9 shows an example status read and Table 3 describes the statusinformation format.
During shutdown (SUS $=1$ and OPR-SHDN $=0$, or SUS $=0$ and SUS-SHDN $=0$), the MAX1621 serial interface remains fully functional and can be used to set either the OPR-SHDN or SUS-SHDN bits to return the MAX1621 to its normal operational state.

Separate/Same Power for L1 and VDD Separate voltage sources can supply the inductor (L1) and the IC (VDD). This allows operation from low-voltage batteries as well as high-voltage sources because chip bias $(150 \mu \mathrm{~A})$ is provided by a logic supply (3 V to 5.5 V) while output power is sourced directly from the battery to L1. Conversely, L1 and VDD can also be supplied from one supply if it remains with $V_{D D}$'s operating limits (3 V to 5.5 V). If L 1 and V_{DD} are fed from the same voltage, D3 and R8 (Figures 4, 5, 6, and 10) can be omitted, and BATT may be connected directly to VDD.

Digitally Adjustable LCD Bias Supplies

Table 1. MAX1621 Configuration Byte with REGSEL = 0 (write to SUS register)

BIT	NAME	$\begin{aligned} & \text { POR } \\ & \text { STATE* } \end{aligned}$	DESCRIPTION
7	REGSEL	-	Register Select. A zero in this bit writes the next two bits into the SUS register and the remaining five bits into the DAC register (Figure 7).
6	SUS-SHDN	0	With $\overline{\text { SUS }}=$ low, 1 = operating, and 0 = shutdown.
5	SUS-LCDON	0	$\begin{aligned} & \text { With } \overline{S U S}=\text { low, } \\ & 1=\text { LCD on, and } \\ & 0=\text { LCD off. } \end{aligned}$
$\begin{aligned} & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	$\begin{gathered} \text { D4 (MSB) } \\ \text { D3 } \\ \text { D2 } \\ \text { D1 } \\ \text { D0 } \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	DAC Input Data

*Initial register state after power-up.

Table 2. MAX1621 Configuration Byte with REGSEL = 1 (write to OPR register)

BIT	NAME	POR STATE *	DESCRIPTION
7	REGSEL	-	Register Select. A one in this bit writes the next two bits into the OPR register and the remaining five bits into the DAC register (Figure 7).
6	OPR-SHDN	1	With $\overline{\text { SUS }}=$ high, $1=$ operating, and $0=$ shutdown.
5	OPR-LCDON	1	With $\overline{\text { SUS }}=$ high, $1=$ LCD on, and $0=$ LCD off.
4	D4 (MSB)	1	
3	D3	0	DAC Input Data
2	D2	0	D1
1	D0	0	
0	DO		

*Initial register state after power-up.

Table 3. MAX1621 Status Bits

BIT	NAME	DESCRIPTION
7	POK	If the voltage applied to POK is greater than 0.992V and the MAX1621 is not shut down, this bit returns 1; otherwise, it returns 0.
7	-	Reserved for future use.
6	-	Reserved for future use.
5	D4 (MSB)	
4	D3	DAC Register Data
3	D2	
1	D1	

Digitally Adjustable LCD Bias Supplies

Figure 7. MAX1621 Serial-Interface Single-Byte Write Example (REGSEL $=0$)

Figure 8. MAX1621 Serial-Interface Single-Byte Write Example (REGSEL = 1)

Digitally Adjustable LCD Bias Supplies

Figure 9. MAX1621 Serial-Interface Read Example

Design Procedure and Component Selection

The MAX1620/MAX1621 output voltage can be adjusted manually or via a digital interface. In addition, positive bias voltage can be switched with LCDON using an external PFET or PNP transistor.

Output Adjustment

Setting the Minimum Output Voltage
The minimum output voltage is set with a resistor-divider (R4-R5, Figure 4) from Vout to AGND. The FB threshold voltage is 1.5 V . Choose R 4 to be $300 \mathrm{k} \Omega$ so that the current in the divider is about $5 \mu \mathrm{~A}$. Determine R5 as follows:

$$
\mathrm{R} 5=\mathrm{R} 4 \times\left(\mathrm{V}_{\text {OUT,MIN }}-\mathrm{V}_{\mathrm{FB}}\right) / \mathrm{V}_{\mathrm{FB}}
$$

For example, if VOUT,MIN $=12.5 \mathrm{~V}$:

$$
\mathrm{R} 5=300 \mathrm{k} \Omega \times(12.5-1.5) /(1.5)=2.2 \mathrm{M} \Omega
$$

Mount R4 and R5 close to the FB pin to minimize parasitic capacitance.
For a negative output voltage, the FB threshold voltage is 0 V , and R4 is placed between FB and REF (Figures 5 and 6). Again, choose R4 to be $300 \mathrm{k} \Omega$ so that the current in the divider is about $5 \mu \mathrm{~A}$. Then determine R5 as follows:

$$
\text { R5 }=R 4 \times\left|V_{\text {OUT }, \text { MIN }} / V_{\text {REF }}\right|
$$

For example, if $\mathrm{V}_{\text {OUT, MIN }}=-12.5 \mathrm{~V}$:

$$
\mathrm{R} 5=300 \mathrm{k} \Omega \times|(12.5) /(1.5)|=2.5 \mathrm{M} \Omega
$$

Digitally Adjustable LCD Bias Supplies

Setting the Maximum Output Voltage
(DAC Adjustment)
The DAC is adjustable from 0 V to 1.5 V in 32 steps, and $1 \mathrm{LSB}=1.5 \mathrm{~V} / 31$. DAC adjustment of VOUT is provided by adding R3 to the divider circuit (Figure 4). Be sure that VOUT,MAX does not exceed the LCD panel rating.
For VOUT,MAX $=25 \mathrm{~V}$ and VOUT,MIN $=12.5 \mathrm{~V}, \mathrm{R} 3$ is determined as follows:

$$
\begin{aligned}
\mathrm{R} 3 & =\mathrm{R} 5 \times\left(\mathrm{V}_{\mathrm{FB}}\right) /(\mathrm{VOUT}, \mathrm{MAX}-\mathrm{VOUT}, \mathrm{MIN}) \\
& =2.2 \mathrm{M} \Omega \times(1.5) /(25-12.5)=264 \mathrm{k} \Omega
\end{aligned}
$$

The general form for VOUT as a function of the DAC output (VDOUT) is:
VOUT = VOUT,MIN + (VFB - VDOUT) x R5 / R3

At power-up the DAC resets to mid-scale (10000), which corresponds to $\mathrm{V}_{\text {DOUT }}=0.774 \mathrm{~V}$; therefore, the output voltage after reset is as follows:

$$
\text { VOUT,RESET }=\text { VOUT,MIN + (1.5-0.774) x R5 / R3 }
$$

Note that for a positive output voltage, VOUT increases as VDOUT decreases. VOUT,MAX corresponds to VDOUT $=0 \mathrm{~V}$, and VOUT,MIN corresponds to V DOUT $=1.5 \mathrm{~V}$.
For a negative output voltage, VOUT = VOUT,MIN + ($\mathrm{V}_{\text {FB }}$ - $\mathrm{V}_{\text {DOUT }}$ x R5 / R3. Assume $\mathrm{V}_{\text {OUT, }} \mathrm{MAX}=-25 \mathrm{~V}$ and VOUT,MIN $=-12.5 \mathrm{~V}$; then determine R3 and VOUT,RESET as follows:

$$
\begin{aligned}
\mathrm{R} 3= & \mathrm{R} 5 \times\left(\mathrm{V}_{\mathrm{FB}}-\mathrm{V}_{\text {DOUT }}, \mathrm{MAX}\right) /(\mathrm{VOUT}, \mathrm{MAX}-\mathrm{VOUT}, \mathrm{MIN}) \\
= & 2.5 \mathrm{M} \Omega \times(0-1.5) /(-25--12.5)=300 \mathrm{k} \Omega \\
& \text { VOUT,RESET }=-12.5+(0-0.774) \times(2.5 \mathrm{M}) / \\
& (300 \mathrm{k})=-18.95 \mathrm{~V}
\end{aligned}
$$

Note that for a negative output voltage, \mid VOUT \mid increases as VDOUT increases. \mid VOUT,MAX \mid corresponds to VDOUT $=1.5 \mathrm{~V}$, and $\left|\mathrm{V}_{\text {OUT,MIN }}\right|$ corresponds to $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V}$.

Potentiometer Adjustment The output can be adjusted with a potentiometer instead of the DAC. Choose RPOT $=100 \mathrm{k} \Omega$, and connect it between REF and GND. Connect R3 to the potentiometer's wiper, instead of to DOUT. The same design equations as above apply.

Controlling the LCD Using
 POK and LCDON

When voltage at POK is greater than 1 V , the open-drain $\overline{\text { LCDON }}$ output pulls low. $\overline{\text { LCDON }}$ withstands 27 V ; therefore, it can drive a PFET or PNP transistor to switch on the MAX1620/MAX1621's positive output. The following represent three cases for using this feature:

1) As an off switch, to ensure that a positive boosted output goes to 0 V during shutdown. In this case, connect POK to SHDN. Without this switch, the positive output falls to one diode-drop below the input voltage (VBATT) in shutdown. $\overline{\text { LCDON }}$ is not needed for negative outputs, which will fall to 0 V in shutdown anyway.
2) As an output sensing cutoff for positive outputs. Connect POK to the feedback voltage divider to sense the output voltage. The output is switched on only when it reaches a set percentage of the set voltage.
3) As an input sensing output cutoff for positive outputs. Connect POK to a voltage divider to sense the input voltage. The output is switched on only when the input reaches the set level (Figure 4).
To control the open-drain output $\overline{\mathrm{LCDON}}$ by sensing the input voltage, connect a resistor-divider (R1-R2, Figure 4) from VBATT to POK. Choose R2 $=100 \mathrm{k}$. For example, if the minimum battery voltage is 5.3 V , determine R1 as follows:

$$
\begin{aligned}
\mathrm{R} 1 & =\mathrm{R} 2 \times[(\mathrm{VBATT} / \mathrm{VPOK})-1] \\
& =100 \mathrm{k} \times[(5.3 / 0.992)-1]=434 \mathrm{k} \Omega
\end{aligned}
$$

$\overline{\mathrm{LCDON}}$ can also be controlled via software (MAX1621, Table 4).

Table 4. MAX1621 $\overline{\text { LCDON }}$ Output Truth Table

POK Pin	LCDON Bit	$\overline{\text { LCDON Output }}$
$<1 \mathrm{~V}$	0	Floating
$<1 \mathrm{~V}$	1	Floating
$>1 \mathrm{~V}$	0	Floating
$>1 \mathrm{~V}$	1	ON, pulls low

Digitally Adjustable LCD Bias Supplies

$\overline{\text { LCDON }}$ typically drives an external PNP transistor, switching a positive VOUT to the LCD. R7 limits the base current in the PNP; R6 turns off the PNP when LCDON is floating. R6 and R7 can be the same value. Choose R7 such that the minimum base current is greater than $1 / 50$ of the collector current. For example, assume VOUT,MIN $=12.5 \mathrm{~V}$ and $\operatorname{ILCD}=10 \mathrm{~mA}$, then determine R7 as follows:

$$
\mathrm{R} 7 \leq 50 \times(12.5-0.7) / 10 \mathrm{~mA}=59 \mathrm{k} \Omega
$$

Remember that LCD voltage is the regulated output voltage minus the drop across the PNP switch. The drop across the external transistor (typically 300 mV) must be accounted for.
If a PFET is preferred for the $\overline{\mathrm{LCDON}}$ switch, R6 and R7 in Figure 4 may both be raised to $1 \mathrm{M} \Omega$ or more to reduce operating current. Be sure to choose a PFET with adequate breakdown voltage. Since load current is typically on the order of 10 mA , an on-resistance of 10Ω or less is usually adequate.

Choosing an Inductor Practical inductor values range from $33 \mu \mathrm{H}$ to 1 mH ; however, $100 \mu \mathrm{H}$ is a good choice for a wide range of applications. Inductors with a ferrite core or equivalent are recommended. The inductor's current rating should exceed the peak current as set by the k-factor and the
coil inductance; however, for most inductor types, the coil's specified current can be exceeded by 20% with no impact on efficiency.
The peak current is set by the coil inductance as follows:
IPK = k-factor / L
and

$$
\mathrm{I}_{\mathrm{OUT}, \mathrm{MIN}}=\frac{1}{2} \times \mathrm{I}_{\mathrm{PK}} \times \mathrm{V}_{\mathrm{BATT,MIN}} / \mathrm{V}_{\mathrm{OUT}, \mathrm{MAX}}
$$

If we assume that $\mathrm{V}_{\text {BATT, }}$ MIN $=5.3 \mathrm{~V}$, VOUT,MAX $=$ 25 V , IOUT,MIN $=15 \mathrm{~mA}$, and a minimum k-factor of $16 \mu s-V$, then the required IPK is:

$$
\mathrm{IPK}=2 \times 15 \mathrm{~mA} \times 25 / 5.3=142 \mathrm{~mA}
$$

and

$$
\mathrm{L} \leq=16 \mu \mathrm{~s}-\mathrm{V} / 142 \mathrm{~mA}=113 \mu \mathrm{H}
$$

The next-lowest practical inductor value is $100 \mu \mathrm{H}$. Its current rating must be:

$$
24 \mu \mathrm{~s}-\mathrm{V} \text { (maximum k-factor) } / 100 \mu \mathrm{H}=240 \mathrm{~mA}
$$

Table 5 summarizes the minimum inductance value needed to provide various output currents at several minimum input voltages. Table 6 lists some suitable coil types and manufacturers, but is not intended to be a complete list.

Table 5. Maximum Inductance vs. Iout and Vbatt,min (20V output)

		VBATT,MIN					
		1.8 V	2.7V	3.6 V	5.4 V	7.2V	12V
IOUT	5 mA	$100 \mu \mathrm{H}$	$150 \mu \mathrm{H}$	$220 \mu \mathrm{H}$	$330 \mu \mathrm{H}$	$390 \mu \mathrm{H}$	$680 \mu \mathrm{H}$
	10 mA	$56 \mu \mathrm{H}$	$82 \mu \mathrm{H}$	$100 \mu \mathrm{H}$	$150 \mu \mathrm{H}$	$220 \mu \mathrm{H}$	$330 \mu \mathrm{H}$
	20 mA	$27 \mu \mathrm{H}$	$39 \mu \mathrm{H}$	$56 \mu \mathrm{H}$	$82 \mu \mathrm{H}$	$100 \mu \mathrm{H}$	$180 \mu \mathrm{H}$
	30 mA	$18 \mu \mathrm{H}$	$27 \mu \mathrm{H}$	$33 \mu \mathrm{H}$	$56 \mu \mathrm{H}$	$68 \mu \mathrm{H}$	$120 \mu \mathrm{H}$

Table 6. Inductor List

COMPANY	PART	$\mu \mathrm{H}$ RANGE	SIZE IN mm (H x W x L)	COMMENTS
Sumida USA (847) 956-0666 Japan 81-3-3607-5111	CD43	Up to $68 \mu \mathrm{H}$	3.2×4 diameter	
	CD54	Up to $220 \mu \mathrm{H}$	4.5×5.2 diameter	
	CDRH62B	Up to $330 \mu \mathrm{H}$	$3 \times 6.2 \times 6.2$	Shielded
Coilcraft (847) 639-6400	DO1608	Up to 1 mH	$3.18 \times 4.45 \times 6.6$	
	DT1608	Up to $400 \mu \mathrm{H}$	$3.18 \times 4.45 \times 6.6$	Shielded
TDK (847) 390-4373	NLC565050	Up to 1 mH	$5 \times 5 \times 5.6$	
	TPF0410	Up to 1 mH	4 diameter $\times 10 \mathrm{~L}$	Leaded coil

Digitally Adjustable LCD Bias Supplies

Abstract

Diode Selection The high maximum switching frequency of 300 kHz requires a high-speed rectifier. Schottky diodes, such as the MBRS0540, are recommended. To maintain high efficiency, the average current rating of the Schottky diode must be greater than the peak switching current. Choose a reverse breakdown voltage greater than the positive output voltage or greater than the negative output voltage plus VBATt.

External Switching Transistor

Again, the high maximum switching frequency requires a high-speed switching transistor to maintain efficiency. Logic-level N -channel MOSFETs, such as the MMFT3055VL, are recommended (N1). Choose a VDS rating greater than the positive output voltage or greater than the negative output voltage plus VBATT.
To save cost in certain applications, a bipolar transistor may be substituted for the MOSFET with a decrease in efficiency. The conditions favoring substitution are limited input voltage range (VDD), low maximum battery voltage (VBATT), and low output current. For example, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{V}_{\mathrm{BATT}, \mathrm{MAX}}=12 \mathrm{~V}$, and IOUT $=5 \mathrm{~mA}$ favors a bipolar transistor substitution to reduce cost.
To modify the Typical Operating Circuit (Figures 4 and 5) for a bipolar switching transistor, connect the collector to the inductor, the base to DLO, and the emitter to PGND (Figure 10). Connect the base to DHI through a series resistor to limit the base current. Choose the resistor such that the minimum base current is greater than $1 / 20$ of the peak inductor current. For example, assume $\mathrm{V}_{\mathrm{DD}, \mathrm{MIN}}=3 \mathrm{~V}$ and $\mathrm{IPK}=100 \mathrm{~mA}$; then $\mathrm{Rs} \leq 20 \mathrm{x}$ (3-0.7) / 100mA $=460 \Omega$.

Output Filter Capacitor

A $22 \mu \mathrm{~F}, 35 \mathrm{~V}$, low-ESR, surface-mount tantalum output capacitor is sufficient for most applications. Output ripple voltage is dominated by the peak switch current multiplied by the output capacitor's effective series resistance (ESR). 100 mVp -p output ripple is a good target for the trade-off between cost and performance. Capacitors smaller than $22 \mu \mathrm{~F}$ may be used for light loads and lower peak current. Surface-mount capacitors are generally preferred because they lack the inductance and resistance of their through-hole equivalents. The AVX TPS series and the Sprague 593D and 595D series are good choices for low-ESR surfacemount tantalum capacitors.
Moderate-performance aluminum-electrolytic or tantalum capacitors can be successfully substituted in costsensitive applications with low output current. Matsuo and Nichicon provide suitable choices.

Input Bypass Capacitor

Two inputs, VDD and VBATT, require bypass capacitors. Bypass VDD with a $0.1 \mu \mathrm{~F}$ ceramic capacitor as close to the IC as possible. The battery supplies high currents to the inductor and requires local bulk bypassing close to the inductor. A $22 \mu \mathrm{~F}$ low-ESR surface-mount capacitor is sufficient for most applications. Smaller capacitors are acceptable if peak inductor current is low or the battery's internal impedance is low and the battery is close to the inductor.

Charge-Pump Capacitor (Negative Output) Possible negative output topologies are shown in Figures 5 and 6. Overall efficiency for the negative output configuration is less than for the positive output circuit because of the extra components in the powertransfer path. For efficient charge transfer, C4 must have low ESR and should be smaller than the output capacitor (C5). C4 sees the same voltage as C5, and should have the same voltage rating. A $1 \mu \mathrm{~F}$ ceramic capacitor is a practical choice for cost and performance considerations. $2.2 \mu \mathrm{~F}$ is suggested for Figure 6's circuit.

Feedback-Compensation Capacitor The high value of the feedback resistors (R3, R4, R5, Figure 4) makes the feedback loop susceptible to phase lag because of the parasitic capacitance at the FB pin. To compensate for this, connect a capacitor (C6, Figure 4) in parallel with R5. The value of C6 depends on the parallel combination of R3, R4, R5, and the individual circuit layout. Typical values range from 33 pF to 220 pF .

Reference-Compensation Capacitor

The internal reference uses an external capacitor for frequency compensation. Connect a ceramic capacitor with a $0.1 \mu \mathrm{~F}$ minimum value between REF and ground.

PC Board Layout and Grounding

Due to high current levels and fast switching waveforms, proper PC board layout is essential. In particular, keep all traces short, especially those connected to the FB pin and those connecting N1, L1, D1, D2, C4, and C5. Place R3, R4, and R5 as close to the feedback pin as possible.
Use a star ground configuration: connect the grounds of the input bypass capacitor, the output capacitor, and the switching transistor together, close to the IC's PGND pin. Tie AGND and PGND together at the chip.

Digitally Adjustable LCD Bias Supplies

Figure 10. Positive Output with Bipolar Switching Transistor
Simplified Block Diagram

Chip Information

TRANSISTOR COUNT: 341
SUBSTRATE CONNECTED TO AGND

Digitally Adjustable LCD Bias Supplies

	INCHES		Millimeters		
	Min.	MAX.	Min.	MAX.	N
D	. 189	196	4.80	4.98	16 AA
S	. 0020	. 0070	0.05	0.18	
X	. 107	. 123	2.72	3.12	
D	337	. 344	8.56	8.74	$20 \mid A B$
S	. 0500	. 0550	1.270	1.397	
D	. 337	. 344	8.56	8.74	$24 \mid \mathrm{AC}$
S	. 0250	. 0300	0.635	0.762	
D	. 386	. 393	9.80	9.98	28 AD
S	. 0250	. 0300	0.635	0.762	
X	. 271	. 287	6.88	7.29	

NDTES

1. D \& E DU NDT INCLUDE MDLD FLASH UR PRUTRUSIUNS
2. MOLD FLASH \quad R PRDTRUSIDNS NDT TD EXCEED .006" PER SIDE
3. HEAT SLUG DIMENSIDNS X AND Y APPLY \quad INLY TU 16 AND 28 LEAD PDWER-QSEP PACKAGES.
4. cantralling dimensians: inches

	INCHES		Millimeters	
DIM	MIN	MAX	MIN	MAX
A	. 061	. 068	1.55	1.73
A1	. 004	. 0098	0.102	0.249
A2	. 055	. 061	1.40	1.55
B	. 008	. 012	0.20	0.31
C	. 0075	. 0098	0.191	0.249
D	SEE VARIATIDNS			
E	. 150	. 157	3.81	3.99
e	025 BSC		0.635 BSC	
H	230	. 244	5.84	6.20
h	. 010	. 016	0.25	0.41
L	. 016	. 035	0.41	0.89
N	SEE VARIATİNS			
X	SEE VARIATIUNS			
Y	. 071	. 087	1.803	2.209
α	$0 \times$	$8{ }^{\circ}$	$0 \times$	8 *

VARIATIDNS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management Specialised - PMIC category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
LV5686PVC-XH FAN7710VN NCP391FCALT2G SLG7NT4081VTR SLG7NT4192VTR AP4313UKTR-G1 AS3729B-BWLM MB39C831QN-G-EFE2 LV56841PVD-XH AP4306BUKTR-G1 MIC5164YMM PT8A3252WE NCP392CSFCCT1G PT8A3284WE PI3VST01ZEEX PI5USB1458AZAEX PI5USB1468AZAEX MCP16502TAC-E/S8B MCP16502TAE-E/S8B MCP16502TAA-E/S8B MCP16502TAB-E/S8B TCKE712BNL,RF ISL91211AIKZT7AR5874 ISL91211BIKZT7AR5878 MCP16501TC-E/RMB ISL91212AIIZTR5770 ISL91212BIIZ-TR5775 CPX200D AX-3005D-3 TP-1303 TP-1305 TP-1603 TP-2305 TP-30102 TP-4503N MIC5167YML-TR LPTM21-1AFTG237C LR745N8-G MPS-3003L-3 MPS-3005D SPD-3606 STLUX383A TP-60052 ADN8834ACBZ-R7 LM26480SQ$\underline{\text { AA/NOPB LM81BIMTX-3/NOPB LM81CIMT-3/NOPB MIC5166YML-TR GPE-4323 GPS-2303 }}$

