General Description

The MAX1692 is a low-noise, pulse-width-modulated (PWM), DC-DC step-down converter. It powers logic and transmitters in small wireless systems such as cellular phones, communicating PDAs, and handy-terminals. The device features an internal synchronous rectifier for high efficiency; it requires no external Schottky diode. Excellent noise characteristics and fixed-frequency operation provide easy post-filtering. The MAX1692 is ideally suited for Li-Ion battery applications. It is also useful for +3 V or +5 V fixed input applications.
The device operates in one of four modes. Forced PWM mode operates at a fixed frequency regardless of the load. Synchronizable PWM mode allows an external switching frequency to control and minimize harmonics. Idle Mode ${ }^{\text {TM }}$ (PWM/PFM) extends battery life by switching to a PFM pulse-skipping mode during light loads. Shutdown mode places the device in standby, reducing quiescent supply current to under $0.1 \mu \mathrm{~A}$.
The MAX1692 can deliver over 600 mA . The output voltage can be adjusted from 1.25 V to V IN with the input range of +2.7 V to +5.5 V . Other features of the MAX1692 include high efficiency, low dropout voltage, and a 1.2%-accurate 1.25 V reference. It is available in a space-saving 10-pin $\mu \mathrm{MAX}$ package with a height of only 1.11 mm .

Applications

Cellular Phones
Cordless Phones
PDAs and Handy-Terminals

CPU I/O Supplies
Notebook Chipset Supplies
Battery-Operated Devices
(1 Li -lon or $3 \mathrm{NiMH} / \mathrm{NiCd}$)

Features		
- +2.7V to +5.5V Input Range		
- Adjustable Output from 1.25V to Vin		
- 600mA Guaranteed Output Current		
- 95\% Efficiency		
- No Schottky Diode Required		
- $85 \mu \mathrm{~A}$ Quiescent Current		
- 100\% Duty Cycle in Dropout		
- 750kHz Fixed-Frequency PWM Operation		
- Synchronizable Switching Frequency		
- Accurate Reference: 1.25V ($\pm 1.2 \%$)		
- Small 10-Pin μ MAX Package		
Ordering Information		
PART	TEMP. RANGE	PIN-PACKAGE
MAX1692EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 MMAX

Pin Configuration

Typical Operating Circuit

Idle Mode is a trademark of Maxim Integrated Products.

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 10-Pin μ MAX (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots444 \mathrm{~mW}$ Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Maximum Junction Temperature \qquad
\qquad $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10sec) $300^{\circ} \mathrm{C}$ LX Peak Current (internally limited)
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} I \mathrm{~N}=+3.6 \mathrm{~V}, \mathrm{SYNC} / \mathrm{PWM}=\mathrm{GND}, \mathrm{V} \mathrm{IIM}=3.6 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{IN}\right.$, circuit of Figure $2 ; \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{SYNC} / \mathrm{PWM}=\mathrm{GND}, \mathrm{V} \mathrm{LIM}=3.6 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{IN}\right.$, circuit of Figure $2 ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Reference Load Regulation		$0 \leq \mathrm{I}_{\text {REF }} \leq 50 \mu \mathrm{~A}$		3	15	mV
Undervoltage Lockout Threshold	UVLO	VIN rising, typical hysteresis is 85 mV	2.3	2.4	2.5	V
Logic Input High	V_{IH}	$\overline{\text { SHDN, }}$, SYNC/PWM, LIM	2			V
Logic Input Low	VIL	$\overline{\text { SHDN, }}$, SYNC/PWM, LIM			0.4	V
Logic Input Current		$\overline{\text { SHDN, }}$, SYNC/PWM, LIM	-1	0.1	1	$\mu \mathrm{A}$
SYNC/PWM Minimum Pulse Width		High or low	500			ns

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{SYNC} / \mathrm{PWM}=\mathrm{GND}, \mathrm{V}\right.$ LIM $=3.6 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{IN}$, circuit of Figure $2, \mathrm{~T}_{\mathbf{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Input Voltage Range	VIN		2.7	5.5	V
Output Voltage	Vout	$\begin{aligned} & \mathrm{FB}=\mathrm{OUT}, \mathrm{~V} \text { IN }=\mathrm{V} \text { LIM }=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \text { IOUT }=0 \end{aligned}$	1.213	1.285	V
		$\begin{aligned} & \mathrm{FB}=\mathrm{OUT}, \mathrm{~V} \text { IN }=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \text { lout }=0 \text { to } 600 \mathrm{~mA}, \mathrm{LIM}=\mathrm{IN} \text { or } \\ & \text { lout }=0 \text { to } 250 \mathrm{~mA}, \mathrm{LIM}=\mathrm{GND} \end{aligned}$	1.185	1.285	
Output Adjustment Range		(Note 1)	REF	V IN	V
Feedback Voltage	$V_{\text {FB }}$	$\begin{aligned} & \mathrm{FB}=\mathrm{OUT}, \mathrm{~V} \text { IN }=\mathrm{V} \mathrm{VIM}=5.5 \mathrm{~V} \text {, } \mathrm{IOUT}=0 \\ & (\text { duty cycle }=23 \%)(\text { Note } 2) \end{aligned}$	1.213	1.285	V
FB Input Current	IFB	$\mathrm{V}_{\mathrm{FB}}=1.4 \mathrm{~V}$	-50	50	nA
P-Channel Current-Limit Threshold		LIM = GND	0.3	0.9	A
		LIM $=1 \mathrm{~N}$	0.7	1.6	
N -Channel Current-Limit Threshold		SYNC/PWM $=1 N, F B=$ REF	-15	110	mA
Quiescent Current		$\begin{aligned} & \text { SYNC/PWM = GND, LX = unconnected, } \\ & \mathrm{V}_{\mathrm{FB}}=1.4 \mathrm{~V} \end{aligned}$		140	$\mu \mathrm{A}$
Shutdown Supply Current		$\overline{\text { SHDN }}=\mathrm{LX}=\mathrm{GND}$, includes LX leakage current		10	$\mu \mathrm{A}$
Oscillator Frequency	fosc		630	840	kHz
Reference Output Voltage	VREF	IREF $=0$	1.230	1.268	V
Undervoltage Lockout Threshold	UVLO	VIN rising, typical hysteresis is 85 mV	2.3	2.5	V
Logic Input High	V_{IH}	$\overline{\text { SHDN, }}$, SYNC/PWM, LIM	2		V
Logic Input Low	VIL	$\overline{\text { SHDN, }}$, SYNC/PWM, LIM		0.4	V
Logic Input Current		$\overline{\text { SHDN, SYNC/PWM, LIM }}$	-1	1	$\mu \mathrm{A}$

Note 1: Guaranteed by minimum and maximum duty-factor tests.
Note 2: The following equation can be used to calculate FB accuracy for output voltages other than 1.232 V :
(see Feedback Voltage vs. Load Current)

where: Line Reg = the line regulation Load Reg = the load regulation
IRIPPLE $=\left(1-\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right) \cdot \mathrm{V}_{\text {OUT }} /($ fosc $\cdot \mathrm{L})$ where L is the inductor value IMAX $=250 \mathrm{~mA}(\mathrm{LIM}=\mathrm{GND})$ or $600 \mathrm{~mA}(\mathrm{LIM}=\mathrm{IN})$
Note 3: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

EFFICIENCY vs. LOAD CURRENT
(VOUT = 1.8 V)

BATTERY INPUT CURRENT vs. INPUT VOLTAGE

EFFICIENCY vs. LOAD CURRENT

FEEDBACK VOLTAGE
vs. LOAD CURRENT

LOAD CURRENT (mA)
BATTERY INPUT CURRENT vs. INPUT VOLTAGE AND TEMPERATURE

BATTERY INPUT CURRENT vs. INPUT VOLTAGE

OUTPUT VOLTAGE vs. LOAD CURRENT

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

Typical Operating Characteristics (continued)

(SYNC/PWM $=$ GND, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$, IOUT $=500 \mathrm{~mA}$

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

PIN	NAME	FUNCTION
1	IN	Supply Voltage Input. Input range from +2.7 V to +5.5 V . Bypass with a $10 \mu \mathrm{~F}$ capacitor.
2	BP	Supply Bypass Pin. Internally connected to IN . Bypass with a $0.1 \mu \mathrm{~F}$ capacitor. Do not connect to an external power source other than IN.
3	GND	Ground
4	REF	$1.25 \mathrm{~V}, 1.2 \%$ Reference Output. Capable of delivering $50 \mu \mathrm{~A}$ to external loads. Bypass with a $0.22 \mu \mathrm{~F}$ capacitor to GND.
5	FB	Feedback Input
6	LIM	Current-Limit Select Input. Connect LIM to GND for 0.6A current limit or LIM to IN for 1.2A current limit.
7	SYNC/ PWM	Oscillator Sync and Low-Noise, Mode-Control Input. SYNC/PWM = IN (Forced PWM Mode) SYNC/PWM = GND (PWM/PFM Mode) An external clock signal connected to this pin allows for LX switching synchronization.
8	$\overline{\text { SHDN }}$	Active-Low, Shutdown-Control Input. Reduces quiescent current to $0.1 \mu \mathrm{~A}$. In shutdown, output becomes high impedance.
9	LX	Inductor Connection to the Drains of the Internal Power MOSFETs
10	PGND	Power Ground

Figure 1. Simplified Functional Diagram

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

Detailed Description

The MAX1692 step-down, pulse-width-modulated (PWM), DC-DC converter has an adjustable output range from 1.25 V to the input voltage. An internal synchronous rectifier improves efficiency and eliminates an external Schottky diode. Fixed-frequency operation enables easy post-filtering, thereby providing excellent noise characteristics. As a result, the MAX1692 is an ideal choice for many small wireless systems.
The MAX1692 accepts inputs as low as +2.7 V while still delivering 600 mA . The MAX1692 can operate in four modes to optimize performance. A forced (PWM) mode switches at a fixed frequency, regardless of load, for easy post-filtering. A synchronizable PWM mode uses an external clock to minimize harmonics. A PWM/PFM mode extends battery life by operating in PWM mode under heavy loads and PFM mode under light loads for reduced power consumption. Shutdown mode reduces quiescent current to $0.1 \mu \mathrm{~A}$.

PWM Control Scheme

The MAX1692 uses a slope-compensated, currentmode PWM controller capable of achieving 100% duty cycle. The device uses an oscillator-triggered, minimum on-time, current-mode control scheme. The minimum on-time is approximately 150ns unless in dropout. The maximum on-time is approximately $2 / \mathrm{fOSC}$, allowing operation to 100% duty cycle. Current-mode feedback provides cycle-by-cycle current limiting for superior load- and line-response and protection of the internal MOSFET and rectifier.
At each falling edge of the internal oscillator, the SYNC cell sends a PWM ON signal to the control and drive logic, turning on the internal P-channel MOSFET (main switch) (Figure 1). This allows current to ramp up through the inductor (Figure 2) to the load, and stores energy in a magnetic field. The switch remains on until either the current-limit (LIM) comparator is tripped or the PWM comparator signals that the output is in regulation. When the switch turns off during the second half of each cycle, the inductor's magnetic field collapses, releasing the stored energy and forcing current through the N -channel synchronous rectifier to the output-filter capacitor and load. The output-filter capacitor stores charge when the inductor current is high and releases it when the inductor current is low, thus smoothing the voltage across the load.
During normal operation, the MAX1692 regulates output voltage by switching at a constant frequency and then modulating the power transferred to the load each cycle using the PWM comparator. A multi-input comparator sums three weighted differential signals: the

Figure 2. Standard Application Circuit
output voltage with respect to the reference, the main switch current sense, and the slope-compensation ramp. It modulates output power by adjusting the inductor-peak current during the first half of each cycle, based on the output-error voltage. The MAX1692's loop gain is relatively low to enable the use of a small, lowvalued output-filter capacitor. The resulting load regulation is 1.3% (typ) at 0 to 600 mA .

100\% Duty-Cycle Operation

The maximum on-time can exceed one internal oscillator cycle, which permits operation up to 100% duty cycle. As the input voltage drops, the duty cycle increases until the P-channel MOSFET is held on continuously. Dropout voltage in 100% duty cycle is the output current multiplied by the on-resistance of the internal switch and inductor, around 280 mV (IOUT = 600 mA). In PWM mode, subharmonic oscillation can occur near dropout but subharmonic voltage ripple is small, since the ripple current is low.

Synchronous Rectification

An N-channel, synchronous-rectifier improves efficiency during the second half of each cycle (off time). When the inductor current ramps below the threshold set by the NEGLIM comparator (Figure 1) or when the PWM reaches the end of the oscillator period, the synchronous rectifier turns off. This keeps excess current from flowing backward through the inductor, from the output-filter capacitor to GND, or through the switch and synchronous rectifier to GND. During PWM operation, the NEGLIM threshold adjusts to permit small

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

amounts of reverse current to flow from the output during light loads. This allows regulation with a constantswitching frequency and eliminates minimum load requirements. The NEGLIM comparator threshold is 50 mA if $\mathrm{V}_{\mathrm{FB}}<1.25 \mathrm{~V}$, and decreases as V_{FB} exceeds 1.25 V to prevent the output from rising. The NEGLIM threshold in PFM mode is fixed at 50 mA . (See Forced PWM and PWM/PFM Operation section.)

Forced PWM and PWM/PFM Operation Connect SYNC/PWM to IN for normal forced PWM operation. Forced PWM operation is desirable in sensitive RF and data-acquisition applications, to ensure that switching-noise harmonics do not interfere with sensitive IF and data-sampling frequencies. A minimum load is not required during forced PWM operation, since the synchronous rectifier passes reverse-inductor current as needed to allow constant-frequency operation with no load. Forced PWM operation uses higher supply current with no load (2mA typ).
Connecting SYNC/PWM to GND enables PWM/PFM operation. This proprietary control scheme overrides PWM mode and places the MAX1692 in PFM mode at light loads to improve efficiency and reduce quiescent current to 85μ A. With PWM/PFM enabled, the MAX1692 initiates pulse-skipping PFM operation when the peak inductor current drops below 120 mA . During PFM operation, the MAX1692 switches only as needed to service the load, reducing the switching frequency and associated losses in the internal switch, the synchronous rectifier, and the external inductor.
During PFM mode, a switching cycle initiates when the PFM comparator senses that the output voltage has dropped too low. The P-channel MOSFET switch turns on and conducts current to the output-filter capacitor and load until the inductor current reaches the PFM peak current limit (120 mA). Then the switch turns off and the magnetic field in the inductor collapses, forcing current through the synchronous rectifier to the output filter capacitor and load. Then the MAX1692 waits until the PFM comparator senses a low output voltage again.
The PFM current comparator controls both entry into PWM mode and the peak switching current during PFM mode. Consequently, some jitter is normal during transition from PFM to PWM modes with loads around 100 mA , and it has no adverse impact on regulation.
Output ripple is higher during PFM operation. A larger output-filter capacitor can be used to minimize ripple.

SYNC Input and Frequency Control

 The MAX1692's internal oscillator is set for a fixedswitching frequency of 750 kHz or can be synchronized to an external clock. Connect SYNC to IN for forcedPWM operation. Do not leave SYNC/PWM unconnected. Connecting SYNC/PWM to GND enables PWM/PFM operation to reduce supply current at light loads. SYNC/PWM is a negative-edge triggered input that allows synchronization to an external frequency ranging between 500 kHz and 1000 kHz . When SYNC/PWM is clocked by an external signal, the converter operates in forced PWM mode. If SYNC is low or high for more than $100 \mu \mathrm{~s}$, the oscillator defaults to 750 kHz .
Shutdown Mode

Connecting $\overline{\text { SHDN }}$ to GND places the MAX1692 in shutdown mode. In shutdown, the reference, control circuitry, internal switching MOSFET, and the synchronous rectifier turn off and the output falls to 0 V . Connect $\overline{\mathrm{SHDN}}$ to IN for normal operation.

Current-Sense Comparators

The MAX1692 uses several internal current-sense comparators. In PWM operation, the PWM comparator sets the cycle-by-cycle current limit (Figure 1) and provides improved load and line response, allowing tighter specification of the inductor-saturation current limit to reduce inductor cost. A second 120 mA current-sense comparator used across the P-channel switch controls entry into PFM mode. A third current-sense comparator monitors current through the internal N -channel MOSFET to set the NEGLIM threshold and determine when to turn off the synchronous rectifier. A fourth comparator (LIM) used at the P-channel MOSFET switch detects overcurrent. This protects the system, external components, and internal MOSFETs under overload conditions.

Applications Information

Output Voltage Selection

Select an output voltage between 1.25 V and VIN by connecting FB to a resistor-divider between the output and GND (Figure 2). Select feedback resistor R2 in the $5 \mathrm{k} \Omega$ to $500 \mathrm{k} \Omega$ range. R 1 is then given by:

$$
R 1=R 2\left[\left(V_{\text {OUT }} / V_{\text {FB }}\right)-1\right]
$$

where $\mathrm{V}_{\mathrm{FB}}=1.232 \mathrm{~V}$ (See Note 2 of the Electrical Characteristics). Add a small ceramic capacitor (C5) around 47 pF to 100 pF in parallel with R 1 to compensate for stray capacitance at the FB pin and output capacitor equivalent series resistance (ESR).

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

Capacitor Selection

Choose input- and output-filter capacitors to service inductor currents with acceptable voltage ripple. The input-filter capacitor also reduces peak currents and noise at the voltage source. In addition, connect a lowESR bulk capacitor ($>10 \mu \mathrm{~F}$ suggested) to the input. Select this bulk capacitor to meet the input ripple requirements and voltage rating, rather than capacitor size. Use the following equation to calculate the maximum RMS input current:

$$
\mathrm{I}_{\text {RMS }}=\operatorname{IOUT}\left[\mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)\right]^{1 / 2} \cdot \mathrm{~V}_{\text {IN }}
$$

When selecting an output capacitor, consider the out-put-ripple voltage and approximate it as the product of the ripple current and the ESR of the output capacitor.

$$
\begin{aligned}
\text { V RIPPLE }^{=}= & {\left[\operatorname{VOUT}\left(\mathrm{VIN}-\mathrm{VOUT}^{2}\right)\right] / } \\
& {\left[2 \cdot \mathrm{fOSC}(\mathrm{~L})\left(\mathrm{V}_{\mathrm{IN}}\right)\right] \cdot \mathrm{ESR}_{\mathrm{C} 2} }
\end{aligned}
$$

where ESRC2 is the equivalent-series resistance of the output capacitor.
The MAX1692's loop gain is relatively low, enabling the use of small, low-value output filter capacitors. Higher values provide improved output ripple and transient response. Lower oscillator frequencies require a largervalue output capacitor. When PWM/PFM is used, verify capacitor selection with light loads during PFM operation, since output ripple is higher under these conditions. Low-ESR capacitors are recommended.
Capacitor ESR is a major contributor to output ripple (usually more than 60\%). Ordinary aluminum-electrolytic capacitors have high ESR and should be avoided. Low-ESR aluminum-electrolytic capacitors are acceptable and relatively inexpensive. Low-ESR tantalum capacitors are better and provide a compact solution for space-constrained surface-mount designs. Do not exceed the ripple-current ratings of tantalum capacitors. Ceramic capacitors have the lowest ESR overall, and OS-CON ${ }^{T M}$ capacitors have the lowest ESR of the high-value electrolytic types.
It is generally not necessary to use ceramic or OS-CON capacitors for the MAX1692; consider them only in very compact, high-reliability, or wide-temperature applications where the expense is justified. When using very-low-ESR capacitors, such as ceramic or OS-CON, check for stability while examining load-transient response. The output capacitor is determined by ensuring that the minimum capacitance value and maximum

ESR values are met:
C2 > 2VREF $(1+\operatorname{VOUT} / \operatorname{VIN}(\mathrm{MIN})) /(\mathrm{VOUT} \cdot \operatorname{RSENSE} \cdot \mathrm{fOSC})$ ResR < (Rsense) (Vout) / (VREF)
where C 2 is the output filter capacitor, $\mathrm{V}_{\text {REF }}$ is the internal reference voltage of $1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(\mathrm{min})$ is the minimum input voltage (2.7 V), RSENSE is the internal sense resistance of 0.1Ω, and fOSC is the internal oscillator frequency (typically 750 kHz). These equations provide the minimum requirements. The value of C2 may need to be increased for operation at duty-cycle extremes.
Tables 1 and 2 provide recommended inductor and capacitor sizes at various external sync frequencies. Table 3 lists suppliers for the various components used with the MAX1692.

Standard Application Circ uits

Figures 2 and 3 are standard application circuits optimized for power and board space respectively. The circuit of Figure 2 is the most general of the two, and generates 1.8 V at 600 mA .
The circuit of Figure 3 is optimized for smallest overall size. Cellular phones are using low voltage for baseband logic and have critical area and height restrictions. This circuit operates from a single Li-ion battery (2.9 V to 4.5 V) and delivers up to 200 mA at 1.8 V . It uses small ceramic capacitors at the input and output and a tiny chip inductor such as the NLC322522T series from TDK. With the MAX1692 in a 10-pin μ MAX package, the entire circuit can fit in only $60 \mathrm{~mm}^{2}$ and have less than 2.4 mm height.

Figure 3. Miniaturized 200mA Output Circuit Fits in $60 \mathrm{~mm}^{2}$

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

Bypass Considerations
Bypass IN and OUT to PGND with $10 \mu \mathrm{~F}$ and $47 \mu \mathrm{~F}$, respectively. Bypass BP and REF to GND with $0.1 \mu \mathrm{~F}$ and $0.22 \mu \mathrm{~F}$, respectively. Locate the bypass capacitors as close as possible to their respective pins to minimize noise coupling. For optimum performance, place input and output capacitors as close to the device as feasible (see Capacitor Selection section).

PC Board Layout and Routing
High switching frequencies and large peak currents make PC board layout a very important part of design. Good design minimizes excessive EMI on the feedback paths and voltage gradients in the ground plane, both

Table 1. Suggested Inductors

OUTPUT VOLTAGE RANGE (V)	INDUCTOR L VALUE $(\boldsymbol{\mu H})$	SUGGESTED INDUCTORS
1.25 to 2.5	10	Sumida CD43-100 Coilcraft D01608C-103 Sumida CD54-100 TDK NLC322522-100T
2.5 to 4.0	22	Sumida CD43-220 Sumida CD54-220
4.0 to 5.5	33	Sumida CD43-330 Sumida CD54-330

Table 2. Suggested Capacitors

MANUFACTURER PART NUMBER	TYPE	ESR $(\mathbf{m} \Omega)$
AVX TPSD476M016R0150	Tantalum	150
Sanyo 6TPA47M	Poscap	100
Sprague 594D686X9010C2T	Tantalum	95
Taiyo Yuden JMK325BJ106MN	Ceramic	50

of which can result in instability or regulation errors. Connect the inductor, input filter capacitor, and output filter capacitor as close together as possible, and keep their traces short, direct, and wide. Connect their ground pins at a single common node in a star-ground configuration. The external voltage-feedback network should be very close to the FB pin, within 0.2in (5 mm). Keep noisy traces, such as from the LX pin, away from the voltage-feedback network; also keep them separate, using grounded copper. Connect GND and PGND at the highest quality ground. The MAX1692 evaluation kit manual illustrates an example PC board layout and routing scheme.

Table 3. Component Suppliers

COMPANY	PHONE	FAX
AVX	$843-946-0238$	$843-626-3123$
Coilcraft	$847-639-6400$	$847-639-1469$
Coiltronics	$561-241-7876$	$561-241-9339$
Kemet	$408-986-0424$	$408-986-1442$
Nihon	USA 805- 867-2555 Japan 81-3-3494-7411	$805-867-2698$ $81-3-3494-7414$
Sanyo	USA 619-661-6835 Japan 81-7-2070-6306	$619-661-1055$ $81-7-2070-1174$
Sprague	$603-224-1961$	$603-224-1430$
Sumida	USA 847-956-0666	
Japan 81-3-3607-5111	$847-956-0702$ $81-3-3607-5144$	
Taiyo Yuden	$408-573-4150$	$408-573-4159$
TDK	$847-390-4373$	$847-390-4428$

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

Chip Information

Low-Noise, 5.5V-Input, PWM Step-Down Regulator

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1998 Maxim Integrated Products
Printed USA MAXINI is a registered trademark of Maxim Integrated Products.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1642B-18IMC MCP1642D-ADJIMC

