

Features

Automotive Dual Remote Antenna Current-Sense LDO/Switch

General Description

♦ 2-Channel LDO/Switch with Precision-Adjustable Current-Sense (Up to 300mA Per Channel)

The MAX16948 is a dual high-voltage, current-sensing low dropout linear regulator (LDO)/switch designed to operate with an input voltage range from 4.5V to 28V (45V load dump tolerant). The device provides phantom power over coax cable to remote radio frequency low-noise amplifiers (LNAs) in automotive systems with a maximum current of 300mA per channel. The device also provides a fixed requlated output voltage of 8.5V or an adjustable 1V to 12.5V output voltage. The device can also be configured as a switch.

♦ Wide Input Voltage Range: 4.5V to 28V (45V Load Dump Tolerant)

The device monitors the load current and provides an ana-

♦ On/Off Switching or Regulation of Phantom Power Under µC Control

log output current proportional to the sensed load current. Accurate internal current limits protect the input supply against both overcurrent and short-circuit conditions. The device features an open-drain error output for each channel to indicate to the microcontroller (µC) when a fault has occurred.

♦ Reverse Current Protection

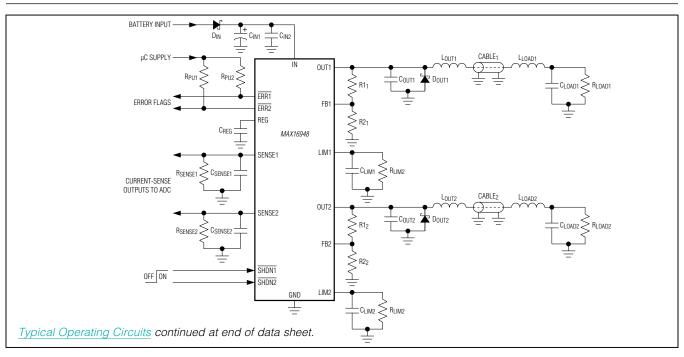
The device features short-to-battery protection to latch off the internal LDO/switch during a short-to-battery event. During a thermal overload, the device reduces power dissipation by going into thermal shutdown. It includes two independent active-low, high-voltage-compatible shutdown inputs to place each channel in a low-power shutdown mode.

- ♦ Output Short-to-Battery Protection
- **Normal/Short-Circuit Conditions**

♦ Load Current Monitoring to Detect Open-Load/

- ♦ Open-Drain Error Status Signaling to μC
- ♦ Input Overvoltage Shutdown
- ♦ High Power-Supply Rejection Ratio (73dB)

Applications


Remote LNA Phantom Power Automotive Camera and Sensor Power

Ordering Information appears at end of data sheet.

For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX16948.related.

The device is available in a 16-pin TQFN package with exposed pad, a 16-pin QSOP package with exposed pad, or a 16-pin QSOP package and is fully specified over the -40°C to +105°C temperature range.

Typical Operating Circuits

Automotive Dual Remote Antenna Current-Sense LDO/Switch

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
IN, SHDN1, SHDN20.3V to +45V
ERR1, ERR2, REG0.3V to +6.0V
FB1, FB2, SENSE1, SENSE2, LIM1, LIM20.3V to $(V_{REG} + 0.3V)$
OUT1, OUT20.3V to +20V
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
TQFN-EP (derate 25.0mW/°C above +70°C)2000mW
QSOP-EP (derate 22.7mW/°C above +70°C) 1818mW
QSOP (derate 9.5mW/°C above +70°C)762mW

Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	-65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

PACKAGE THERMAL CHARACTERISTICS (Note 1)

	` '
TQFN-EP	16 QSOP
Junction-to-Ambient Thermal Resistance (θ _{JA})40°C/W	Junction-to-Ambient Thermal Resistance (θ _{JA})105°C/W
Junction-to-Case Thermal Resistance (θ _{JC})6°C/W	Junction-to-Case Thermal Resistance (θ _{JC})37°C/W
16 QSOP-EP	
Junction-to-Ambient Thermal Resistance (θ _{JA})44°C/W	
Junction-to-Case Thermal Resistance (θ_{JC})6°C/W	

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = 14V, T_A = T_J = -40^{\circ}C \text{ to } +105^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $T_A = T_J = +25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SWITCH/LDO							
IN Operating Supply Range	V _{IN}	Over 19V, output and current sense is switched off (Note 3)	4.5		28	V	
		Output switched off, for < 1s (Note 3)			45	1	
IN Supply Current in Operation	I _{IN}	$V_{SHDN1/SHDN2} > 2.8V$, $T_A = +25$ °C		2.1	3.4	mA	
IN Supply Current in Shutdown	I _{SD}	$\overline{SHDN1} = \overline{SHDN2} = GND, T_A = +25^{\circ}C,$ $V_{IN} = 12V$			7	μΑ	
IN I Indonvoltage Leekeut	\/	V _{IN} rising			4.8	4.8 V	
IN Undervoltage Lockout	V _{UVL}	V _{IN} falling		3.8	4.45	V	
IN Undervoltage Lockout Hysteresis	V _{UVL-HYS}			390		mV	
Voltage Drop of Internal Switch	VIN - VOUT1/OUT2	Measured between IN and OUT1/OUT2, IOUT1/OUT2 = 100mA, FB1/FB2 = GND, SW operation $V_{IN} \ge 5V$, $T_A = +105^{\circ}C$ (Note 4)			0.3V	V	
		Measured between IN and OUT1/OUT2, IOUT1/OUT2 = 100mA, FB1/FB2 = GND, SW operation $V_{IN} \ge 5V$, $T_A = +25^{\circ}C$		0.145	0.220		

Automotive Dual Remote Antenna Current-Sense LDO/Switch

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = 14V, T_A = T_J = -40$ °C to +105°C, unless otherwise noted. Typical values are at $T_A = T_J = +25$ °C.) (Note 2)

PARAMETER	SYMBOL	CON	NDITIONS	MIN	TYP	MAX	UNITS
Feedback Voltage	V _{FB}		th external resistive JT2_= 5mA to 150mA	0.97	1	1.03	V
Input Bias Current to FB1 and FB2	I _{FB1/FB2}	$V_{FB1/FB2} = 1.0V,$ $T_A = +25^{\circ}C$	LDO mode,	-0.5		+0.5	μΑ
Feedback Threshold for Internal Feedback Resistive Divider	V _{FB1/FB2,TH}	Switching to LDO 8.5V resistive divi	mode with internal ders	V _{REG} - 1.7		V _{REG} - 0.8	V
Adjustable Output Voltage Range	Vout1/out2	LDO mode with edividers (Notes 3,		1		12.5	V
FB1 and FB2 Load Regulation	ΔV _{FB, LOAD}	V _{IN} - V _{OUT1/OUT2} I _{OUT1/OUT2} = 5m. LDO mode (Note	A to 250mA,		-7		mV
FB1 and FB2 Line Regulation	ΔV _{FB, LINE}	V _{IN} - V _{OUT1/OUT2} I _{OUT1/OUT2} = 50n	≥ 2V, nA, LDO mode (Note 3)		100		μV/V
Fixed Output Voltage 8.5V	V _{OUT1/OUT2, 8.5V}	I _{OUT1/OUT2} = 70mA, LDO mode with internal resistive divider, 9V < V _{IN} < 18V		8.33	8.5	8.67	V
Power-Supply Rejection Ratio	PSRR	V_{IN} - $V_{OUT1/OUT2} \ge 2V$, $I_{OUT1/OUT2} = 10\text{mA at } f = 100\text{Hz}$, $LDO \text{ mode } V_{OUT1/OUT2} = 8.5V$, $V_{RIPPLE} = 0.5V_{P-P}$ (Note 3)			73		dB
CURRENT SENSE							
			I _{OUT1/OUT2} = 100mA, V _{IN} = 5V, 19V	0.485	0.5	0.515	
			50mA ≤ I _{OUT1/OUT2} ≤ 300mA, V _{IN} ≥ 5V (Note 3)	0.45	0.5	0.55	
SENSE1 to OUT1 and SENSE2 to OUT2 Current Ratio	A _I	VSENSE1/SENSE2 < 3V	$20\text{mA} \le I_{OUT1/OUT2} \le 50\text{mA}, V_{IN} \ge 5V$ (Note 3)	0.415	0.5	0.585	%
			5mA ≤ I _{OUT1/OUT2} ≤ 20mA, V _{IN} ≥ 5V (Note 3)	0.325	0.5	0.675	
			$\begin{array}{l} \text{OmA} \leq \text{I}_{\text{OUT1/OUT2}} \leq \\ \text{5mA, V}_{\text{IN}} \geq \text{5V} \\ \text{(Notes 3, 6)} \end{array}$	0.3	0.5	0.7	
No-Load Current-Sense Offset	Icso	I _{OUT1} = I _{OUT2} = 0mA (Note 3)			2	10	μA
SENSE1, SENSE2, LIM1, LIM2 Leakage Current	I _{LEAK}	SHDN1 = SHDN2	= GND, T _A =+ 25°C			2	μA

Automotive Dual Remote Antenna Current-Sense LDO/Switch

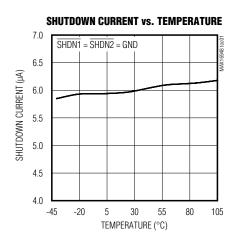
ELECTRICAL CHARACTERISTICS (continued)

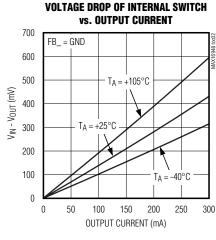
 $(V_{IN} = 14V, T_A = T_J = -40$ °C to +105°C, unless otherwise noted. Typical values are at $T_A = T_J = +25$ °C.) (Note 2)

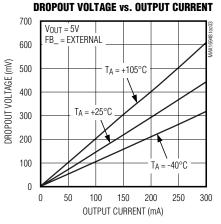
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FAILURE DETECTION						
LIM1 and LIM2 Current-Limit Threshold Voltage	V _{LIM1/LIM2,TH}	Voltage on LIM1 and LIM2 for which output current is limited	2.375	2.5	2.625	V
IN Overvoltage Lockout Threshold (Rising)	V _{OVLO,R}	V _{IN} rising	19	21	23	V
IN Overvoltage Lockout Threshold (Falling)	V _{OVLO,F}	V _{IN} falling	18.5			V
IN Overvoltage Lockout Hysteresis	V _{OVLO,H}			600		mV
Short-to-BAT Threshold in Off State	V _{S2B}	V _{OUT1/OUT2} - V _{IN} , checked during turn- on sequence	-500	-80	+110	mV
Reverse Current Detection Level	I _{REVCUR}	Power FET on (SW or LDO mode)	-100	-50	-1	mA
Reverse Current (Short-to-BAT) Shutdown Delay	t _{PD-RC}	Delay to shutdown the switch or LDO after drop over R_{ON} becomes negative, $I_{OUT1/OUT2} = -200$ mA (typ), $T_{A} = +25$ °C		4.16	20	μs
Reverse Current Blanking Time	^t BLK-RC	Blanking time for reverse current and FB1/FB2 out of range after rising edge of SHDN1, SHDN2, or current limiting event is over		16		ms
Feedback Voltage Out of Range	V _{FBERR}	LDO mode, internal pulldown resistor switched on, FB rising	1.12	1.15	1.28	V
Feedback Voltage Out-of- Range Hysteresis	V _{FBERR-HYS}	LDO mode, internal pulldown resistor switched on (Note 3)		39	100	mV
OVERTEMPERATURE PROTE	CTION (Note 3)					
Thermal Shutdown	T _{SHDN}			160		°C
Thermal Shutdown Hysteresis	T _{SHDN-HYS}			15		°C
SUPPORTING CIRCUITS, INTE	RFACE SIGNALS					
Internal Valtage Degulator	\/	T _A = +25°C, I _{REG} = 0mA, V _{IN} = 4.5V to 18V	4	5	5.5	V
Internal Voltage Regulator	V _{REG}	$T_A = +25$ °C, $I_{REG} = 0$ mA, $V_{IN} = 6.5$ V to 18V	4.5	5	5.5	V
Internal Voltage Regulator Current Limit	I _{REG}	(Note 4)	15			mA
ERR1 and ERR2 Output- Voltage Low	V _{OL}	Sinking current = 10mA			0.4	V
ERR1 and ERR2 Open-Drain Leakage Current		ERR1 and ERR2 not asserted, VERR1/ ERR2 = 5V, T _A = +25°C			1	μA
SHDN1 and SHDN2 High	VSHDN1/SHDN2,HI		2.8			V
SHDN1 and SHDN2 Low	VSHDN1/SHDN2,LO				0.8	V

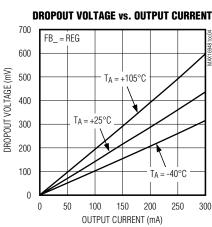
Automotive Dual Remote Antenna Current-Sense LDO/Switch

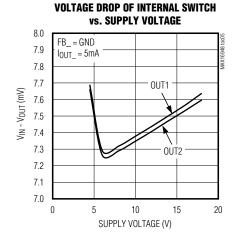
ELECTRICAL CHARACTERISTICS (continued)

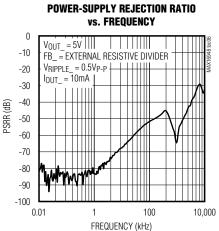

 $(V_{IN} = 14V, T_A = T_J = -40^{\circ}C \text{ to } +105^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $T_A = T_J = +25^{\circ}C.$) (Note 2)

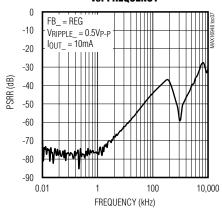

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
SHDN1 and SHDN2 Pulldown Resistance	R _{SHDN}	V _{SHDN1/SHDN2} = 2V	500		kΩ
Startup Response Time	t _{ST}	SHDN1 and SHDN2 rising to turn on LDO/switch (Note 3)	300		μs
OUT Pulldown Resistor	R _{OUT1/OUT2-OFF}	SHDN1 = SHDN2 = GND	56		kΩ


- **Note 2:** Devices are tested at $T_A = +25^{\circ}C$ and guaranteed by design for $T_A = T_{MIN}$ to T_{MAX} .
- Note 3: Guaranteed by design; not production tested.
- Note 4: Guaranteed by ATE characterization. Limits are not production tested.
- Note 5: In case of OUT1/OUT2 shorted to BAT, feedback network must protect FB1/FB2 from violating their absolute maximum ratings. For OUT1/OUT2 set below 3.3V, use an additional 5V clamp on FB1/FB2 with low parasitic capacitance.
- Note 6: Limits do not include current-sense offset.

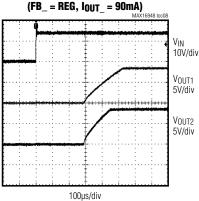

Typical Operating Characteristics


 $(V_{IN} = 14V, T_A = +25$ °C, see the <u>Typical Operating Circuits</u>, unless otherwise noted.)

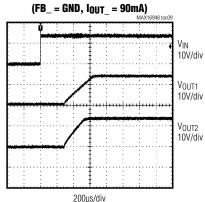


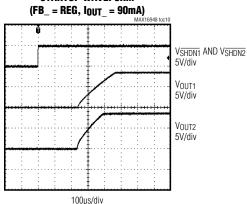


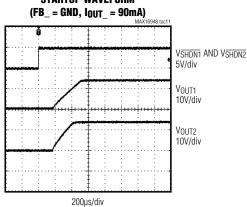
Automotive Dual Remote Antenna Current-Sense LDO/Switch

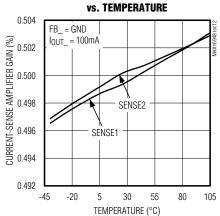

Typical Operating Characteristics (continued)

 $(V_{IN} = 14V, T_A = +25$ °C, see the <u>Typical Operating Circuits</u>, unless otherwise noted.)

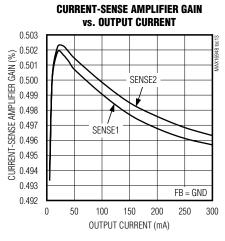


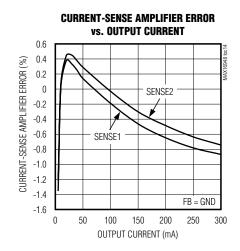

POWER-UP WAVEFORM (FB = REG. Init = 90mA

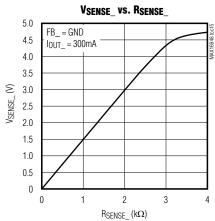

POWER-UP WAVEFORM

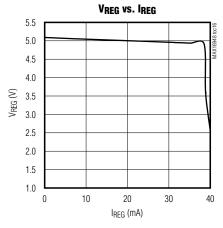

STARTUP WAVEFORM

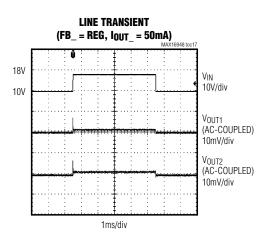
STARTUP WAVEFORM

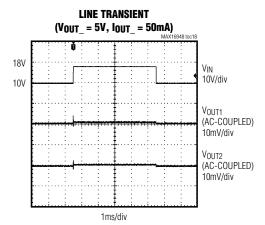

CURRENT-SENSE AMPLIFIER GAIN VS. TEMPERATURE

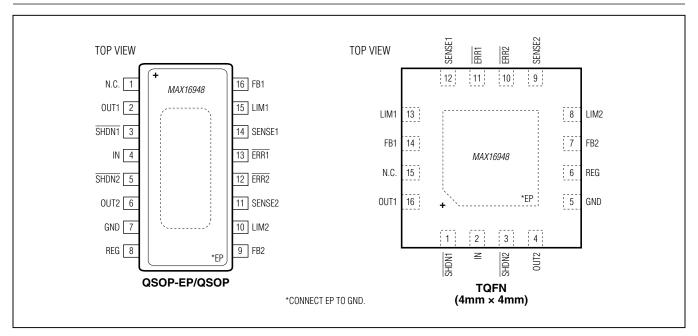



Automotive Dual Remote Antenna Current-Sense LDO/Switch


Typical Operating Characteristics (continued)


 $(V_{IN} = 14V, T_A = +25$ °C, see the <u>Typical Operating Circuits</u>, unless otherwise noted.)



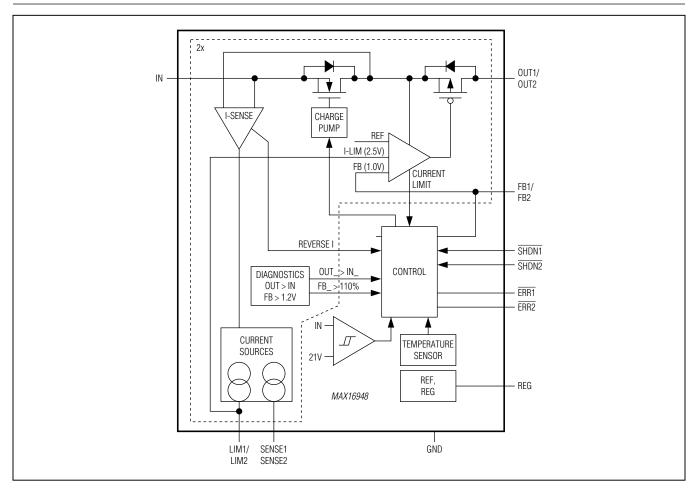


Automotive Dual Remote Antenna Current-Sense LDO/Switch

Pin Configurations

Pin Descriptions

Р	IN				
QSOP/ QSOP-EP	TQFN-EP	NAME	FUNCTION		
1	15	N.C.	No Connection. Not internally connected.		
2	16	OUT1	LDO/Switch Output 1 to Remote Load. Bypass OUT1 to GND with >1µF in parallel with 100nF low-ESR ceramic capacitors for regulator stability.		
3	1	SHDN1	Active-Low Shutdown Input for OUT1. $\overline{\text{SHDN1}}$ is pulled to GND with an internal 500k Ω resistor.		
4	2	IN	Input Voltage. Bypass IN to GND with an electrolytic capacitor with a minimum value of 10μF and a low-ESR ceramic capacitor with a minimum value of 0.1μF.		
5	3	SHDN2	Active-Low Shutdown Input for OUT2. $\overline{\text{SHDN2}}$ is pulled to GND with an internal 500k Ω resistor.		
6	4	OUT2	LDO/Switch Output 2 to remote load. Bypass OUT2 to GND with >1µF in parallel with 100nF low-ESR ceramic capacitors for regulator stability.		
7	5	GND	Ground		
8	6	REG	Internal 5V Regulator. Provides supply for internal low-voltage blocks, SENSE_, and LIM_ outputs.		
9	7	FB2	Feedback Input for Setting the OUT2 Voltage. Connect FB2 to GND to select current-limited switch operation. Connect to an external resistive divider for adjustable output-voltage operation. Connect FB2 to REG to choose the internal resistive divider for the 8.5V regulator option.		


Automotive Dual Remote Antenna Current-Sense LDO/Switch

Pin Descriptions (continued)

P	IN				
QSOP/ QSOP-EP	TQFN-EP	NAME	FUNCTION		
10	8	LIM2	Output of Current Sense for Limiting. This output is proportional to current flowing through OUT2. The internal current-limit amplifier is tripped when the voltage on LIM2 reaches 2.5V. Connect a resistor to GND to set the level for current limitation and a 0.1µF capacitor in parallel for frequency compensation of the current-limit loop.		
11	9	SENSE2	Output of Current Sense for Sensing. The current of SENSE2 is proportional to the current flowing through OUT2. Connect a resistor from SENSE2 to GND to set the output voltage level. Additionally, connect a 0.1µF capacitor from SENSE2 to GND.		
12	10	ERR2	Open-Drain Fault Indicator Output 2		
13	11	ERR1	Open-Drain Fault Indicator Output 1		
14	12	SENSE1	Output of Current Sense for Sensing. The current of SENSE1 is proportional to the current flowing through OUT1. Connect a resistor from SENSE1 to GND to set the output voltage level. Additionally, connect a 0.1µF capacitor from SENSE1 to GND.		
15	13	LIM1	Output of Current Sense for Limiting. This output is proportional to current flowing through OUT1. The internal current-limit amplifier is tripped when the voltage on LIM1 reaches 2.5V. Connect a resistor to GND to set the level for current limitation and a 0.1µF capacitor in parallel for frequency compensation of the current-limit loop.		
16	14	FB1	Feedback Input for Setting the OUT1 Voltage. Connect FB1 to GND to select current-limited switch operation. Connect to an external resistive divider for adjustable output-voltage operation. Connect FB1 to REG to choose the internal resistive divider for the 8.5V regulator option.		
_	_	EP	Exposed Pad (MAX16948A only). Connect EP to the ground plane for optimal heat dissipation. Do not use EP as the primary electrical ground connection.		

Automotive Dual Remote Antenna Current-Sense LDO/Switch

Functional Diagram

Detailed Description

The MAX16948 is a dual high-voltage, current-sensing LDO/switch designed to operate with an input voltage range from 4.5V to 28V (45V load dump tolerant). The device provides phantom power over coax cable to remote radio frequency low-noise amplifiers (LNAs) in automotive systems with a maximum current of 300mA per channel. The device also provides a fixed regulated output voltage of 8.5V, an adjustable 1V to 12.5V output voltage, or the device can be configured as a switch. The device is ideal for providing phantom power to remote radio-frequency LNAs in automotive applications.

The device monitors the load current, and its currentsense outputs provide a current proportional to the sensed load current. An accurate programmable current limit protects the input supply against both overcurrent and short-circuit conditions. The device features open-drain fault indicator outputs and overtemperature shutdown.

The device features short-to-battery protection to latch off the internal LDO/switch during a short-to-battery event. During a thermal overload, the device reduces power dissipation by going into thermal shutdown. It includes dual independent, active-low, high-voltage-compatible shutdown inputs to place each channel in a low-power shutdown mode.

Automotive Dual Remote Antenna Current-Sense LDO/Switch

Fault Detection

The device monitors the load current through an internal sense resistor to protect against short-circuit, short-to-battery, and reverse current faults. In addition, the device also detects input and output overvoltage conditions and features thermal shutdown.

Short Circuit and Overcurrent

The current limit of each channel is programmed with an external resistor connected to the output of the current sense amplifiers LIM_ to protect the device during short-circuit or overcurrent conditions. When the voltage at LIM_ reaches the internal 2.5V threshold, the output current of the LDO/switch is limited, and \overline{ERR}_{-} asserts low but the output is not disabled. The \overline{ERR}_{-} and LIM_ outputs should be monitored by the μC , and the channel experiencing the short-circuit or overcurrent condition should be disabled by pulling \overline{SHDN}_{-} low. If this condition persists, thermal shutdown could occur and both outputs could be disabled.

Short-to-Battery and Reverse Current Detection

It is possible for OUT_ to be shorted to the battery due to a fault in the system. Each channel detects this failure by comparing the voltage at OUT_ and IN before the switch turns on. Every time the LDO/switch is enabled on the rising edge of \$\overline{S}HDN_\$ or during the exiting of thermal shutdown, the short-to-battery detection is performed. At this point, if the device detects the short-to-battery fault, the LDO/switch stays off and \$overline{ERR}\$_ is asserted low. The fault is latched, and the startup resumes when the short-to-battery fault is removed and \$overline{S}HDN_\$ is toggled.

During normal operation if a short-to-battery fault results in reverse current for more than 5µs (typ) the LDO/switch is latched off and $\overline{\text{ERR}}$ is asserted low. To remove the

latched condition after a short-to-battery (reverse <u>current)</u> fault, the fault condition must first be removed and <u>SHDN_</u> must be toggled.

Series inductance and the output capacitor can produce ringing during large load transients when enabling the LDO/switch, resulting in an output voltage that temporarily exceeds the input voltage. Blanking is implemented during startup. The reverse current blanking time (treverse current blanking time) is 16ms (typ).

When the MAX16948 is operated with input voltage close to the output voltage, as in switch mode operation or LDO mode in dropout, care must be taken to avoid a false reverse current detection in the presence of a short circuit to ground fault. If both channels are enabled and one channel is shorted to ground after startup, the current drawn from C_{IN} may result in a temporary dip in the intput voltage, which may trigger the reverse current detection fault. To avoid this false trigger event, use an electrolytic capacitor of at least $100\mu\text{F}$.

Thermal Shutdown

Thermal shutdown circuitry protects the device from overheating. The switch turns off immediately when the junction temperature exceeds +160°C (typ). The switch turns on again after the device temperature drops by approximately 15°C (typ).

FB Inputs (FB1/FB2)

FB1 and FB2 control the output voltage on OUT1 and OUT2. Connect FB_ to GND to select current-limited switch operation. Connect to an external resistive divider for adjustable output voltage operation (feedback voltage 1V (typ)). Connect FB_ to REG to choose the internal resistive divider for the 8.5V regulator option.

Table 1. Fault Response

DEVICE STATUS	V _{LIM_} (V)	VERR	LDO/SW OUTPUT	LATCHED
Normal Operation	$0 \le V_{LIM} < 2.5$	High	Enabled	No
Short Circuit to GND or Overcurrent	2.5	Low	Enabled	No
V _{OUT} > V _{IN} at Startup	0	Low	Disabled	Yes
Reverse Current	0	Low	Disabled	Yes
V _{FB} > 1.2V	0	High	Enabled	No
Input Overvoltage	0	Low	Disabled	No
Thermal Shutdown	0	High	Disabled	No

Automotive Dual Remote Antenna Current-Sense LDO/Switch

Undervoltage and Overvoltage Lockout

The device includes undervoltage lockout circuitry (UVLO) to prevent erroneous switch operation when the input voltage goes below 4.45V (max) during startup and brownout conditions. Input voltages of less than 4.45V inhibit operation of the device by turning off the internal charge pump and the switch.

The device also features an overvoltage lockout (OVLO) threshold of +21V (typ). When V_{IN} is greater than V_{OVLO} , the device immediately turns off the switch and the internal charge pump.

Shutdown (SHDN1, SHDN2)

The device features two active-low shutdown inputs (\$\overline{SHDN1}\$, \$\overline{SHDN2}\$) to place the device in a low-power shutdown mode. \$\overline{SHDN1}\$ controls OUT1 and \$\overline{SHDN2}\$ controls OUT2. The device turns off both channels and consumes a maximum of \$7\true{A}\$ (at \$V_{IN} = 12V\$) of shutdown current when both \$\overline{SHDN1}\$ and \$\overline{SHDN2}\$ are low. Driving \$\overline{SHDN1}\$ and/or \$\overline{SHDN2}\$ high initiates device turn-on with short-to-battery detection. \$\overline{SHDN1}\$ and \$\overline{SHDN2}\$ are pulled to GND with an internal 500k\$\Overline{\Omega}\$ resistor.

Internal Voltage Regulator (REG)

The device features an internal regulator that regulates the input voltage to +5V to power all internal circuitry. Bypass the regulator output (REG) to GND with a 1 μ F ceramic capacitor. The REG output can be used to supply external circuitry up to a maximum 15mA current.

Applications Information/External Component Selection

Fixed/Adjustable Output Voltage

The device is configurable to provide a fixed 8.5V output or as an adjustable LDO with an output between 1V and 12.5V. Connect FB_ to REG to configure the device as an 8.5V LDO. Connect a resistive divider between OUT_, FB_, and GND to set the output to the desired voltage. FB_ is regulated to 1.0V with $\pm 3\%$ accuracy for a load current between 5mA and 150mA. Select a value for R2 and calculate R1 as follows:

$$R1 = \left(\frac{V_{OUT}}{V_{FB}} - 1\right)R2$$

where R2 must be less than or equal to $1k\Omega$. Select R1 and R2 such that the maximum input bias current at FB (±0.5µA) is negligible compared to the current flowing through R1 and R2.

Current-Limit Resistor and Capacitor Selection

The current-sense outputs at LIM1/LIM2 are proportional to the load current at OUT1/OUT2 and are internally connected to a current-limit comparator referenced to 2.5V. The desired current limit is set with an external resistor R_{I IM} using the following equation:

$$R_{LIM}(\Omega) = \frac{2.5(V)}{0.5\% \times I_{LOAD\ MAX(A)}}$$

A 0.1 μ F compensation capacitor C_{LIM} must be placed in parallel with R_{LIM} to establish a dominant pole in the current limiting loop to maintain stability and to prevent fast current transients from prematurely triggering the current limit.

Current-Sense Resistor Selection

The current-sense outputs SENSE1/SENSE2 are proportional to the load current at OUT1/OUT2. An output resistor R_{SENSE} must be connected between SENSE1/SENSE2 and GND to generate a current-sense voltage prior to sampling by an ADC. R_{SENSE} is calculated using the following equation:

$$R_{SENSE_}(\Omega) = \frac{V_{ADC,FS}(V)}{0.5\% \times I_{LOAD_MAX(A)}}$$

where $V_{ADC,FS}$ is the full-scale input voltage of the ADC. A 0.1µF capacitor C_{SENSE} should be placed in parallel with R_{SENSE} to hold the voltage during ADC sampling cycles.

In addition to ADC sampling, open-load or overcurrent conditions can be detected by using external comparators and splitting R_{SENSE} into a resistive divider as shown in Figure 1. In this circuit the outputs of comparators U1 and

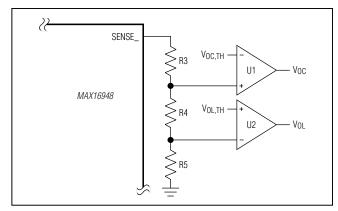


Figure 1. Open-Load and Overcurrent Detection Circuit

Automotive Dual Remote Antenna Current-Sense LDO/Switch

Table 2. Open-Load and Overcurrent-Detection Circuit States

ОС	OL	STATE		
0	0	Normal Operation		
0	1	Open-Load Condition		
1	0	Overcurrent Condition		
1	1	Invalid State		

U2 indicate the operating state of the circuit as shown in Table 2.

The open-load and overcurrent limits are set using the following equations:

$$R5(\Omega) = \frac{V_{OL,TH}(V)}{0.5\% \times I_{OPEN-LOAD(A)}}$$

where $V_{OL,TH}$ is the open-load voltage threshold for comparator U2 and $I_{OPEN-LOAD}$ is the desired open-load threshold for the current flowing through the LDO/switch.

$$R4(\Omega) = \frac{V_{OC,TH}(V)}{0.5\% \times I_{OVERCURRENT(A)}} - R5$$

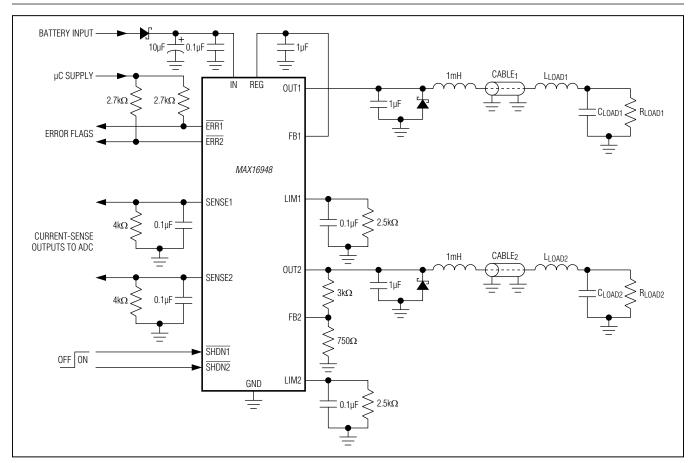
where $V_{OC,TH}$ is the overcurrent voltage threshold for comparator U1. $I_{OVERCURRENT}$ is the desired overcurrent threshold for the current flowing through the LDO/switch and the internal current limit should be programmed such that $I_{LOAD\ MAX} > I_{OVERCURRENT}$.

$$R3(\Omega) = R_{SENSE} - R4 - R5$$

The open-load voltage threshold $V_{OL,TH}$ and overcurrent threshold $V_{OC,TH}$ can be generated from REG utilizing a resistive divider. The thresholds should be selected such that $V_{OC,TH} > V_{OL,TH}$.

Input Capacitor

Connect a parallel electrolytic capacitor and a low-ESR ceramic capacitor from IN to GND to limit the input-voltage drop during momentary output short-circuit conditions and to protect the device against transients due to inductance on the IN line. For example, use at least a 0.1µF ceramic capacitor in parallel with a 10µF electrolytic capacitor if the input inductance (including any stray inductance) is estimated to be 20µH. Larger capacitor values reduce the voltage undershoot and overshoot in case of reverse current.


Output Capacitor

Connect $>1\mu\text{F}$ in parallel with 0.1 μF low-ESR ceramic capacitors between OUT1/OUT2 and GND for regulator stability. These capacitors should be placed as close to the device as possible. Utilize capacitors with an X7R dielectric to ensure stability over the operating temperature range of the device.

In an analogous fashion to the input capacitor, an output capacitor protects the device against transients due to any series inductance in the output. Under no conditions should the voltage on OUT1/OUT2 go below -0.3V as specified in the *Absolute Maximum Ratings* section. A Schottky diode is required as a clamp if transients are expected to go below ground.

Automotive Dual Remote Antenna Current-Sense LDO/Switch

Typical Operating Circuits (continued)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX16948AGTE/V+	-40°C to +105°C	16 TQFN-EP**
MAX16948AGEE/V+	-40°C to +105°C	16 QSOP-EP**
MAX16948BGEE/V+*	-40°C to +105°C	16 QSOP

N denotes an automotive qualified part.

Chip Information

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 TQFN-EP	T1644+4	21-0139	90-0070
16 QSOP-EP	E16E+9	21-0112	90-0240
16 QSOP	E16+5	21-0055	<u>90-0167</u>

PROCESS: BICMOS

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

^{*}Future product—contact factory for availability.

^{**}EP = Exposed pad.

Automotive Dual Remote Antenna Current-Sense LDO/Switch

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/11	Initial release	_
1	4/12	Updated maximum output voltage	1, 3, 10, 12
2	5/13	Added light-load current-sense specs to Electrical Characteristics table	3

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 LT1117CST-5 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG MIC94310-NYMT-T5