Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

General Description

The MAX16963 is a high-efficiency, dual synchronous step-down converter that operates with a 2.7 V to 5.5 V input voltage range and provides a 0.8 V to 3.6 V output voltage range. The device delivers up to 1.5 A of load current per output. The low input/output voltage range and the ability to provide high output currents make this device ideal for on-board point-of-load and postregulation applications. The device achieves $\pm 3 \%$ output error over load, line, and temperature ranges.
The device features a 2.2 MHz fixed-frequency PWM mode for better noise immunity and load transient response, and a skip mode for increased efficiency during light-load operation. The 2.2 MHz frequency operation allows for an all-ceramic capacitor design and small-size external components. An optional spread-spectrum frequency modulation minimizes radiated electromagnetic emissions due to the switching frequency.
On-board low RDSON switches help minimize efficiency losses at heavy loads and reduce critical/parasitic inductance, making the layout a much simpler task with respect to discrete solutions. Following a simple layout and footprint ensures first-pass success in new designs.
The device is offered in a factory-preset output voltage or adjustable output-voltage version (see the Selector Guide for options). Factory-preset output-voltage versions allow customers to achieve $\pm 3 \%$ output-voltage accuracy without using external resistors, while the adjustable output-voltage version provides the flexibility to set the output voltage to any desired value between 0.8 V and 3.6 V using an external resistive divider.
Additional features include 8 ms fixed soft-start, 16 ms fixed power-good delay, overcurrent, and overtemperature protections.
The MAX16963 is available in thermally enhanced 16-pin TSSOP-EP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 16-pin TQFN-EP packages, and is specified for operation over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

Applications
Automotive Postregulation
Industrial/Military
Point-of-Load Applications

Benefits and Features

\author{

- Small Size Components
 \diamond Dual 2.2MHz DC-DC Converter
 - Ideal for Point-of-Load Applications
 \diamond Up to 1.5A Output Current
 \diamond Adjustable Output Voltage: 0.8V to 3.6V
 $\diamond 2.7 \mathrm{~V}$ to 5.5 V Operating Supply voltage
 - High Efficiency at Light Load
 \diamond Skip Mode with $36 \mu \mathrm{~A}$ Quiescent Current
 - Low Electromagnetic Emission
 \diamond Programmable SYNC I/O Pin
 \diamond Spread Spectrum
 - Low Power Mode Saves Energy
 \diamond Independent Enable Inputs
 - Output Rail Monitoring Helps Prevent System Failure \diamond Open-Drain Power-Good Output
 - Limits Inrush Current During Startup
 \diamond Built-In Soft-Start Timer
 - Overtemperature and Short-Circuit Protections
 - 4mm x 4mm, 16-Pin TQFN and 16-Pin TSSOP Packages
 $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range
}

Ordering Information appears at end of data sheet.
Typical Application Circuit

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

ABSOLUTE MAXIMUM RATINGS

PV, PV1, PV2 to GND	3V to +6 V
EN1, EN2, PG1, PG2 to GND	-0.3V to +6V
LX_Current	± 1.6 (Note 1)
PGND1 and PGND2 to GND	-0.3V to +0.3V
PV to PV1 and PV2.	-0.3V to +0.3V
LX1 and LX2 Continuous RMS1A
All Other Pins Voltages to GN	$\left(\mathrm{V}_{\mathrm{GND}}-0.3 \mathrm{~V}\right)$
Output Short-Circuit Duration	..Continuous

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
TQFN (derate $25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ...	2000 mW *
TSSOP (derate $26.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	2088.8 mW *
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

*As per JEDEC51 Standard (multilayer board).
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: LX_ has internal clamp diodes for PGND_{-}and PV_{-}. Applications that forward bias these diodes should take care not to exceed the IC's package power-dissipation limits.

PACKAGE THERMAL CHARACTERISTICS (Note 2)

```
TQFN
    Junction-to-Ambient Thermal Resistance ( }\mp@subsup{0}{\textrm{JA}}{\prime}\mathrm{ ) ......... 40}4\mp@subsup{0}{}{\circ}\textrm{C}/\textrm{W
    Junction-to-Case Thermal Resistance ( }\mp@subsup{0}{\textrm{JC}}{\prime}\mathrm{ )
```

\qquad

``` \(6^{\circ} \mathrm{C} / \mathrm{W}\)
```

TSSOP
Junction-to-Ambient Thermal Resistance (θ_{JA})38.3 ${ }^{\circ} \mathrm{C} / \mathrm{W}$ Junction-to-Case Thermal Resistance (θ_{JC}) $3^{\circ} \mathrm{C} / \mathrm{W}$

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{PV} 1}=\mathrm{V}_{\mathrm{PV} 2}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	V_{PV}	Normal operation	2.7		5.5	V
Supply Current	IPV	No load, $\mathrm{V}_{\text {PWM }}=0 \mathrm{~V}$	16	36	60	$\mu \mathrm{A}$
Shutdown Supply Current	ISHDN	$\mathrm{V}_{\text {EN1 }}=\mathrm{V}_{\mathrm{EN} 2}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	5	$\mu \mathrm{A}$
Undervoltage Lockout Threshold Low	VUVLO_L		2.37			V
Undervoltage Lockout Threshold High	VUVLO_H				2.6	V
Undervoltage Lockout Hysteresis				0.07		V
SYNCHRONOUS STEP-DOWN DC-DC CONVERTER 1						
FB Regulation Voltage	V OUTS1			800		mV
Feedback Set-Point Accuracy	Vouts 1	ILOAD $=4 \%$ to 100%	-3	0	+3	\%
		LLOAD $=0 \%$	-0.5	+2	+3	\%
pMOS On-Resistance	RDSON P1	$\mathrm{V}_{\mathrm{PV} 1}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{LX} 1}=0.4 \mathrm{~A}$		90	148	$\mathrm{m} \Omega$
nMOS On-Resistance	RDSON N1	$V_{P V 1}=5 \mathrm{~V}, \mathrm{I}_{L \times 1}=0.8 \mathrm{~A}$		68	128	$\mathrm{m} \Omega$
Maximum pMOS Current-Limit Threshold	ILIMP1		1.95	2.35	3.15	A

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{P V}=V_{P V 1}=V_{P V 2}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 3)

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{PV} 1}=\mathrm{V}_{\mathrm{PV} 2}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Undervoltage/Overvoltage Propagation Delay				28		$\mu \mathrm{s}$
Output High Leakage Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.2	$\mu \mathrm{A}$
PG1 Output Low Voltage		$2.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 1} \leq 5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{SINK}}=3 \mathrm{~mA}$			0.4	V
		$\mathrm{V}_{\mathrm{PV} 1}=1.2 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}$			0.4	
PG2 Output Low Voltage		$2.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV} 2} \leq 5.5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=3 \mathrm{~mA}$			0.4	V
		$\mathrm{V}_{\mathrm{PV} 2}=1.2 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}$			0.4	
ENABLE INPUTS (EN1, EN2)						
Input Voltage High	$\mathrm{V}_{\text {INH }}$	Input rising	2.4	1.7	2.4	V
Input Voltage Low	$\mathrm{V}_{\text {INL }}$	Input falling	0.5	0.85	0.5	V
Input Hysteresis				0.85		V
Input Current		$\mathrm{V}_{\text {EN }}=$ high	0.1	1.0	2	$\mu \mathrm{A}$
Pulldown Resistor		$\mathrm{V}_{\mathrm{EN}}=$ low	50	100	200	$\mathrm{k} \Omega$
DIGITAL INPUTS (SYNC, PWM)						
Input Voltage High	$\mathrm{V}_{\text {INH }}$		1.8			V
Input Voltage Low	$\mathrm{V}_{\text {INL }}$				0.4	V
Input Voltage Hysteresis				50		mV
Pulldown Resistor			50	100	200	$\mathrm{k} \Omega$
DIGITAL OUTPUT (SYNC)						
SYNC Output Voltage Low	V_{OL}	$\mathrm{I}_{\text {SINK }}=3 \mathrm{~mA}$			0.4	V
SYNC Output Voltage High	V_{OH}	$\mathrm{V}_{\mathrm{PV}}=5 \mathrm{~V}$, $\mathrm{I}_{\text {SOURCE }}=3 \mathrm{~mA}$	4.2			V

Note 3: All limits are 100% production tested at $+25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 4: Calculated value based on an assumed inductor ripple of 30%.
Note 5: For SYNC frequency outside (1.7, 2.4) MHz, contact the factory.

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{PV} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} 1}=\mathrm{V}_{\mathrm{EN} 2}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.$)$

fsw vs. TEMPERATURE

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

Pin Configurations

Pin Descriptions

PIN		NAME	
TQFN	TSSOP		
1	3	LX2	Converter \#2 Switching Node. LX2 is high impedance when converter \#2 is off.
2	4	PGND2	Converter \#2 Power Ground
3	5	PGND1	Converter \#1 Power Ground
4	6	LX1	Converter \#1 Switching Node. LX1 is high impedance when converter \#1 is off.
5	7	PV1	Converter \#1 Input Supply. Bypass PV1 with at least a 4.7 F ceramic capacitor to PGND1.
6	8	EN1	Converter \#1 Enable Input. Drive EN1 high to enable converter \#1. Drive EN1 low to disable converter \#1.
7	9	OUTS1	Converter \#1 Feedback Input (Adjustable Output Option Only). Connect an external resistive divider from VouT1 to OUTS1 and GND to set the output voltage.
8	10	PG1	OUT1 Power-Good Output. Open-drain output. PG1 asserts when VouT1 drops by 8\%. Connect to a 10k Ω pullup resistor.
9	11	GND	Ground 10
12	PWM	PWM Control Input. Drive PWM high to put converters in forced PWM mode. Drive PWM low to put converters in skip mode.	
11	13	SYNC	Factory-Set Sync Input or Output. As an input, SYNC accepts a 1.7MHz to 2.5HMz external signal. As an output, SYNC outputs a 90 phase-shifted signal with respect to internal oscillator.

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

Pin Descriptions (continued)

PIN		NAME	FUNCTION
TQFN	TSSOP		
12	14	PV	Device Supply Voltage Input. Bypass with at least a $1 \mu \mathrm{~F}$ ceramic capacitor to GND. In addition, connect a 10Ω decoupling resistor between PV and the bypass capacitor.
13	15	PG2	OUT2 Power-Good Output. Open-drain output. PG2 asserts when $\mathrm{V}_{\text {OUT2 }}$ drops by 8%. Connect to a $10 k \Omega$ pullup resistor.
14	16	OUTS2	Converter \#2 Feedback Input (Adjustable Output Option Only). Connect an external resistive divider from $\mathrm{V}_{\text {OUT2 }}$ to OUTS2 and GND to set the output voltage.
15	1	EN2	Converter \#2 Enable Input. Drive EN2 high to enable converter \#2. Drive EN2 low to disable converter \#2.
16	2	PV2	Converter \#2 Input Supply. Bypass PV2 with at least a 4.7 F F ceramic capacitor to PGND2.
-	-	EP	Exposed Pad. Connect EP to a large-area contiguous copper ground plane for effective power dissipation. Do not use as the only IC ground connection. EP must be connected to GND.

Detailed Description

The MAX16963 is a high-efficiency, dual synchronous step-down converter that operates with a 2.7 V to 5.5 V input voltage range and provides a 0.8 V to 3.6 V output voltage range. The MAX16963 delivers up to 1.5A of load current per output and achieves $\pm 3 \%$ output error over load, line, and temperature ranges.
The device features a PWM input that, when set to logic-high, forces the MAX16963 into a fixed-frequency, 2.2 MHz PWM mode. A logic-low at the PWM input enables the device to enter a low-power pulse frequency modulation mode (PFM) under light-load conditions. An optional spread-spectrum frequency modulation minimizes radiated electromagnetic emissions due to the switching frequency and a factory programmable synchronization I/O (SYNC) allows better noise immunity.
On-board low RDSON switches help minimize efficiency losses at heavy loads and reduce critical/parasitic inductance, making the layout a much simpler task with respect to discrete solutions. Following a simple layout and footprint ensures first-pass success in new designs.
The device is offered in factory-preset output voltages to allow customers to achieve $\pm 3 \%$ output-voltage accuracy without using expensive $\pm 1 \%$ resistors. In addition, the adjustable output-voltage versions can be set to any desired values between 0.8 V to 3.6 V using an external resistive divider. See the Selector Guide for available options.

Additional features include 8ms fixed soft-start, 16ms fixed power-good output, overcurrent, and overtemperature protections. See Figure 1.

Power-Good Output

The MAX16963 features an open-drain power-good output that asserts when the output voltage drops 8% below the regulated voltage. PG_ remains asserted for a fixed 16 ms timeout period after the output rises up to its regulated voltage. Connect PG_ to OUTS_ with a $10 \mathrm{k} \Omega$ resistor.

Soft-Start

The MAX16963 includes an 8ms fixed soft-start time. Soft-start time limits startup inrush current by forcing the output voltage to ramp up towards its regulation point.

Spread-Spectrum Option The MAX16963 featuring spread-spectrum (SS) operation varies the internal operating frequency up by SS $=6 \%$ relative to the internally generated operating frequency of 2.2 MHz (typ). This function does not apply to externally applied oscillation frequency. The internal oscillator is frequency modulated with a 6\% frequency deviation. See the Selector Guide for available options.

Synchronization (SYNC) SYNC is a factory-programmable I/O. See the Selector Guide for available options. When SYNC is configured as an input, a logic-high on PWM enables SYNC to accept signal frequency in the range of $1.7 \mathrm{MHz}<\mathrm{f}_{\mathrm{SYNC}}$ $<2.5 \mathrm{MHz}$. When SYNC is configured as an output, a logic-high on PWM enables SYNC to output a 90° phaseshifted signal with respect to internal oscillator.

MAX16963
Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

Figure 1. Internal Block Diagram

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

Figure 2. Adjustable Output Voltage Setting

Abstract

Current-Limit/Short-Circuit Protection The MAX16963 features current limit that protects the device against short-circuit and overload conditions at an output. In the event of a short-circuit or overload condition at an output, the high-side MOSFET remains on until the inductor current reaches the high-side MOSFET's current-limit threshold. The converter then turns on the low-side MOSFET and the inductor current ramps down. The converter allows the high-side MOSFET to turn on only when the inductor current ramps down to the lowside MOSFET's current threshold. This cycle repeats until the short or overload condition is removed.

FPWM/Skip Modes

The MAX16963 features an input (PWM) that puts the converter either in skip mode for forced PWM (FPWM) mode of operation. See the Pin Descriptions for mode detail. In FPWM mode, the converter switches at a constant frequency with variable on-time. In skip mode, the converter's switching frequency is load-dependent until the output load reaches a certain threshold. At higher load current, the switching frequency does not change and the operating mode is similar to the FPWM mode. Skip mode helps improve efficiency in light-load applications by allowing the converters to turn on the highside switch only when the output voltage falls below a set threshold. As such, the converter does not switch MOSFETs on and off as often as is the case in the FPWM mode. Consequently, the gate charge and switching losses are much lower in skip mode.

Overtemperature Protection

Thermal overload protection limits the total power dissipation in the MAX16963. When the junction temperature exceeds $165^{\circ} \mathrm{C}$ (typ), an internal thermal sensor shuts down the internal bias regulator and the step-down controller, allowing the IC to cool. The thermal sensor
turns on the IC again after the junction temperature cools by $15^{\circ} \mathrm{C}$.

Applications Information

Adjustable Output-Voltage Option

The MAX16963 has an adjustable output voltage (see the Selector Guide for options) that allows the customer to set the outputs to any voltage between 0.8 V and 3.6 V . Connect a resistive divider from output (VOUT_) to OUTS_ to GND to set the output voltage (Figure 2). Select R2 (OUTS_ to GND resistor) less than or equal to $100 \mathrm{k} \Omega$. Calculate R1 (VOUT_ to OUTS_ resistor) with the following equation:

$$
\left.\left.\begin{array}{l}
\mathrm{R} 1=\mathrm{R} 2\left[\left(\frac{\mathrm{~V}_{\text {OUT }}}{} \mathrm{V}_{\text {OUTS }}\right.\right.
\end{array}\right)-1\right] \quad \text { where } \frac{\mathrm{R} 1 \times \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \leq 7.5 \mathrm{k} \Omega .
$$

where $\mathrm{V}_{\text {OUTS_ }}=800 \mathrm{mV}$ (see the Electrical Characteristics table).
The external feedback resistive divider must be frequency compensated for proper operation. Place a capacitor across each resistor in the resistive divider network. Use the following equation to determine the value of the capacitors:

$$
\mathrm{C} 1=10 \mathrm{pF}\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

Connect OUTS_ to Vout_ for the fixed output-voltage versions.

Inductor Selection

Three key inductor parameters must be specified for operation with the MAX16963: inductance value (L), inductor saturation current (ISAT), and DC resistance ($\mathrm{R}_{\mathrm{DCR}}$). Use the following formulas to determine the minimum inductor value:

$$
L_{\text {MIN } 1}=\left[\left(V_{\mathrm{V}_{\mathrm{N}}}-\mathrm{V}_{\mathrm{OUT}_{-}}\right) \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right) \times\left(\frac{3}{f_{\mathrm{OP}} \times \mathrm{V}_{\text {REF }} \times \mathrm{G}_{\mathrm{CS}}}\right)\right]
$$

where fop is the operating frequency; this value is 2.2 MHz , unless externally synchronized to a different frequency; $V_{\text {REF }}$ is the reference voltage equal to 1.25 V ; G_{CS} is the internal current-sense conductance equal to 0.8 .
The next equation ensures that the inductor current down slope is less than the internal slope compensation. For

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

Table 1. Inductor Values vs. (VIN - Vout)

$\mathbf{V}_{\mathbf{I N}}-\mathbf{V}_{\mathbf{O U T}}(\mathbf{V})$	5.5 to 3.3	5.5 to 2.5	5.5 to 1.5	3.0 to 0.8
INDUCTOR $(\boldsymbol{\mu} \mathbf{H}), \mathbf{I}_{\text {LOAD }}=\mathbf{1 . 5 A}$	1.5	1.5	1.0	0.68

this to be the case, the following equation needs to be satisfied:

$$
-m \geq \frac{m 2}{2}
$$

where m 2 is the inductor current down slope:

$$
\frac{V_{\text {OUT }}}{L}
$$

and $-m$ is the slope compensation:

$$
\frac{0.8 \times V_{\mathrm{REF}}}{\mu \mathrm{~S} \times \mathrm{G}_{\mathrm{CS}}}
$$

Solving for L :

$$
\mathrm{L}_{\mathrm{MIN} 2}=\mathrm{V}_{\mathrm{OUT}} \times \frac{\mu \mathrm{S}}{1.6 \times \mathrm{V}_{\mathrm{REF}} \times \mathrm{G}_{\mathrm{CS}}}
$$

The equation that provides the bigger inductor value must be chosen for proper operation.

$$
\mathrm{L}_{\mathrm{MIN}}=\max \left(\mathrm{L}_{\mathrm{MIN} 1}, \mathrm{~L}_{\mathrm{MIN} 2}\right)
$$

Then:

$$
\mathrm{L}_{\mathrm{MAX}}=2 \times \mathrm{L}_{\mathrm{MIN}}
$$

The maximum inductor value must not exceed the calculated value from the above formula. This ensures that the current feedback loop receives the correct amount of current ripple for proper operation.
Table 1 lists some of the inductor values for 1.5 A output current and several output voltages.

Input Capacitor

The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit's switching.
The input capacitor RMS current requirement (I $\mathrm{I}_{\mathrm{RSS}}$) is defined by the following equation:

$$
I_{\text {RMS }}=I_{\text {LOAD }}(M A X) \frac{\sqrt{V_{\text {OUT_- }\left(V_{P V_{-}}-V_{\text {OUT_ }_{-}}\right)}}}{V_{P V_{-}}}
$$

IRMS has a maximum value when the input voltage equals twice the output voltage ($\mathrm{V}_{\text {PV }}=2 \mathrm{~V}_{\mathrm{OUT}_{-}}$), so $I_{\text {RMS }}(\mathrm{MAX})=I_{\text {LOAD }}(\mathrm{MAX}) / 2$.
Choose an input capacitor that exhibits less than $+10^{\circ} \mathrm{C}$ self-heating temperature rise at the RMS input current for optimal long-term reliability.
The input-voltage ripple is composed of $\Delta \mathrm{V}_{\mathrm{Q}}$ (caused by the capacitor discharge) and $\Delta \mathrm{V}_{\text {ESR }}$ (caused by the ESR of the capacitor). Use low-ESR ceramic capacitors with high-ripple current capability at the input. Assume the contribution from the ESR and capacitor discharge equal to 50%. Calculate the input capacitance and ESR required for a specified input voltage ripple using the following equations:

$$
E S R_{I N}=\frac{\Delta V_{E S R}}{l_{\text {OUT_- }}+\frac{\Delta \mathrm{l}_{\mathrm{L}}}{2}}
$$

where:

$$
\left.\Delta_{\mathrm{L}}=\frac{\left(\mathrm{V}_{\mathrm{PV}}^{-}\right.}{}-\mathrm{V}_{\mathrm{OUT}_{-}}\right) \times \mathrm{V}_{\text {OUT }_{-}}
$$

and:

$$
\mathrm{C}_{\mathrm{IN}}=\frac{\mathrm{IOUT}_{-} \times \mathrm{D}(1-\mathrm{D})}{\Delta \mathrm{V}_{\mathrm{Q}} \times f_{\mathrm{SW}}} \text { and } \mathrm{D}=\frac{\mathrm{V}_{\mathrm{OUT}_{-}}}{\mathrm{V}_{\mathrm{PV}_{-}}}
$$

where IOUT_ is the maximum output current, and D is the duty cycle.

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

Output Capacitor

The minimum capacitor required depends on output voltage, maximum device current capability, and the error-amplifier voltage gain. Use the following formula to determine the required output capacitor value:

$$
\begin{array}{r}
\mathrm{C}_{\text {OUT(MIN) }}=\frac{\mathrm{V}_{\text {REF }} \times \mathrm{G}_{\text {EAMP }}}{2 \pi \times \mathrm{f}_{\mathrm{CO}} \times \mathrm{V}_{\text {OUT }} \times \mathrm{R}_{\mathrm{CS}}} \\
\quad=\frac{0.8 \mathrm{~V} \times 31.7}{2 \pi \times 210 \mathrm{kHz} \times \mathrm{V}_{\text {OUT }} \times 378 \mathrm{~m} \Omega}
\end{array}
$$

where f_{CO} is the target crossover frequency equal to $210 \mathrm{kHz}, \mathrm{G}_{\text {EAMP }}$ is the error-amplifier voltage gain equal to $31.7 \mathrm{~V} / \mathrm{V}$, and R_{CS} is $378 \mathrm{~m} \Omega$.

PCB Layout Guidelines
Careful PCB layout is critical to achieve low switching losses and clean, stable operation. Use a multilayer board whenever possible for better noise immunity and power dissipation. Follow these guidelines for good PCB layout:

1) Use a large contiguous copper plane under the MAX16963 package. Ensure that all heat-dissipating components have adequate cooling. The bottom pad of the MAX16963 must be soldered down to this copper plane for effective heat dissipation and maximizing the full power out of the MAX16963. Use multiple vias or a single large via in this plane for heat dissipation.

Chip Information

PROCESS: BiCMOS

2) Isolate the power components and high current path from the sensitive analog circuitry. This is essential to prevent any noise coupling into the analog signals.
3) Add small footprint blocking capacitors with low selfresonance frequency close to PV1, PV2, and PV.
4) Keep the high-current paths short, especially at the ground terminals. This practice is essential for stable, jitter-free operation. The high current path composed of input capacitors at PV1 and PV2, inductor, and the output capacitor should be as short as possible.
5) Keep the power traces and load connections short. This practice is essential for high efficiency. Use thick copper PCBs (2oz vs. 1oz) to enhance full-load efficiency.
6) OUTS_ are sensitive to noise for devices with external feedback option. The resistive network, R1, R2, and C1 must be placed close to OUTS_ and far away from the LX_ node and high switching current paths. The ground node of R2 must be close to GND.
7) The ground connection for the analog and power section should be close to the IC. This keeps the ground current loops to a minimum. In cases where only one ground is used enough isolation between analog return signals and high power signals must be maintained.

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 TQFN-EP	$\mathrm{T} 1644+4$	$\underline{21-0139}$	$\underline{90-0070}$
16 TSSOP-EP	$\mathrm{U16E}+3$	$\underline{21-0108}$	$\underline{90-0120}$

Dual 2.2MHz, Low-Voltage Step-Down

 DC-DC ConverterSelector Guide

ROOT PART	PACKAGE SUFFIX	OPTION SUFFIX	ILOAD PER OUTPUT (A)	OUTPUT VOLTAGE	SPREAD SPECTRUM	SYNC IN/ OUT	POWER-GOOD DELAY (ms)
MAX16963	RAUE	A/V +	$1.5 / 1.5$	Ext. Adj.	Disabled	In	16
MAX16963	SAUE	A/V +	$1.5 / 1.5$	Ext. Adj.	Enabled	In	16
MAX16963	RATE	A/V +	$1.5 / 1.5$	Ext. Adj.	Disabled	In	16
MAX16963	SATE	A/V +	$1.5 / 1.5$	Ext. Adj.	Enabled	In	16
MAX16963	SATE	C/V +	$1.5 / 1.5$	Ext. Adj.	Enabled	Out	16
MAX16963	SATE	D/V+	$1.5 / 1.5$	Ext. Adj.	Enabled	In	8
MAX16963	SATE	F/V +	$1.5 / 1.5$	Ext. Adj.	Enabled	Out	8

Note: Contact the factory for variants with different output voltage, spread spectrum, and power-good delay time settings.

Ordering Information

PART	TEMP RANGE	LOAD CURRENT CAPABILITY PER OUTPUT (A)	PIN-PACKAGE
MAX16963_ATE \wedge $\mathrm{N}+$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$1.5 / 1.5$	16 TQFN-EP*
MAX16963_AUE $\wedge+$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$1.5 / 1.5$	16 TSSOP-EP*

N denotes an automotive qualified part.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

Dual 2.2MHz, Low-Voltage Step-Down DC-DC Converter

Revision History

REVISION NUMBER	REVISION DATE		PAGSCRIPTION CHANGED
0	$11 / 12$	Initial release	-
1	$9 / 13$	Updated input voltage high min spec and input voltage low max spec, Figure 2, equation, step 6 in the PCB Layout Guidelines section, and the Ordering Information	$4,9,11,12$
2	$10 / 13$	Updated Ordering Information and added MAX16963SATE/V+ and PG timing column to Selector Guide	12
3	$2 / 14$	Added FB regulation voltage to the Electrical Characteristics table, corrected VouT mismatch in the Typical Operating Characteristic section, updated Inductor Selection and Output Capacitor sections, updated Table 2, updated note in the Selector Guide	$2,3,5,10,12$ 4
5	$7 / 14$	Updated VPV_condition for PG_output low voltage specification	4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB MIC45116-1YMP-
T1 KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUXCE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC

