

Evaluation Kit Available

Design Resources

Tools and Models

Support

Click here to ask an associate for production status of specific part numbers.

36V, 2.5MHz Automotive Boost/ SEPIC Controllers

General Description

The MAX16990/MAX16992 are high-performance, current-mode PWM controllers with $4 \mu \mathrm{~A}$ (typ) shutdown current for wide input voltage range boost/SEPIC converters. The 4.5 V to 36 V input operating voltage range makes these devices ideal in automotive applications, such as front-end "preboost" or "SEPIC" power supplies and for the first boost stage in highpower LED lighting applications. An internal low-dropout regulator (PVL regulator) with a 5 V output voltage enables the MAX16990/MAX16992 to operate directly from an automotive battery input. The input operating range can be extended to as low as 2.5 V when the converter output is applied to the SUP input.
There are multiple versions of the devices offering one or more of the following functions: a synchronization output (SYNCO) for two-phase operation, an overvoltage protection function using a separate input pin (OVP), and a reference input pin (REFIN) to allow on-the-fly output voltage adjustment.
The MAX16990 and MAX16992 operate in different frequency ranges. All versions can be synchronized to an external master clock using the FSET/SYNC input.
In addition, the MAX16990/MAX16992 have a factoryprogrammable spread-spectrum option. Both devices are available in compact 12 -pin TQFN and 10 -pin $\mu \mathrm{MAX}{ }^{\circledR}$ packages.

Applications

- Automotive LED Lighting
- Automotive Audio/Navigation Systems
- Dashboards

Ordering Information appears at end of data sheet.

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Benefits and Features

- Minimized Radio Interference with 2.5 MHz Switching Frequency Above the AM Radio Band
- Space-Efficient Solution Design with Minimized External Components
- 100 kHz to 1 MHz (MAX16990) and 1 MHz to 2.5 MHz (MAX16992) Switching-Frequency Ranges
- 12-Pin TQFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) and 10-Pin $\mu \mathrm{MAX}$ Packages
- Spread Spectrum Simplifies EMI Management Design
- Flexibility with Available Configurations for Boost, SEPIC, and Multiphase Applications
- Adjustable Slope Compensation
- Current-Mode Control
- Internal Soft-Start (9ms)
- Protection Features Support Robust Automotive Applications
- Operating Voltage Range Down to 4.5 V (2.5V or Lower in Bootstrapped Mode), Immune to Load-Dump Transient Voltages Up to 42V
- PGOOD Output and Hiccup Mode for Enhanced System Protection
- Overtemperature Shutdown
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operation

Typical Application Circuit

19-6632; Rev 18; 10/21

Abstract

Absolute Maximum Ratings EN, SUP, OVP, FB to GND-0.3V to +42V DRV, SYNCO, FSET/SYNC, COMP, PGOOD, ISNS, REFIN to GND..........-0.3V to ($\mathrm{V}_{\mathrm{PVL}}+0.3 \mathrm{~V}$) PVL to GND.. 0.3 V to 6 V Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) μ MAX on SLB (derate $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 825 mW $\mu M A X$ on MLB (derate $12.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).... 1031 mW TQFN 12 on SLB (derate $13.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... 1053 mW

TQFN 12 on MLB (derate $21.32 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... 705 mW TQFN 16 on SLB (derate $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... 1176 mW
TQFN 16 on MLB (derate $23.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. .1847 mW
Operating Temperature Range......................... $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)...................................... $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

μ MAX (Single-Layer Board)
Junction-to-Ambient Thermal Resistance (θ_{JA}) $97^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC})................. $5^{\circ} \mathrm{C} / \mathrm{W}$
μ MAX (Four-Layer Board)
Junction-to-Ambient Thermal Resistance (θ_{JA}) $78^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{Jc})..................... $5^{\circ} \mathrm{C} / \mathrm{W}$
TQFN-12 (Single-Layer Board)
Junction-to-Ambient Thermal Resistance (θ_{JA}) $76^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC})............... $11^{\circ} \mathrm{C} / \mathrm{W}$

TQFN-12 (Four-Layer Board)
Junction-to-Ambient Thermal Resistance (θ_{JA}) $46.9^{\circ} \mathrm{C} / \mathrm{W}$ Junction-to-Case Thermal Resistance (θ_{JC})............5.27 ${ }^{\circ} \mathrm{C} / \mathrm{W}$
TQFN-16 (Single-Layer Board)
Junction-to-Ambient Thermal Resistance (θ_{JA}) $68^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC})............... $10^{\circ} \mathrm{C} / \mathrm{W}$
TQFN-16 (Four-Layer Board)
Junction-to-Ambient Thermal Resistance (θ_{JA}) $43.3^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}).............. $4.0^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\text {SUP }}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
SUP Operating Supply Range	$\mathrm{V}_{\text {SUP }}$			4.5		36	V
SUP Supply Current in Operation	Icc	$V_{F B}=1.1 \mathrm{~V}$, no switching	MAX16990		0.75	1.3	mA
			MAX16992		1.25	2	
SUP Supply Current in Shutdown	ISHDN	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$			4	7	$\mu \mathrm{A}$
OVP Threshold Voltage	Vovp	OVP rising (REFIN = PVL)		105	110	115	$\begin{aligned} & \% \text { of } \\ & V_{\mathrm{FB}} \end{aligned}$
OVP Threshold Voltage Hysteresis	VoVPH			2.5			$\begin{aligned} & \hline \% \text { of } \\ & V_{F B} \end{aligned}$
OVP Input Current	lovp			-1		+1	$\mu \mathrm{A}$
PVL REGULATOR							
PVL Output Voltage	$V_{P V L}$			4.7	5	5.3	V
		MAX16990/MAX16992 16-pin QFN		4.7	5	5.45	
PVL Undervoltage Lockout	Vuv			3.8	4	4.3	V
		MAX16990/MAX16992 16-pin QFN		3.7	4	4.4	
PVL Undervoltage-Lockout Hysteresis	Vuvh				0.4		V

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {SUP }}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OSCILLATOR							
Switching Frequency	$\mathrm{f}_{\text {SW }}$	$\mathrm{R}_{\text {FSET }}=69 \mathrm{k} \Omega$		360	400	440	kHz
		$\mathrm{R}_{\text {FSET }}=12 \mathrm{k} \Omega$		2000	2200	2400	
Spread-Spectrum Spreading Factor	SS	B, D, and F versions			Q6		\% of fsw
Switching Frequency Range	$\mathrm{f}_{\text {SWR }}$	When set with resistor on pin	MAX16990	100		1000	kHz
			MAX16992	1000		2500	
FSET/SYNC Frequency Range	fsync	Using external SYNC signal	MAX16990	220		1000	kHz
			MAX16992	1000		2500	
FSET Regulation Voltage	$\mathrm{V}_{\text {FSET }}$	$12 \mathrm{k} \Omega<\mathrm{R}_{\text {FSET }}<69 \mathrm{k} \Omega$		0.9			V
Soft-Start Time	$\mathrm{t}_{\text {SS }}$	Internally set		6	9	12	ms
Hiccup Period	thiccup			55			ms
Maximum Duty Cycle	DC ${ }_{\text {MAX }}$	MAX16990, $\mathrm{R}_{\text {FSET }}=69 \mathrm{k} \Omega$		93			\%
		MAX16992, $\mathrm{R}_{\text {FSET }}=12 \mathrm{k} \Omega$		85			
Minimum On-Time	ton			50	80	110	ns

THERMAL SHUTDOWN

Thermal-Shutdown Temperature	T_{S}	Temperature rising	165		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	T_{H}		10		${ }^{\circ} \mathrm{C}$
GATE DRIVERS					
DRV Pullup Resistance	R ${ }_{\text {DRVH }}$	$\mathrm{I}_{\text {DRV }}=100 \mathrm{~mA}$	3	5.5	Ω
DRV Pulldown Resistance	R DRVL	$\mathrm{I}_{\text {DRV }}=-100 \mathrm{~mA}$	1.4	2.5	Ω
DRV Output Peak Current	IDRV	Sourcing, $\mathrm{C}_{\text {DRV }}=10 \mathrm{nF}$	0.75		A
		Sinking, $\mathrm{C}_{\text {DRV }}=10 \mathrm{nF}$	1		

REGULATION/CURRENT SENSE

FB Regulation Voltage	$V_{\text {FB }}$	$\mathrm{V}_{\text {REFIN }}=$ VPVL	Across full line, load, and temperature range	0.99	1	1.01	V
		$\mathrm{V}_{\text {REFIN }}=2 \mathrm{~V}$		1.98	2	2.02	
		$\mathrm{V}_{\text {REFIN }}=0.5 \mathrm{~V}$		0.495	0.5	0.505	
		$\mathrm{V}_{\text {REFIN }}=$ External	MAX16990/ MAX16992 16-pin QFN	-1		1	\%
		$\mathrm{V}_{\text {REFIN }}=\mathrm{V}_{\text {PVL }}$		0.995	1.005	1.015	V
FB Input Current	$\mathrm{I}_{\text {FB }}$			-0.5		+0.5	$\mu \mathrm{A}$
ISNS Threshold				212	250	288	mV
ISNS Leading-Edge Blanking Time	tblank	MAX16990		60			ns
		MAX16992		40			
Current-Sense Gain	A_{VI}				8		V/V
Peak Slope Compensation Current-Ramp Magnitude		Added to ISNS input		40	50	60	$\mu \mathrm{A}$
PGOOD Threshold	V_{PG}	Percentage of final value (REFIN = PVL)	Rising	85	90	95	\%
			Falling	80	85	90	

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {SUP }}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ERROR AMPLIFIER						
REFIN Input Voltage Range			0.5		2	V
REFIN Threshold for 1V FB Regulation			$\begin{gathered} \mathrm{V}_{\mathrm{PVLL}}- \\ 0.8 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{PVL}}- \\ 0.4 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{PVL}}- \\ 0.1 \end{gathered}$	V
Error-Amplifier gm	AVEA			700		$\mu \mathrm{S}$
Error-Amplifier Output Impedance	Roea			50		$\mathrm{M} \Omega$
COMP Output Current	$\mathrm{I}_{\text {COMP }}$			140		$\mu \mathrm{A}$
COMP Clamp Voltage			2.7	3	3.3	V
LOGIC-LEVEL INPUTS/OUTPUTS						
PGOOD/SYNCO Output Leakage Current		$\mathrm{V}_{\text {PGOOD }} / \mathrm{V}_{\text {SYNCO }}=5 \mathrm{~V}$		0.5		$\mu \mathrm{A}$
PGOOD/SYNCO Output Low Level		Sinking 1mA			0.4	V
EN High Input Threshold		EN rising	1.7			V
EN Low Input Threshold					1.2	V
FSET/SYNC High Input Threshold			2.5			V
FSET/SYNC Low Input Threshold					1	V
EN and REFIN Input Current			-1		+1	$\mu \mathrm{A}$

Note 2: All devices 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.

Typical Operating Characteristics

($\mathrm{V}_{\text {SUP }}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)

($\mathrm{V}_{\text {SUP }}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

STARTUP RESPONSE (WITH SWITCHED OUTPUT)

Typical Operating Characteristics (continued)

($\mathrm{V}_{\text {SUP }}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUTPUT VOLTAGE vs. REFIN VOLTAGE

Typical Operating Characteristics (continued)

($\mathrm{V}_{\text {SUP }}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Configurations

Pin Descriptions

MAX16990AUBA/B MAX16992AUBA/B	MAX16990ATCC/D, MAX16992ATCC/D	MAX16990ATCE/F, MAX16992ATCE/F	MAX16990ATEF/V+, MAX16992ATEF/V+	MAX16990ATED/V+, MAX16992ATED/ +	NAME	FUNCTION
$\mu \mathrm{MAX}$-EP	TQFN-EP	TQFN-EP	TQFN-EP	TQFN-EP		
1	1	1	1	1	SUP	Power-Supply Input. Place a bypass capacitor of at least $1 \mu \mathrm{~F}$ between this pin and ground.
2	3	3	4	4	EN	Active-High Enable Input. This input is high-voltage-capable or can alternatively be driven from a logic-level signal.
3	2	2	3	3	GND	Ground Connection
4	4	4	5	5	DRV	Drive Output for Gate of nMOS Boost Switch. The nominal voltage swing of this output is between PVL and GND.
5	5	5	7	7	PVL	Output of 5V Internal Regulator. Connect a ceramic capacitor of at least $2.2 \mu \mathrm{~F}$ from this pin to ground, placing it as close as possible to the pin.
6	6	6	8	8	ISNS	Current-Sense Input to Regulator. Connect a sense resistor between the source of the external switching FET and GND. Then connect another resistor between ISNS and the source of the FET for slope compensation adjustment.
-	-	7	9	-	SYNCO	Open-Drain Synchronization Output. SYNCO outputs a square-wave signal which is 180° out-of-phase with the device's operational clock. Connect a pullup resistor from this pin to PVL or to a 5 V or lower supply when used.
-	7	-	-	9	OVP	Overvoltage Protection Input. When this pin goes above 110% of the FB regulation voltage, all switching is disabled. Operation resumes normally when OVP drops below 107.5% of the FB regulation point. Connect a resistor divider between the output, OVP, and GND to set the overvoltage protection level.

Pin Descriptions (continued)

MAX16990AUBA/B MAX16992AUBA/B	MAX16990ATCC/D MAX16992ATCC/D	MAX16990ATCE/F, MAX16992ATCE/F	MAX16990ATEF $N+$ MAX16992ATEF/V+	MAX16990ATED/V+, MAX16992ATEDN+	NAME	FUNCTION
μ MAX-EP	TQFN-EP	TQFN-EP	TQFN-EP	TQFN-EP		
-	8	8	10	10	REFIN	Reference Input. When using the internal reference, connect REFIN to PVL. Otherwise, drive this pin with an external voltage between 0.5 V and 2 V to set the boost output voltage.
7	9	9	11	11	PGOOD	Open-Drain Power-Good Output. Connect a resistor from this pin to PVL or to another voltage less than or equal to 5V. PGOOD goes high after soft-start when the output exceeds 90% of its final value. When EN is low, PGOOD is also low. After soft-start is complete, if $P G O O D$ goes low and 16 consecutive current-limit cycles occur, the devices enter hiccup mode and a new softstart is initiated after a delay of 44 ms .
8	10	10	12	12	FSET/ SYNC	Frequency Set/Synchronization. To set a switching frequency between 100 kHz and 1000 kHz (MAX16990) or between 1000 kHz and 2500 kHz (MAX16992), connect a resistor from this pin to GND. To synchronize the converter, connect a logic signal in the range 220 kHz to 1000 kHz (MAX16990) or 1000 kHz to 2500 kHz (MAX16992) to this input. The external n-channel MOSFET is turned on (i.e., DRV goes high) after a short delay (60 ns for 2.2 MHz operation, 125 ns for 400 kHz) when SYNC transitions low.
9	11	11	14	14	COMP	Output of Error Amplifier. Connect the compensation network between COMP and GND.

Pin Descriptions (continued)

MAX16990AUBA/B, MAX16992AUBA/B	MAX16990ATCC/D, MAX16992ATCC/D	MAX16990ATCE/F MAX16992ATCE/F	MAX16990ATEF $N+$ MAX16992ATEF/V+	MAX16990ATED/V+, MAX16992ATED/V+	NAME	FUNCTION
$\mu \mathrm{MAX}$-EP	TQFN-EP	TQFN-EP	TQFN-EP	TQFN-EP		
10	12	12	16	16	FB	Boost Converter Feedback. This pin is regulated to 1 V when REFIN is tied to PVL or otherwise regulated to REFIN during boost operation. Connect a resistor divider between the boost output, the FB pin, and GND to set the boost output voltage. In a two-phase converter, connect the FB pin of the slave IC to PVL.
-	-	-	2	2	NC	No Connect
-	-	-	6	6	NC	No Connect
-	-	-	13	13	NC	No Connect
-	-	-	15	15	NC	No Connect
-	-	-	-	-	EP	Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal performance. Not intended as an electrical connection point

Functional Diagram

Detailed Description

The MAX16990/MAX16992 are high-performance, current-mode PWM controllers for wide input voltage range boost/SEPIC converters. The input operating voltage range of 4.5 V to 36 V makes these devices ideal in automotive applications such as for front-end "preboost" or "SEPIC" power supplies and for the first boost stage in high-power LED lighting applications. An internal low-dropout regulator (PVL regulator) with an output voltage of 5 V enables the devices to operate directly from an automotive battery input. The input operating range can be as low as 2.5 V when the converter output supplies the SUP input.
The input undervoltage lockout (UVLO) circuit monitors the PVL voltage and turns off the converter when the voltage drops below 3.6 V (typ). An external resistor programs the switching frequency in two ranges from 100 kHz to 1000 kHz (MAX16990) or between 1000 kHz and 2500 kHz (MAX16992). The FSET/SYNC input can also be used for synchronization to an external clock. The SYNC pulse width should be greater than 70 ns .
Inductor current information is obtained by means of an external sense resistor connected from the source of the external n-channel MOSFET to GND.
The devices include an internal transconductance error amplifier with 1% accurate reference. At startup, the internal reference is ramped in a time of 9 ms to obtain soft-start.
The devices also include protection features such as hiccup mode and thermal shutdown, as well as an optional overvoltage-detection circuit (OVP pin, C and D versions).

Current-Mode Control Loop

The MAX16990/MAX16992 offers peak current-mode control operation for best load-step performance and simpler compensation. The inherent feed-forward characteristic is especially useful in automotive applications where the input voltage changes quickly during cold-crank and load-dump conditions. While the current-mode architecture offers many advantages, there are some shortcomings. In high duty-cycle operation, subharmonic oscillations can occur. To avoid this, the device offers programmable slope compensation using a single resistor between the ISNS pin and the current-sense resistor. To avoid premature turn-off at the beginning of the on-cycle, the current-limit and PWM comparator inputs have leading-edge blanking.

Startup Operation/UVLO/EN

The devices feature undervoltage lockout on the PVLregulator and turn on the converter once PVL rises above 4 V . The internal UVLO circuit has about 400 mV hysteresis to avoid chattering during turn-on. Once the converter is operating and if SUP is fed from the output, the converter input voltage can drop below 4.5 V . This feature allows operation at cold-crank voltages as low as 2.5 V or even lower with careful selection of external components. The EN input can be used to disable the device and reduce the standby current to less than $4 \mu \mathrm{~A}$ (typ).

Soft-Start

The devices are provided with an internal soft-start time of 9 ms . At startup, after voltage is applied and the UVLO threshold is reached, the device enters soft-start. During soft-start, the reference voltage ramps linearly to its final value in 9 ms .

Oscillator Frequency/External Synchronization/ Spread Spectrum

Use an external resistor at FSET/SYNC to program the MAX16990 internal oscillator frequency from 100 kHz to 1 MHz and the MAX16992 frequency between 1 MHz and 2.5 MHz . See TOCs 24 and 25 in the Typical Operating Characteristics section for resistor selection.
The SYNCO output is a 180° phase-shifted version of the internal clock, and can be used to synchronize other converters in the system or to implement a two-phase boost converter with a second MAX16990/ MAX16992. The advantages of a two-phase boost topology are lower input and output ripple and simpler thermal management as the power dissipation is spread over more components. See the Multiphase Operation section for further details.
The devices can be synchronized using an external clock at the FSET/SYNC input. A falling clock edge on FSET/ SYNC turns on the external MOSFET by driving DRV high after a short delay.
The B, D, and F versions of the devices have spread-spectrum oscillators. In these parts, the internal oscillator frequency is varied dynamically $\pm 6 \%$ around the switching frequency. Spread spectrum can improve system EMI performance by reducing the height of peaks due to the switching frequency and its harmonics in the spectrum. The SYNCO output includes spread-spectrum modulation when the internal oscillator is used on the B, D, and F versions. Spread spectrum is not active when an external clock is applied to the FSET/SYNC pin.

n-Channel MOSFET Driver

DRV drives the gate of an external n-channel MOSFET. The driver is powered by the internal regulator (PVL), which provides approximately 5 V . This makes both the devices suitable for use with logic-level MOSFETs. DRV can source 750 mA and sink 1000 mA peak current. The average current sourced by DRV depends on the switching frequency and total gate charge of the external MOSFET (see the Power Dissipation section).

Error Amplifier

The devices include an internal transconductance error amplifier. The noninverting input of the error amplifier is connected to the internal 1 V reference and feedback is provided at the inverting input. High $700 \mu \mathrm{~S}$ open-loop transconductance and $50 \mathrm{M} \Omega$ output impedance allow good closed-loop bandwidth and transient response. Moreover, the source and sink current capability of $140 \mu \mathrm{~A}$ provides fast error correction during output load transients.

Slope Compensation

The devices use an internal current-ramp generator for slope compensation. The internal ramp signal resets at the beginning of each cycle and slews at a typical rate of $50 \mu \mathrm{~A} \times \mathrm{f} \mathrm{SW}$. The amount of slope compensation needed depends on the slope of the current ramp in the inductor. See the Current-Sense Resistor Selection and Setting Slope Compensation section for further information.

Current Limit

The current-sense resistor (RCS) connected between the source of the MOSFET and ground sets the current limit. The ISNS input has a voltage trip level (V_{CS}) of 250 mV . When the voltage produced by the current in the inductor exceeds the current-limit comparator threshold, the MOSFET driver (DRV) quickly terminates the on-cycle. In some cases, a short time-constant RC filter could be required to filter out the leading-edge spike on the sense waveform in addition to the internal blanking time. The amplitude and width of the leading edge spike depends on the gate capacitance, drain capacitance, and switching speed (MOSFET turn-on time).

Hiccup Operation

The devices incorporate a hiccup mode to protect the external power components when there is an output short-circuit. If PGOOD is low (i.e., the output voltage is less than 85% of its set value) and there are 16 consecutive current-limit events, switching is stopped. There is then a waiting period of 44 ms before the device tries to
restart by initiating a soft-start. Note that a short-circuit on the output places considerable stress on all the power components even with hiccup mode, so that careful component selection is important if this condition is encountered. For more complete protection against output short-circuits, a series pMOS switch driven from PGOOD through a level-shifter can be employed (see Figure 1).

Applications Information

Inductor Selection

Using the following equation, calculate the minimum inductor value so that the converter remains in continuous mode operation at minimum output current (lOMIN):

$$
L_{\mathrm{MIN}}=\left(\mathrm{V}_{\mathrm{IN}}{ }^{2} \times \mathrm{D} \times \eta\right) /\left(2 \times \mathrm{f}_{\text {SW }} \times \mathrm{V}_{\mathrm{OUT}} \times \mathrm{I}_{\mathrm{OMIN}}\right)
$$

where:

$$
D=\left(V_{O U T}+V_{D}-V_{I N}\right) /\left(V_{O U T}+V_{D}-V_{D S}\right)
$$

and:
IOMIN is between 10% and 25% of IOUT
A higher value of IOMIN reduces the required inductance, but it increases the peak and RMS currents in the switching MOSFET and inductor. Select IOMIN between 10\% to 25% of the full load current. V_{D} is the forward voltage drop of the external Schottky diode, D is the duty cycle, and V_{DS} is the voltage drop across the external switch. Select an inductor with low DC resistance and with a saturation current (ISAT) rating higher than the peak switch current limit of the converter.

Input and Output Capacitors

The input current to a boost converter is almost continuous and the RMS ripple current at the input capacitor is low. Calculate the minimum input capacitor value and maximum ESR using the following equations:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{IN}}=\mathrm{Dl}_{\mathrm{L}} \times \mathrm{D} /\left(4 \times \mathrm{f}_{\mathrm{SW}} \times \mathrm{DV}_{\mathrm{Q}}\right) \\
\mathrm{ESR}_{\mathrm{MAX}}=\mathrm{DV} \mathrm{ESR}^{2} \mathrm{DI}_{\mathrm{L}}
\end{gathered}
$$

where $\mathrm{DI}_{\mathrm{L}}=\left(\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{DS}}\right) \times \mathrm{D}\right) /\left(\mathrm{L} \times \mathrm{f}_{\mathrm{SW}}\right)$.
$V_{D S}$ is the total voltage drop across the external MOSFET plus the voltage drop across the inductor ESR. DI_{L} is peak-to-peak inductor ripple current as calculated above. $D V_{Q}$ is the portion of input ripple due to the capacitor discharge and DVESR is the contribution due to ESR of the capacitor. Assume the input capacitor ripple contribution due to $\mathrm{ESR}\left(\mathrm{DV}_{\mathrm{ESR}}\right)$ and capacitor discharge $\left(D V_{Q}\right)$ are equal when using a combination of ceramic and aluminium capacitors. During the converter turn-on, a large current is drawn from the input source,

Figure 1. Application with Output Short-Circuit Protection
especially at high output-to-input differential. The devices have an internal soft-start, but a larger input capacitor than calculated above could be necessary to avoid chattering due to finite hysteresis during turn-on.
In a boost converter, the output capacitor supplies the load current when the main switch is on. The required output capacitance is high, especially at lower duty cycles. Also, the output capacitor ESR needs to be low enough to minimize the voltage drop due to ESR while supporting the load current. Use the following equations to calculate the output capacitor for a specified output ripple. All ripple values are peak-to-peak.

$$
\begin{gathered}
\mathrm{ESR}=\mathrm{DV}_{\mathrm{ESR}} / \mathrm{l}_{\mathrm{OUT}} \\
\mathrm{C}_{\mathrm{OUT}}=\left(\mathrm{l}_{\mathrm{OUT}} \times \mathrm{D}_{\mathrm{MAX}}\right) /\left(\mathrm{DV}_{\mathrm{Q}} \times \mathrm{f}_{\mathrm{SW}}\right)
\end{gathered}
$$

where IOUT is the output current, DV_{Q} is the portion of the ripple due to the capacitor discharge, and $D V_{E S R}$ is the ripple contribution due to the ESR of the capacitor. $D_{\text {MAX }}$ is the maximum duty cycle (i.e., the duty cycle at the minimum input voltage). Use a combination of low-ESR
ceramic and high-value, low-cost aluminium capacitors for lower output ripple and noise.

Current-Sense Resistor Selection and Setting Slope Compensation

Set the current-limit threshold 20\% higher than the peak switch current at the rated output power and minimum input voltage. Use the following equation to calculate an initial value for R_{CS} :
$R_{\text {CS }}=0.2 /\left\{1.2 \times\left[\left(\left(V_{\text {OUT }} \times I_{\text {OUT }} / \eta\right) / V_{\text {INMIN }}+0.5 \times\right.\right.\right.$ $\left.\left.\left(\left(V_{\text {OUT }}-\mathrm{V}_{\text {INMIN }}\right) / V_{\text {OUT }}\right) \times\left(\mathrm{V}_{\text {INMIN }} /\left(\mathrm{f}_{\text {SW }} \times \mathrm{L}\right)\right)\right]\right\}$
where η is the estimated efficiency of the converter (use 0.85 as an initial value or consult the graph in the Typical Operating Characteristics section); VOUT and IOUT are the output voltage and current, respectively; $\mathrm{V}_{\text {INMIN }}$ is the minimum value of the input voltage; f_{SW} is the switching frequency; and L is the minimum value of the chosen inductor.
The devices use an internal ramp generator for slope compensation to stabilize the current loop when operating at duty cycles above 50%. The amount of slope
compensation required depends on the down-slope of the inductor current when the main switch is off. The inductor down-slope in turn depends on the input to output voltage differential of the converter and the inductor value. Theoretically, the compensation slope should be equal to 50% of the inductor downslope; however, a little higher than 50% slope is advised. Use the following equation to calculate the required compensating slope (mc) for the boost converter:

$$
\mathrm{mc}=0.5 \times\left(\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{IN}}\right) / \mathrm{L} A / \mathrm{s}
$$

The internal ramp signal resets at the beginning of each cycle and slews at the rate of $50 \mu \mathrm{~A} \times \mathrm{f}$. w . Adjust the amount of slope compensation by choosing RSCOMP to satisfy the following equation:

$$
R_{S C O M P}=\left(m c \times R_{C S}\right) /(50 e-6 \times f(S W)
$$

In some applications, a filter could be needed between the current-sense resistor and the ISNS pin to augment the internal blanking time. Set the RC time constant just long enough to suppress the leading edge spike of the MOSFET current. For a given design, measure the leading spike at the lowest input and rated output load to determine the value of the RC filter which can be formed from the slope-compensation resistor and an added capacitor from ISNS to GND.

MOSFET Selection

The devices drive a wide variety of logic-level n-channel power MOSFETs. The best performance is achieved with low-threshold n-channel MOSFETs that specify on-resistance with a gate-source voltage $\left(\mathrm{V}_{\mathrm{GS}}\right)$ of 5 V or less. When selecting the MOSFET, key parameters can include:

1) Total gate charge $\left(Q_{g}\right)$.
2) Reverse-transfer capacitance or charge ($C_{R S S}$).
3) On-resistance ($\left.R_{D S(O N)}\right)$.
4) Maximum drain-to-source voltage ($\mathrm{V}_{\mathrm{DS}(\mathrm{MAX})}$).
5) Maximum gate frequencies threshold voltage $\left(\mathrm{V}_{\mathrm{TH}}(\mathrm{MAX})\right.$).

At high switching frequencies, dynamic characteristics (parameters 1 and 2 of the above list) that predict switching losses have more impact on efficiency than $R_{D S(O N)}$, which predicts DC losses. Qg includes all capacitances associated with charging the gate. The $\mathrm{V}_{\mathrm{DS}}(\mathrm{MAX})$ of the selected MOSFET must be greater than the maximum output voltage setting plus a diode drop (or the maximum input voltage if greater) plus an additional margin to allow for spikes at the MOSFET drain due to the inductance in the rectifier diode and output capacitor path. In addition, Q_{g} determines the current needed to drive the gate at the selected operating frequency using the PVL linear regulator and therefore determines the power dissipation of the IC (see the Power Dissipation section).

Low-Voltage Operation

The devices operate down to a voltage of 4.5 V or less on their SUP pins. If the system input voltage is lower than this, the circuit can be operated from its own output as shown in the Typical Application Circuit. At very low input voltages, it is important to remember that input current will be high and the power components (inductor, MOSFET and diode) must be specified for this higher input current. In addition, the current limit of the devices must be set high enough so that the limit is not reached during the ontime of the MOSFET, which would result in output-power limitation and eventually, entering hiccup mode. Estimate the maximum input current using the following equation:

$$
\begin{gathered}
I_{\text {INMAX }}=\left(\left(\mathrm{V}_{\text {OUT }} \times \mathrm{l}_{\text {OUT }}\right) / \eta\right) / \mathrm{V}_{\text {INMIN }}+0.5 \times \\
\left(\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {INMIN }}\right) / V_{\text {OUT }}\right) \times\left(\mathrm{V}_{\text {INMIN }} /\left(\mathrm{f}_{\text {SW }} \times \mathrm{L}\right)\right)
\end{gathered}
$$

where $l_{\text {INMAX }}$ is the maximum input current; $V_{\text {OUT }}$ and lout are the output voltage and current, respectively; η is the estimated efficiency (which is lower at low input voltages due to higher resistive losses); VINMIN is the minimum value of the input voltage; f_{SW} is the switching frequency; and L is the minimum value of the chosen inductor.

Boost Converter Compensation

Refer to Application Note 5587: Selecting External Components and Compensation for Automotive Step-Up DC-DC Regulator with Preboost Reference Design.

SEPIC Operation

For a reference example of using the devices in SEPIC mode, see Figure 2.

Figure 2. SEPIC Bootstrapped 400kHz Application with Low Operating Voltage

Figure 3. Application with Independent Output Overvoltage Protection

Figure 4. Two-Phase 400 kHz Boost Application with Minimum Component Count

Overvoltage Protection

The " C " and " D " variants of the devices include the overvoltage protection input. When the OVP pin goes above 110% of the FB regulation voltage, all switching is disabled. For an example application circuit, see Figure 3.

Multiphase Operation

Two boost phases can be implemented with no extra components, using two ICs as shown in Figure 4. In this circuit, the SYNCO output of the master device drives the SYNC input of the slave, forcing it to operate 180° out of phase. The FB pin of the slave device is connected to PVL, thus disabling its error amplifier. In this way, the error
amplifier of the master controls both devices by means of the COMP signal, and good current-sharing is attained between the two phases. When designing the PCB for a multiphase converter, it is important to protect the COMP trace in the layout from noisy signals by placing it on an inner layer and surrounding it with ground traces.

Using REFIN to Adjust the Output Voltage

The REFIN pin can be used to directly adjust the reference voltage of the boost converter, thus altering the output voltage. When not used, REFIN should be connected to PVL. Because REFIN is a high-impedance pin, it is simple to drive it by means of an external digital-to-analog converter (DAC) or a filtered PWM signal.

Power Dissipation

The power dissipation of the IC comes from two sources: the current consumption of the IC itself and the current required to drive the external MOSFET, of which the latter is usually dominant. The total power dissipation can be estimated using the following equation:

$$
P_{I C}=V_{S U P} \times I_{C C}+\left(V_{S U P}-5\right) \times\left(Q_{g} \times f \text { SW }\right)
$$

where $V_{\text {SUP }}$ is the voltage at the SUP pin of the IC, $I_{C C}$ is the IC quiescent current consumption or typically 0.75 mA (MAX16990) or 1.25 mA (MAX16992), Q_{g} is the total gate charge of the chosen MOSFET at 5 V , and fSW is the switching frequency. PIC reaches its maximum at maximum $\mathrm{V}_{\text {SUP }}$.

Ordering Information

PART	FREQUENCY RANGE	OVP/ SYNCO	SPREAD SPECTRUM	TEMP RANGE	PIN-PACKAGE
MAX16990AUBA/V+	220 kHz to 1 MHz	None	Off	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}-\mathrm{EP}^{*}$
MAX16990AUBB/V+	220 kHz to 1 MHz	None	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$-EP*
MAX16990ATCC/V+	220 kHz to 1 MHz	OVP	Off	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 TQFN-EP*
MAX16990ATCD/V+	220 kHz to 1 MHz	OVP	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 TQFN-EP*
MAX16990ATCD/VY+	220 kHz to 1 MHz	OVP	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 SWTQFN-EP*
MAX16990ATCE/V+	220 kHz to 1 MHz	SYNCO	Off	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 TQFN-EP*
MAX16990ATCF/V+	220 kHz to 1 MHz	SYNCO	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 TQFN-EP*
MAX16990ATED/V+	220 kHz to 1 MHz	OVP	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TQFN-EP*
MAX16990ATEF/V+	220 Hz to 1MHz	SYNCO	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TQFN-EP*
MAX16992AUBA/V+	1 MHz to 2.5 MHz	None	Off	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$-EP*
MAX16992AUBB/V+	1 MHz to 2.5 MHz	None	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$-EP*
MAX16992ATCC/V+	1 MHz to 2.5 MHz	OVP	Off	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 TQFN-EP*
MAX16992ATCD/V+	1 MHz to 2.5 MHz	OVP	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 TQFN-EP*
MAX16992ATCD/VY+	1 MHz to 2.5 MHz	OVP	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 SWTQFN-EP*
MAX16992ATCE/V+	1 MHz to 2.5 MHz	SYNCO	Off	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 TQFN-EP*
MAX16992ATCF/VY+	1 MHz to 2.5 MHz	SYNCO	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12 SWTQFN-EP*
MAX16992ATED/V+	1 MHz to 2.5 MHz	OVP	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TQFN-EP*
MAX16992ATEF/V+	1 MHz to 2.5 MHz	SYNCO	On	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TQFN-EP*

N denotes an automotive qualified part.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
**Future product - contact factory for availability

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PKG CODE	OUTLINE NO.	LAND PATTERN NO.
12 SWTQFN-EP	T1233Y+4	$\underline{\underline{21-100171}}$	$\underline{90-100060}$
12 TQFN-EP	$\mathrm{T} 1233+4$	$\underline{\underline{21-0136}}$	$\underline{90-0019}$
$10 \mu \mathrm{MAX}-E P$	$\mathrm{U} 10 \mathrm{E}+3$	$\underline{\underline{21-0109}}$	$\underline{90-0148}$
16 TQFN-EP	$\mathrm{T} 1633+5$	$\underline{\underline{21-0136}}$	$\underline{90-0032}$

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	3/13	Initial release	-
1	4/13	Added EP to μ MAX package in Pin Descriptions	9-11
2	4/13	Corrected errors in TOCs 21 and 29	7, 8
3	7/13	Removed future product asterisks from Ordering Information	18
4	2/15	Update the Benefits and Features section	1
5	7/15	Corrected value in Figure 2, changing inductor value from $22 \mu \mathrm{~F}$ to $22 \mu \mathrm{H}$	16
6	8/15	Corrected part number in Typical Application Circuit	1
7	2/17	Replaced toc18 in Typical Operating Characteristics, added MAX16992ATCF/VY+ in Ordering Information as a future product, and added SWTQFN-EP (package code T1233Y+4) in Package Information sections	7, 18
8	7/17	Added Note 3 to SUP Operating Supply Range in the Electrical Characteristics table	2
9	9/17	Deleted Note 3 in and after the Electrical Characteristics table	2, 4
10	5/18	Replaced Figure 4 and added MAX16990ATCD/VY+** to Ordering Information	17,18
11	8/18	Added MAX16992ATCD/VY+ to Ordering Information as a future product	18
12	10/18	Removed future product status from MAX16990ATCD/VY+ in Ordering Information	18
13	4/19	Removed future product status from MAX16992ATCF/VY+ and future product-contact factory for availability note Ordering Information section	18
14	6/19	Updated Absolute Maximum Ratings and Package Thermal Characteristics	2
14.1		Corrected broken links in Package Information section	18
15	7/20	Updated Absolute Maximum Ratings and Package Thermal Characteristics sections, added TQFN-16 pin configurations, added two new columns to Pin Descriptions table, updated Ordering Information and Package Information tables	2, 9, 10, 18
16	9/20	Updated Electrical Characteristics and Ordering Information to add future-product notation	2, 3, 20
17	2/21	Updated Ordering Information to remove all future-product notation	20
18	10/21	Updated Electrical Characteristics	2, 3e

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
AZ7500EP-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81205MNTXG SJE6600 SMBV1061LT1G SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C MAX8778ETJ+ NTBV30N20T4G NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF TC105333ECTTR NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M NCP81101MNTXG IFX81481ELV NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1251FSN65T1G NCP1246BLD065R2G NTE7154 NTE7242 LTC7852IUFD-1\#PBF LTC7852EUFD-1\#PBF MB39A136PFT-G-BNDERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG NCV1397ADR2G AZ494AP-E1 UTC3843D XDPL8219XUMA1

