General Description
The MAX17067 boost converter incorporates highperformance (at 1.2 MHz), current-mode, fixed-frequency, pulse-width modulation (PWM) circuitry with a built-in 0.15Ω n-channel MOSFET to provide a highly efficient regulator with fast response.
High switching frequency (640 kHz or 1.2 MHz selectable) allows for easy filtering and faster loop performance. An external compensation pin provides the user flexibility in determining loop dynamics, allowing the use of small, low equivalent-series-resistance (ESR) ceramic output capacitors. The device can produce an output voltage as high as 18 V .
Soft-start is programmed with an external capacitor, which sets the input-current ramp rate. The MAX17067 is available in a space-saving 8-pin $\mu \mathrm{MAX}{ }^{\circledR}$ package. The ultrasmall package and high switching frequency allow the total solution to be less than 1.1 mm high.

Application
LCD Displays

Typical Operating Circuit

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

-90\% Efficiency			
- Adjustable Output from Vin to 18V			
- 2.4A, 0.15 , 22V Power MOSFET			
- +2.6V to +4.0V Input Range			
- Pin-Selectable 640kHz or 1.2MHz Switching Frequency			
- Programmable Soft-Start			
- Small 8-Pin μ MAX Package			
- Integrated Input Voltage Clamp Circuit			
	Orderi	g Infori	ation
PART	TEMP RANGE	PINPACKAGE	$\begin{aligned} & \text { PKG } \\ & \text { CODE } \end{aligned}$
MAX17067EUA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	U8+1

+ Denotes a lead-free package.
Pin Configuration

TOP VIEW

Low-Noise Step-Up DC-DC Converter

ABSOLUTE MAXIMUM RATINGS

LX to GND	0.3V to +22V
SHDN, FREQ to GND-0.3V to +7.5 V	
IN to GND (Note 1)	
SS, COMP, FB to GND-0.3V to (VIN + 0.3V)	
RMS LX Pin Current	1.2A

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin μ MAX (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}\right.$ IN $=\overline{\mathrm{SHDN}}=3 \mathrm{~V}, \mathrm{FREQ}=3 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Supply Range	VIN	VOUT < 18V	2.6		4.0	V
Output Voltage					18	V
Input Supply Clamp Voltage		Use external limiting resistor; RIN $=100 \Omega$, $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$ (Note 3)	6.05	6.40	6.60	V
VIN Undervoltage Lockout	UVLO	$V_{I N}$ rising, typical hysteresis is $50 \mathrm{mV}, \mathrm{LX}$ remains off below this level	2.30	2.45	2.57	V
Quiescent Current	IIN	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$, not switching		0.3	0.6	mA
		$\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$, switching		1.5	2.5	
Shutdown Supply Current	IIN	$\overline{\mathrm{SHDN}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	60	$\mu \mathrm{A}$
		$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		30		
ERROR AMPLIFIER						
Feedback Voltage	$V_{\text {FB }}$	Level to produce $\mathrm{V}_{\text {COMP }}=1.24 \mathrm{~V}$	1.23	1.24	1.25	V
FB Input Bias Current	IFB	$\mathrm{V}_{\mathrm{FB}}=1.24 \mathrm{~V}$	50	125	200	nA
Feedback-Voltage Line Regulation		Level to produce $\mathrm{V}_{\text {COMP }}=1.24 \mathrm{~V}$, $2.6 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<5.5 \mathrm{~V}$		0.05	0.15	\%N
Transconductance	gm	$\Delta \mathrm{l}=5 \mu \mathrm{~A}$	100	240	440	$\mu \mathrm{S}$
Voltage Gain	Av			3800		VN
OSCILLATOR						
Frequency	fosc	FREQ = GND	500	640	780	kHz
		FREQ $=1 \mathrm{~N}$	1000	1200	1400	
Maximum Duty Cycle	DC	FREQ = GND, $\mathrm{FREQ}=\mathrm{IN}$	89	92	95	\%
n-CHANNEL SWITCH						
Current Limit	ILIM	$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$, duty cycle $=68 \%$ (Note 4)	1.8	2.4	3.4	A
On-Resistance	Ron			150	275	$\mathrm{m} \Omega$
Leakage Current	ILXOFF	$V_{L X}=20 \mathrm{~V}$		10	20	$\mu \mathrm{A}$
Current-Sense Transresistance	RCS		0.2	0.3	0.4	V/A
SOFT-START						
Reset Switch Resistance					100	Ω
Charge Current		$\mathrm{V}_{\text {SS }}=1.2 \mathrm{~V}$	2.5	4.5	6.5	$\mu \mathrm{A}$

Low-Noise Step-Up DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VIN}=\overline{\mathrm{SHDN}}=3 \mathrm{~V}, \mathrm{FREQ}=3 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CONTROL INPUTS						
Input Low Voltage	VIL	$\overline{\mathrm{SHDN}}$, FREQ, $\mathrm{V}^{\prime} \mathrm{N}=2.6 \mathrm{~V}$ to 4.0 V			$\begin{gathered} 0.3 x \\ V_{\text {IN }} \end{gathered}$	V
Input High Voltage	V_{IH}	$\overline{\mathrm{SHDN}}$, FREQ, $\mathrm{V}^{\prime} \mathrm{N}=2.6 \mathrm{~V}$ to 4.0 V	$\begin{gathered} 0.7 x \\ V_{\text {IN }} \end{gathered}$			V
Hysteresis		$\overline{\text { SHDN, }}$, FREQ		$\begin{gathered} 0.1 x \\ V_{\text {IN }} \end{gathered}$		V
FREQ Pulldown Current	IFREQ		3	6	9	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Input Current	ISHDN	$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
		$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0		
Thermal Shutdown		Temperature rising		160		${ }^{\circ} \mathrm{C}$
		Hysteresis		20		

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=\overline{\text { SHDN }}=3 \mathrm{~V}, \mathrm{FREQ}=3 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=-40^{\circ} \mathbf{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Supply Range	VIN	VOUT < 18V	2.6		4.0	V
Output Voltage Range					18	V
Input Supply Clamp Voltage		Use external limiting resistor; $\mathrm{R}_{\mathrm{IN}}=100 \Omega, \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}$ (Note 3)	6.03		6.60	V
VIN Undervoltage Lockout	UVLO	VIN rising, typical hysteresis is 80 mV , LX remains off below this level	2.30		2.57	V
Quiescent Current	IIN	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$, not switching			0.6	mA
		$\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$, switching			2.5	
ERROR AMPLIFIER						
Feedback Voltage	$V_{\text {FB }}$	Level to produce V COMP $=1.24 \mathrm{~V}$	1.227		1.253	V
FB Input Bias Current	IFB	$\mathrm{V}_{\mathrm{FB}}=1.24 \mathrm{~V}$			200	nA
Feedback-Voltage Line Regulation		Level to produce $\mathrm{V}_{\mathrm{COMP}}=1.24 \mathrm{~V}$, $2.6 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<4.0 \mathrm{~V}$			0.15	\%N
Transconductance	gm	$\Delta \mathrm{l}=5 \mu \mathrm{~A}$	100		440	$\mu \mathrm{S}$
OSCILLATOR						
Frequency	fosc	FREQ = GND	450		830	kHz
		FREQ $=1 \mathrm{~N}$	950		1500	
Maximum Duty Cycle	DC	FREQ $=$ GND, FREQ $=\mathrm{V}_{\text {IN }}$	89		95	\%

Low-Noise Step-Up DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=\overline{\text { SHDN }}=3 \mathrm{~V}, \mathrm{FREQ}=3 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
n-CHANNEL SWITCH						
Current Limit	ILIM	$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$, duty cycle $=68 \%$ (Note 4)	1.8		3.4	A
On-Resistance	Ron	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$			275	Ω
Current-Sense Transresistance	RCS		0.19		0.40	V/A
SOFT-START						
Reset Switch Resistance					100	Ω
Charge Current		$\mathrm{V}_{\text {SS }}=1.2 \mathrm{~V}$	2.5		6.5	$\mu \mathrm{A}$
CONTROL INPUTS						
Input Low Voltage	VIL	$\overline{\mathrm{SHDN}}$, FREQ, V IN $=2.6 \mathrm{~V}$ to 4.0 V			$\begin{gathered} 0.3 x \\ V_{\text {IN }} \end{gathered}$	V
Input High Voltage	V_{IH}	$\overline{\text { SHDN, }}$, FREQ, $\mathrm{VIN}^{\text {I }}=2.6 \mathrm{~V}$ to 4.0 V	$\begin{gathered} 0.7 \times \\ V_{\text {IN }} \\ \hline \end{gathered}$			V

Note 1: Limit on IN absolute maximum ratings is for operation without the use of an external resistor for the internal clamp circuit. See the IN Supply Clamp Circuit section for IN voltage limits during clamping circuit operation.
Note 2: Limits are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$. Maximum and minimum limits over temperature are guaranteed by design and characterization.
Note 3: See the IN Supply Clamp Circuit section to properly size the external resistor.
Note 4: Current limit varies with duty-cycle slope compensation. See the Output-Current Capability section.

Typical Operating Characteristics

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$, foSC $=640 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Noise Step-Up DC-DC Converter

Typical Operating Characteristics (continued)
(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{fOSC}=640 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOAD-TRANSIENT RESPONSE (ILOAD = 10mA TO 200mA)

$\mathrm{L}=3.3 \mu \mathrm{H}$
$R_{\text {COMP }}=39 \mathrm{k} \Omega$
$C_{\text {COMP } 1}=620 \mathrm{pF}$

SOFT-START
(LLOAD $^{\prime}=18 \Omega$)

PULSED LOAD-TRANSIENT RESPONSE
(LLOAD $^{2}=40 \mathrm{~mA}$ TO 1.1A)

10us/div
$\mathrm{L}=3.3 \mu \mathrm{H}$
RCOMP $=39 \mathrm{k} \Omega$
$C_{\text {COMP1 }}=620 \mathrm{pF}$

SWITCHING WAVEFORMS

Low-Noise Step-Up DC-DC Converter

PIN	NAME	FUNCTION
1	COMP	Compensation Pin for Error Amplifier. Connect a series RC from COMP to ground. See the Loop Compensation section for component selection guidelines.
2	FB	Feedback Pin. Reference voltage is 1.24 V nominal. Connect an external resistor-divider tap to FB and minimize the trace area. Set VOUT according to: VOUT $=1.24 \mathrm{~V}(1+\mathrm{R} 1 / \mathrm{R} 2)$. See Figure 1.
3	$\overline{\text { SHDN }}$	Active-Low Shutdown Control Input. Drive $\overline{\text { SHDN }}$ low to turn off the MAX17067.
4	GND	Ground
5	LX	Switch Pin. Connect the inductor/catch diode to LX and minimize the trace area for lowest EMI.
6	IN	Supply Pin. Bypass IN with at least a $1 \mu \mathrm{~F}$ ceramic capacitor directly to GND.
7	FREQ	Frequency Select Input. When FREQ is low, the oscillator frequency is set to 640 kHz . When FREQ is high, the frequency is 1.2 MHz . This input has a $5 \mu \mathrm{~A}$ pulldown current.
8	SS	Soft-Start Control Pin. Connect a soft-start capacitor (CSS) to this pin. Leave open for no soft-start. The softstart capacitor is charged with a constant current of $4 \mu \mathrm{~A}$. Full current limit is reached after $t=2.5 \times 10^{5} \mathrm{CSS}$. The soft-start capacitor is discharged to ground when $\overline{\text { SHDN }}$ is low. When $\overline{\text { SHDN }}$ goes high, the soft-start capacitor is charged to 0.5 V , after which soft-start begins.

Figure 1. Typical Application Circuit

Detailed Description

The MAX17067 is a highly efficient power supply that employs a current-mode, fixed-frequency PWM architecture for fast-transient response and low-noise operation. The device regulates the output voltage through a combination of an error amplifier, two comparators, and several signal generators (Figure 2). The error amplifier compares the signal at FB to 1.24 V and varies the COMP output. The voltage at COMP determines the current trip point each time the internal MOSFET turns on. As the load varies, the error amplifier sources or sinks current to the COMP output accordingly to produce the inductor peak current necessary to service the load. To maintain stability at high duty cycle, a slope-compensation signal is summed with the current-sense signal.
At light loads, this architecture allows the ICs to "skip" cycles to prevent overcharging the output voltage. In this region of operation, the inductor ramps up to a fixed peak value, discharges to the output, and waits until another pulse is needed again.

Low-Noise Step-Up DC-DC Converter

Figure 2. Functional Diagram

IN Supply Clamp Circuit

The MAX17067 features an internal clamp to allow applications where there is overvoltage stress on the supply line. In many cases, high-voltage spikes happen on production lines and are difficult to protect against. The MAX17067's internal clamp circuit can solve this problem. The internal clamp circuit limits the voltage at the IN pin to 6.4 V (typ) to protect the IN pin from a continuous or transient overvoltage stress condition on the supply line. To use the clamp circuit, put a series resistor (RIN) between supply and IN, and a decoupling capacitor ($1 \mu \mathrm{~F}$ typical) from IN to GND. To properly size the external resistor, several factors should be considered:

- The maximum current for the clamp is 40 mA , and the clamp voltage at the IN pin is 6.05 V (min). Therefore, the external resistor is:

$$
\mathrm{R}_{\mathrm{IN}} \geq\left[\left(\mathrm{V}_{\mathrm{IN}}-6.05\right) / 0.04\right] \Omega
$$

- Power dissipation in the clamp is in addition to the total power loss.
- The external resistor causes a DC voltage drop in the IN supply line. The voltage at the IN pin has to be properly maintained when clamping is used. The worst-case quiescent current of the IN pin is 2.5 mA ; therefore, the worst-case voltage drop is 2.5 mA multiplied by RIN.

Output-Current Capability

The output-current capability of the MAX17067 is a function of current limit, input voltage, operating frequency, and inductor value. Because of the slope compensation used to stabilize the feedback loop, the duty cycle affects the current limit. The output-current capability is governed by the following equation:

$$
\begin{gathered}
\text { IOUT(MAX) }=[\operatorname{ILIM} \times(1.26-0.4 \times \text { Duty })- \\
\left.0.5 \times \text { Duty } \times \mathrm{VIN}_{\text {IN }} /(\mathrm{fOSC} \times \mathrm{L})\right] \times \eta \times \mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}
\end{gathered}
$$

where:
ILIM = current limit specified at 68\% (see the Electrical Characteristics):

$$
\begin{aligned}
& \text { Duty }=\text { duty cycle }=\left(\text { VOUT }-V_{\text {IN }}+\text { V }_{\text {DIODE }}\right) / \\
& (\text { VOUT }- \text { ILIM } \times \text { RON }+ \text { VDIODE }
\end{aligned}
$$

Low-Noise Step-Up DC-DC Converter

Soft-Start

The MAX17067 can be programmed for soft-start upon power-up with an external capacitor. When the shutdown pin is taken high, the soft-start capacitor (Css) is immediately charged to 0.5 V . Then the capacitor is charged at a constant current of $4.5 \mu \mathrm{~A}$ (typ). During this time, the SS voltage directly controls the peak inductor current, allowing 0 A at $\mathrm{V} S S=0.5 \mathrm{~V}$ to the full current limit at $\mathrm{V}_{\mathrm{SS}}=1.5 \mathrm{~V}$. The maximum load current is available after the soft-start cycle is completed. When the shutdown pin is taken low, the soft-start capacitor is discharged to ground.

Frequency Selection

 The MAX17067's frequency can be user selected to operate at either 640 kHz or 1.2 MHz . Connect FREQ to GND for 640 kHz operation. For a 1.2 MHz switching frequency, connect FREQ to IN. This allows the use of small, minimum-height external components while maintaining low output noise. FREQ has an internal pulldown, allowing the user the option of leaving FREQ unconnected for 640 kHz operation.Shutdown
The MAX17067 is shut down to reduce the supply current to $30 \mu \mathrm{~A}$ when SHDN is low. In this mode, the internal reference, error amplifier, comparators, and biasing circuitry turn off while the n-channel MOSFET is turned off. The boost converter's output is connected to IN by the external inductor and catch diode.

Thermal-Overload Protection

Thermal-overload protection prevents excessive power dissipation from overheating the MAX17067. When the junction temperature exceeds $\mathrm{T}_{J}=+160^{\circ} \mathrm{C}$, a thermal sensor immediately activates the fault protection, which shuts down the MAX17067, allowing the device to cool down. Once the device cools down by approximately $20^{\circ} \mathrm{C}$, it returns to normal operation.

Applications Information

Boost DC-DC converters using the MAX17067 can be designed by performing simple calculations for a first iteration. All designs should be prototyped and tested prior to production. Table 1 provides a list of components for a range of standard applications. Table 2 lists component suppliers.
External component value choice is primarily dictated by the output voltage and the maximum load current, as well as maximum and minimum input voltages. Begin by selecting an inductor value. Once L is known, choose the diode and capacitors.

Inductor Selection

The minimum inductance value, peak current rating, and series resistance are factors to consider when selecting the inductor. These factors influence the converter's efficiency, maximum output load capability, transientresponse time, and output voltage ripple. Physical size and cost are also important factors to be considered.

Table 1. Component Selection

VIN (V)	VOUT (V)	fOSC (Hz)	$\mathbf{L}(\boldsymbol{\mu H})$	COUT ($\boldsymbol{\mu F})$	RCOMP (k)	CCOMP (pF)	$\mathbf{C C O M P 2}$ $\mathbf{(p F})$	IOUT(MAX) $\mathbf{(m A)}$
3.3	9	1.2 M	3.3	10	121	620	10	250
3.3	9	640 k	4.7	10	82	1000	10	250

Table 2. Component Suppliers

SUPPLIER		PHONE
Inductors		
Coilcraft	$847-639-6400$	$847-639-1469$
Coiltronics	$561-241-7876$	$561-241-9339$
Sumida USA	$847-956-0666$	$847-956-0702$
TOKO	$847-297-0070$	$847-699-1194$
Capacitors	$803-946-0690$	$803-626-3123$
AVX	$408-986-0424$	$408-986-1442$
KEMET	$619-661-6835$	$619-661-1055$
SANYO	$408-573-4150$	$408-573-4159$
Taiyo Yuden		

SUPPLIER	PHONE	FAX
Diodes		
Central Semiconductor	$516-435-1110$	$516-435-1824$
International Rectifier	$310-322-3331$	$310-322-3332$
Motorola	$602-303-5454$	$602-994-6430$
Nihon	$847-843-7500$	$847-843-2798$
Zetex	$516-543-7100$	$516-864-7630$

Low-Noise Step-Up DC-DC Converter

The maximum output current, input voltage, output voltage, and switching frequency determine the inductor value. Very high inductance values minimize the current ripple and therefore reduce the peak current, which decreases core losses in the inductor and $I^{2} R$ losses in the entire power path. However, large inductor values also require more energy storage and more turns of wire, which increase physical size and can increase $I^{2} R$ losses in the inductor. Low inductance values decrease the physical size but increase the current ripple and peak current. Finding the best inductor involves choosing the best compromise between circuit efficiency, inductor size, and cost.
The equations used here include a constant LIR, which is the ratio of the inductor peak-to-peak ripple current to the average DC inductor current at the full load current. The best trade-off between inductor size and circuit efficiency for step-up regulators generally has an LIR between 0.3 and 0.5. However, depending on the AC characteristics of the inductor core material and the ratio of inductor resistance to other power path resistances, the best LIR can shift up or down. If the inductor resistance is relatively high, more ripple can be accepted to reduce the number of turns required and increase the wire diameter. If the inductor resistance is relatively low, increasing inductance to lower the peak current can decrease losses throughout the power path. If extremely thin high-resistance inductors are used, as is common for LCD-panel applications, the best LIR can increase to between 0.5 and 1.0.
Once a physical inductor is chosen, higher and lower values of the inductor should be evaluated for efficiency improvements in typical operating regions.
Calculate the approximate inductor value using the typical input voltage (V IN), the maximum output current (IMAIN(MAX)), the expected efficiency (η TYP) taken from an appropriate curve in the Typical Operating Characteristics, and an estimate of LIR based on the above discussion:

$$
L=\left(\frac{V_{I N}}{V_{M A I N}}\right)^{2}\left(\frac{V_{M A I N}-V_{I N}}{I_{\text {MAIN(MAX) }} \times f_{\mathrm{OSC}}}\right)\left(\frac{\eta_{\text {TYP }}}{\mathrm{LIR}}\right)
$$

Choose an available inductor value from an appropriate inductor family. Calculate the maximum DC input current at the minimum input voltage $\operatorname{VIN}(\mathrm{MIN})$ using conservation of energy and the expected efficiency at that operating point ($\eta \mathrm{MIN}$) taken from an appropriate curve in the Typical Operating Characteristics:

$$
I_{\operatorname{IN}(\mathrm{DC}, \mathrm{MAX})}=\frac{\mathrm{I}_{\mathrm{MAIN}(\mathrm{MAX})} \times \mathrm{V}_{\mathrm{MAIN}}}{\mathrm{~V}_{\mathrm{IN}(\mathrm{MIN})} \times \eta_{\mathrm{MIN}}}
$$

Calculate the ripple current at that operating point and the peak current required for the inductor:

$$
\begin{gathered}
\mathrm{I}_{\text {RIPPLE }}=\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})} \times\left(\mathrm{V}_{\text {MAIN }}-\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}\right)}{L \times \mathrm{V}_{\mathrm{MAIN}} \times \mathrm{f}_{\mathrm{OSC}}} \\
\mathrm{I}_{\text {PEAK }}=\mathrm{I}_{\mathrm{IN}(\mathrm{DC}, \mathrm{MAX})}+\frac{\mathrm{I}_{\mathrm{RIPPLE}}}{2}
\end{gathered}
$$

The inductor's saturation current rating and the MAX17067s' LX current limit (ILIM) should exceed IPEAK and the inductor's DC current rating should exceed $\operatorname{lin}(D C, M A X)$. For good efficiency, choose an inductor with less than 0.1Ω series resistance.
Considering the application circuit in Figure 4, the maximum load current (IMAIN(MAX)) is 250mA with a 9V output and a typical input voltage of 3.3 V . Choosing an LIR of 0.7 and estimating efficiency of 85% at this operating point:

$$
L=\left(\frac{3.3 \mathrm{~V}}{9 \mathrm{~V}}\right)^{2}\left(\frac{9 \mathrm{~V}-3.3 \mathrm{~V}}{0.25 \mathrm{~A} \times 1.2 \mathrm{MHz}}\right)\left(\frac{0.85}{0.7}\right) \approx 3.3 \mu \mathrm{H}
$$

Using the application's minimum input voltage (3 V) and estimating efficiency of 80% at that operating point:

$$
I_{N(D C, M A X)}=\frac{0.25 A \times 9 V}{3 V \times 0.8} \approx 0.94 \mathrm{~A}
$$

The ripple current and the peak current are:

$$
\begin{gathered}
\mathrm{I}_{\text {RIPPLE }}=\frac{3 \mathrm{~V} \times(9 \mathrm{~V}-3 \mathrm{~V})}{3.3 \mu \mathrm{H} \times 9 \mathrm{~V} \times 1.2 \mathrm{MHz}} \approx 0.51 \mathrm{~A} \\
\text { IPEAK }=0.94 \mathrm{~A}+\frac{0.51 \mathrm{~A}}{2} \approx 1.19 \mathrm{~A}
\end{gathered}
$$

Low-Noise Step-Up DC-DC Converter

Diode Selection

The output diode should be rated to handle the output voltage and the peak switch current. Make sure that the diode's peak current rating is at least IPK and that its breakdown voltage exceeds Vout. Schottky diodes are recommended.

Input and Output Capacitor Selection
Low-ESR capacitors are recommended for input bypassing and output filtering. Low-ESR tantalum capacitors are a good compromise between cost and performance. Ceramic capacitors are also a good choice. Avoid standard aluminum electrolytic capacitors. A simple equation to estimate input and outputcapacitor values for a given voltage ripple is as follows:

$$
\mathrm{C} \geq \frac{0.5 \times \mathrm{L} \times\left(\mathrm{IPK}^{2}\right)}{\mathrm{V}_{\mathrm{RIPPLE}} \times \mathrm{V}_{\mathrm{OUT}}}
$$

where VRIPPLE is the peak-to-peak ripple voltage on the capacitor.

Output Voltage

The MAX17067 operates with an adjustable output from VIN to 20V. Connect a resistor voltage-divider to FB (see the Typical Operating Circuit) from the output to GND. Select the resistor values as follows:

$$
\mathrm{R} 1=\mathrm{R} 2\left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}}-1\right)
$$

where $\mathrm{V}_{\text {FB }}$, the boost-regulator feedback set point, is 1.24 V . Since the input bias current into FB is typically zero, R2 can have a value up to $100 \mathrm{k} \Omega$ without sacrificing accuracy. Connect the resistor-divider as close to the IC as possible.

Loop Compensation

The voltage feedback loop needs proper compensation to prevent excessive output ripple and poor efficiency caused by instability. This is done by connecting a resistor (RCOMP) and capacitor (CCOMP) in series from COMP to GND, and another capacitor (Ccomp2) from

COMP to GND. RCOMP is chosen to set the high-frequency integrator gain for fast-transient response, while CCOMP is chosen to set the integrator zero to maintain loop stability. The second capacitor, Ccomp2, is chosen to cancel the zero introduced by output-capacitance ESR. For optimal performance, choose the components using the following equations:

$$
\begin{aligned}
\mathrm{RCOMP}= & \left(274 \Omega / \mathrm{A}^{2} \times \mathrm{V}_{\text {IN }} \times \mathrm{V}_{\text {OUT }} \times \mathrm{COUT} /(\mathrm{L} \times \text { IOUT })\right. \\
& \mathrm{CCOMP} \mathrm{\cong} \cong\left(0.36 \times 10^{-3} \mathrm{~A} / \Omega\right) \times \mathrm{L} / \mathrm{V}_{\text {IN }} \\
\mathrm{CCOMP2} \cong & (0.0036 \mathrm{~A} / \Omega) \times \mathrm{RESR} \times \mathrm{L} \times \mathrm{IOUT} /\left(\mathrm{V}_{\text {IN }} \times \mathrm{V}_{\text {OUT }}\right)
\end{aligned}
$$

For the ceramic output capacitor, where ESR is small, CCOMP2 is optional. Table 1 shows experimentally verified external component values for several applications. The best gauge of correct loop compensation is by inspecting the transient response of the MAX17067. Adjust Rcomp and Ccomp as necessary to obtain optimal transient performance.

Soft-Start Capacitor
The soft-start capacitor should be large enough that it does not reach final value before the output has reached regulation. Calculate Css to be:

$$
\mathrm{C}_{\text {SS }}>21 \times 10^{-6} \times \mathrm{C}_{\text {OUT }}\left(\frac{\mathrm{V}_{\text {OUT }}{ }^{2}-\mathrm{V}_{\text {IN }} \times \mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }} \times \mathrm{I}_{\text {INRUSH }}-\mathrm{I}_{\text {OUT }} \times \mathrm{V}_{\text {OUT }}}\right)
$$

where:
COUT = total output capacitance including any bypass capacitor on the output bus
VOUT = maximum output voltage
IINRUSH = peak inrush current allowed
IOUT = maximum output current during power-up stage
V IN $=$ minimum input voltage
The load must wait for the soft-start cycle to finish before drawing a significant amount of load current. The duration after which the load can begin to draw maximum load current is:

$$
\operatorname{tmAX}=2.5 \times 10^{5} \mathrm{Css}
$$

Low-Noise Step-Up DC-DC Converter

Application Circuits 1-Cell to 3.3V SEPIC Power Supply

Figure 3 shows the MAX17067 in a single-ended primary inductance converter (SEPIC) topology. This topology is useful when the input voltage can be either higher or lower than the output voltage, such as when converting a single lithium-ion (Li+) cell to a 3.3 V output. L1A and L1B are two windings on a single inductor. The coupling capacitor between these two windings must be a lowESR type to achieve maximum efficiency, and must also be able to handle high ripple currents. Ceramic capacitors are best for this application. The circuit in Figure 3 provides 400 mA output current at 3.3 V output when operating with an input voltage from +2.6 V to +4.0 V .

AMLCD Application

Figure 4 shows a power supply for active matrix (TFTLCD) flat-panel displays. Output-voltage transient performance is a function of the load characteristic. Add or remove output capacitance (and recalculate compen-sation-network component values) as necessary to meet transient performance. Regulation performance for secondary outputs (VGOFF and VGON) depends on the load characteristics of all three outputs.

Figure 3. MAX17067 in a SEPIC Configuration

Figure 4. Multiple-Output, Low-Profile (1.2mm max) TFT-LCD Power Supply

Low-Noise Step-Up DC-DC Converter

Layout Procedure

Good PCB layout and routing are required in high-frequency switching power supplies to achieve good regulation, high efficiency, and stability. It is strongly recommended that the evaluation kit PCB layouts be followed as closely as possible. Place power components as close together as possible, keeping their traces short, direct, and wide. Avoid interconnecting the ground pins of the power components using vias through an internal ground plane. Instead, keep the power components close together and route them in a star ground configuration using component-side copper, then connect the star ground to internal ground using multiple vias.

Low-Noise Step-Up DC-DC Converter

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED O.15MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO-187C-AA.

㫙 DALLAS SEMCONOCTOR			
PACKAGE OUTLINE, 8L uMAX/uSOP			
APPRoval	DOCUME EN CONTROL NO. $21-0036$	$\stackrel{\text { ReV. }}{\mathrm{j}}$	1/1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1642B-18IMC MCP1642D-ADJIMC

