High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

General Description

The MAX1708 sets a new standard of space savings for high-power, step-up DC-DC conversion. It delivers up to 10 W at a fixed (3.3V or 5 V) or adjustable (2.5 V to 5.5 V) output, using an on-chip power MOSFET from a 0.7 V to 5 V supply.

Fixed-frequency PWM operation ensures that the switching noise spectrum is constrained to the 600 kHz fundamental and its harmonics, allowing easy postfiltering for noise reduction. External clock synchronization capability allows for even tighter noise spectrum control. Quiescent power consumption is less than 1 mW to extend operating time in battery-powered systems.
Two control inputs (ONA, $\overline{\mathrm{ONB}}$) allow simple push-on, push-off control through a single momentary push-button switch, as well as conventional on/off logic control. The MAX1708 also features programmable soft-start and current limit for design flexibility and optimum performance with batteries. The maximum RMS switch current rating is 5A. For a device with a higher (10A) switch current rating, refer to the MAX1709 data sheet.

Applications
Routers, Servers, Workstations, Card Racks
Local 2.5 V to 3.3 V or 5 V Conversion
Local 3.3 V to 5 V Conversion
3.6 V or 5V RF PAs in Communications Handsets

Features		
- On-Chip 5A Power MOSFET		
-5V, 2A Output from a 3.3V Input		
Fixed 3.3V or 5V Output Voltage or Adjustable (2.5V to 5.5V)		
- Input Voltage Range Down to 0.7V		
- Low Power Consumption 1mW Quiescent Power $1 \mu \mathrm{~A}$ Current in Shutdown Mode		
- Low-Noise, Constant Frequency Operation (600kHz)		
- Synchronizable Switching Frequency (350 kHz to 1000 kHz)		
- Small QSOP Package		
Ordering Information		
PART	TEMP. RANGE	PIN-PACKAGE
MAX1708EEE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP

+Denotes a lead(Pb)-free/RoHS-compliant package.

Typical Operating Circuit

Pin Configuration

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

ABSOLUTE MAXIMUM RATINGS

ONA, $\overline{O N B}$, OUT, SS/LIM, 3.3/5 to GND	V to +6.0 V
LX to PGND	-0.3V to +6.0V
FB, CLK, REF to GND.	-0.3V to (VOUT + 0.3V)
PGND to GND	.-0.3V to +0.3V
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+7$	
QSOP (derate $8.30 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above +7	C). 667 mW

Operating Temperature Range \qquad .$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)
$+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VOUT $=$ V $_{\text {CLK }}=3.6 \mathrm{~V}, \mathrm{ONA}=\overline{\mathrm{ONB}}=\mathrm{FB}=\mathrm{GND}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+85^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage	$\mathrm{V}_{\mathrm{FB}}<0.1 \mathrm{~V}$ (Note 1)	$\overline{3} 3 / 5=$ GND, ISW $=0.5 \mathrm{~A}$	3.26	3.34	3.42	V
		$\overline{3} 3 / 5=$ OUT, ISW $=0.5 \mathrm{~A}$	4.90	5.05	5.20	
Load Regulation	Measured between $0.5 \mathrm{~A}<\mathrm{ISW}<1.5 \mathrm{~A}$ (Note 2)			-0.40	-0.60	\%/A
FB Regulation Voltage (VFB)	ISW $=0.5 \mathrm{~A}$		1.215	1.240	1.265	V
FB Input Current	$\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$			1	200	nA
Output Voltage Adjust Range			2.5		5.5	V
Output Undervoltage Lockout	Rising and falling (Note 3)		2.0		2.3	V
Frequency in Startup Mode	VOUT $=1.5 \mathrm{~V}$		40		400	kHz
Minimum Startup Voltage	IOUT $<1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 4)			0.9	1.1	V
Minimum Operating Voltage	(Note 5)			0.7		V
Soft-Start Pin Current	$\mathrm{V}_{\text {SS/LIM }}=1 \mathrm{~V}$		3.2	4	5.0	$\mu \mathrm{A}$
OUT Supply Current	$\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$ (Note 6)			200	300	$\mu \mathrm{A}$
OUT Leakage Current In Shutdown	$\mathrm{V} \overline{\mathrm{ONB}}=3.6 \mathrm{~V}$			0.1	2	$\mu \mathrm{A}$
LX Leakage Current	$\mathrm{V}_{\text {LX }}=\mathrm{V}^{\mathrm{ONB}}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			1	25	$\mu \mathrm{A}$
N -Channel Switch On-Resistance				30	80	$\mathrm{m} \Omega$
N-Channel Current Limit	SS/LIM = open		4.5	5.3	7.0	A
	SS/LIM $=150 \mathrm{k} \Omega$ to GND		1.80	3.00	3.85	
RMS Switch Current					5	ARMS
Reference Voltage	$\mathrm{I}_{\text {REF }}=0 \mathrm{~mA}$		1.245	1.260	1.275	V
Reference Load Regulation	$-1 \mu \mathrm{~A} \leq \mathrm{I}$ REF $\leq 50 \mu \mathrm{~A}$			4	10	mV
Reference Supply Rejection	$2.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \mathrm{~V}$			0.2	5	mV
Input Low Level (Note 7)	ONA, $\overline{\mathrm{ONB}}, \overline{3} \overline{3} / 5,1.2 \mathrm{~V}$ < $\mathrm{V}_{\text {OUT }}<5.5 \mathrm{~V}$				\times V OUT	V
	CLK, 2.7V < Vout < 5.5V				\times V OUT	

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{\text {OUT }}=V_{C L K}=3.6 \mathrm{~V}, \mathrm{ONA}=\overline{\mathrm{ONB}}=\mathrm{FB}=\mathrm{GND}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $+\mathbf{8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
Input High Level	ONA, $\overline{\mathrm{ONB}}, \overline{3} . \overline{3} / 5,1.2 \mathrm{~V}$ < V ${ }^{\text {OUT }}<5.5 \mathrm{~V}$	$0.8 \times \mathrm{V}_{\text {OUT }}$		V
	CLK, $2.7 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<5.5 \mathrm{~V}$	$0.8 \times$ Vout		
Logic Input Current	$\mathrm{V}_{\text {ONA }}, \mathrm{V}_{\mathrm{ONB}}, \mathrm{V}_{\text {CLK }}, \mathrm{V}_{3.3} / 5=0 \mathrm{~V}, 5.5 \mathrm{~V}$	-1	1	$\mu \mathrm{A}$
Internal Oscillator Frequency		520600	680	kHz
Maximum Duty Cycle		8288	94	\%
External Clock Frequency Range		350	1000	kHz
CLK Pulse Width	(Note 8)	100		ns
CLK Rise/Fall Time	(Note 8)		50	Ns

ELECTRICAL CHARACTERISTICS

(VOUT $=\mathrm{V}_{\text {CLK }}=3.6 \mathrm{~V}, \mathrm{ONA}=\overline{\mathrm{ONB}}=\mathrm{FB}=\mathrm{GND}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 9)

PARAMETER	CONDITIONS		MIN	MAX	UNITS
Output Voltage	$\mathrm{V}_{\mathrm{FB}}<0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ (Note 1)	$\overline{3.3} / 5=\mathrm{GND}, \mathrm{ISW}=0.5 \mathrm{~A}$	3.24	3.45	V
		$\overline{3} 3 / 5=$ OUT, ISW $=0.5 \mathrm{~A}$	4.90	5.22	
FB Regulation Voltage	ISW $=0.5 \mathrm{~A}$		1.20	1.28	V
FB Input Current (VFB)	$\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$			200	nA
Load Regulation	Measured between 0.5A < ISW < 1.5A (Note 2)			-0.60	\%/A
Soft-Start Pin Current	VSS/LIM $=1 \mathrm{~V}$		3.2	5.2	$\mu \mathrm{A}$
OUT Leakage Current in Shutdown	$\mathrm{V} \overline{\mathrm{ONB}}=3.6 \mathrm{~V}$			2	$\mu \mathrm{A}$
OUT Supply Current	$\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$ (Note 6)			300	$\mu \mathrm{A}$
N-Channel Switch On-Resistance				80	$\mathrm{m} \Omega$
N-Channel Current Limit	SS/LIM = unconnected		4.5	7.5	A
	SS/LIM $=150 \mathrm{k} \Omega$ to GND		1.8	4.0	A
Reference Voltage	$\mathrm{I}_{\text {REF }}=0 \mathrm{~mA}$		1.24	1.28	V

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

(VOUT $=\mathrm{V}_{\text {CLK }}=3.6 \mathrm{~V}$, ONA $=\overline{\mathrm{ONB}}=\mathrm{FB}=\mathrm{GND}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 9)

PARAMETER	CONDITIONS	MIN	MAX	UNITS
Input Low Level (Note 7)	ONA, $\overline{\mathrm{ONB}}, \overline{3} . \overline{3} / 5,1.2 \mathrm{~V}$ < V ${ }^{\text {OUT }}<5.5 \mathrm{~V}$		$0.2 \times \mathrm{V}_{\text {OUT }}$	V
	CLK, 2.7V < V ${ }_{\text {OUT }}<5.5 \mathrm{~V}$		$0.2 \times \mathrm{V}_{\text {OUT }}$	
Input High Level	ONA, $\overline{\text { ONB, }}$, $\overline{3}$ / $/ 5,1.2 \mathrm{~V}$ < $\mathrm{V}_{\text {OUT }}<5.5 \mathrm{~V}$	$0.8 \times \mathrm{V}_{\text {OUT }}$		V
	CLK, 2.7V < V ${ }_{\text {OUT }}<5.5 \mathrm{~V}$	$0.8 \times V_{\text {OUT }}$		
Logic Input Current	$\mathrm{V}_{\text {ONA }}, \mathrm{V}_{\text {ONB }}, V_{\text {CLK }}, V_{3.3} / 5=0 \mathrm{~V}, 5.5 \mathrm{~V}$	-1	1	$\mu \mathrm{A}$
Internal Oscillator Frequency		500	700	kHz
Maximum Duty Cycle		80	95	\%
External Clock Frequency Range		350	1000	kHz
CLK Pulse Width	(Note 8)	100		ns
CLK Rise/Fall Time	(Note 8)		50	Ns

Note 1: Output voltage is specified at 0.5 A switch current ISW, which is equivalent to approximately $0.5 \mathrm{~A} \times\left(\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}\right)$ of load current.
Note 2: Load regulation is measured by forcing specified switch current and straight-line calculation of change in output voltage in external feedback mode. Note that the equivalent load current is approximately ISW $\times\left(\mathrm{V}_{\mathrm{IN}} / \mathrm{V}_{\text {OUT }}\right)$.
Note 3: Until undervoltage lockout is reached, the device remains in startup mode. Do not apply full load until this voltage is reached.
Note 4: Startup is tested with Figure 1's circuit. Output current is measured when both the input and output voltages are applied.
Note 5: Minimum operating voltage. The MAX1708 is bootstrapped and will operate down to a 0.7 V input once started.
Note 6: Supply current is measured from the output voltage (3.3V) to the OUT pin. This correlates directly with actual input supply current but is reduced in value according to the step-up ratio and efficiency.
Note 7: ONA and ONB inputs have approximately 0.15 V hysteresis.
Note 8: Guaranteed by design, not production tested.
Note 9: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

Typical Operating Characteristics

(Circuit of Figure 1, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

Typical Operating Characteristics (continued)

(Circuit of Figure 1, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

Typical Operating Characteristics (continued)
(Circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

Pin Description

PIN	NAME	FUNCTION
1	$\overline{\mathrm{ONB}}$	Shutdown Input. When $\overline{\mathrm{ONB}}=$ high and ONA = low, the device turns off (Table 1).
2	ONA	On-Control Input. When ONA = high or $\overline{\mathrm{ONB}}=$ low, the device turns on (Table 1).
3, 4, 5	LX	Drain of N-Channel Power Switch. Connect pins 3, 4, and 5 together with wide traces. Connect an external Schottky diode from LX to Vout. (Figure 1)
6, 9	GND	Ground
7	SS/LIM	Soft-Start and/or Current-Limit Input. Connect a capacitor from SS/LIM to GND to control the rate at which the device reaches current limit (soft-start). To reduce the current limit from the preset values, connect a resistor from SS/LIM to GND (see Design Procedure). During shutdown, SS/LIM is internally pulled to GND to discharge the soft-start capacitor.
8	REF	Voltage Reference Output. Bypass with a $0.22 \mu \mathrm{~F}$ capacitor to GND. Maximum REF load is $50 \mu \mathrm{~A}$.
10	OUT	Output Voltage Sense Input. The device is powered from OUT. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to PGND with less than 5 mm trace length. Connect a 2Ω series resistor from the output filter capacitor ($0.1 \mu \mathrm{~F}$) to OUT (Figure 1).
11	FB	DC-DC Converter Feedback Input. Connect FB to GND for internally set output voltage (see $\overline{3.3} / 5$ pin description). Connect a resistor-divider from the output to set the output voltage in the 2.5 V to 5.5 V range. FB regulates to 1.24 V (Figure 4).
12, 13, 14	PGND	Power Ground, Source of N-Channel Power MOSFET Switch. Connect pins 12, 13, and 14 together with wide traces.
15	3.3/5	Output Voltage Selection Input. When FB is connected to GND, the regulator uses internal feedback to set the output voltage. $\overline{3} \overline{3} / 5=$ low sets output to $3.3 \mathrm{~V} ; \overline{3} \overline{3} / 5=$ high sets output to 5 V . If an external divider is used at FB , connect $\overline{3} \overline{3} / 5$ to ground.
16	CLK	Clock Input for the DC-DC Converter. Connect to OUT for internal oscillator. Drive CLK with an external clock for external synchronization.

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

Figure 1. Standard Operating Circuit

Detailed Description

The MAX1708 step-up converter offers high efficiency and high integration for high-power applications. It operates with an input voltage as low as 0.7 V and is suitable for single- to 3 -cell battery inputs, as well as 2.5 V or 3.3 V regulated supply inputs. The output voltage is preset to 3.3 V or 5.0 V or can be adjusted with external resistors for voltages between 2.5 V to 5.5 V .
The MAX1708 internal N -channel MOSFET switch is rated for 5 A (RMS value) and can deliver loads to 2A, depending on input and output voltages. For flexibility, the current limit and soft-start rate are independently programmable.
A 600 kHz switching frequency allows for a small inductor to be used. The switching frequency is also synchronizable to an external clock ranging from 350 kHz to 1 MHz .

ONA, $\overline{O N B}$
The logic levels at ONA and $\overline{O N B}$ turn the MAX1708 on or off. When ONA $=1$ or $\overline{\mathrm{ONB}}=0$, the device is on. When ONA $=0$ and $\overline{\mathrm{ONB}}=1$, the device is off (Table 1). Logic high on-control can be implemented by connecting $\overline{O N B}$ high and using ONA for shutdown.

Implement inverted single-line on/off control by grounding ONA and toggling ONB. Implement momentary pushbutton on/off as described in the Applications Information section. Both inputs have approximately 0.15 V of hysteresis.

Switching Frequency
The MAX1708 switches at the fixed-frequency internal oscillator rate $(600 \mathrm{kHz})$ or can be synchronized to an external clock. Connect CLK to OUT for internal clock operation. Apply a clock signal to CLK to synchronize to an external clock. The MAX1708 will synchronize to a new external clock rate in two cycles and will take approximately $40 \mu \mathrm{~s}$ to revert to its internal clock frequency once the external clock pulses stop and CLK is driven high. Table 2 summarizes oscillator operation.

Operation

The MAX1708 switches at a constant frequency (600kHz) and modulates the MOSFET switch pulse width to control the power transferred per cycle and regulate the voltage across the load. In low-noise applications, the fundamental and the harmonics generated by the fixed switching frequency are easily filtered out. Figure 2 shows the simplified functional diagram for the MAX1708. Figure 3 shows the simplified PWM con-

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

Table 1. On/Off Logic Control

ONA	$\overline{\text { ONB }}$	MAX1708
0	0	On
0	1	Off
1	0	On
1	1	On

CLK	MODE
0	Not allowed
1	PWM
External clock $(350 \mathrm{kHz}-1000 \mathrm{kHz})$	Synchronized PWM

Figure 2. Simplified Functional Diagram
troller functional diagram. The MAX1708 enters synchronized current-mode PWM when a clock signal ($350 \mathrm{kHz}<\mathrm{fCLK}<1 \mathrm{MHz}$) is applied to CLK. For wireless or noise-sensitive applications, this ensures that switching harmonics are predictable and kept outside the IF frequency band(s). High-frequency operation permits low-magnitude output ripple voltage and minimum inductor and filter capacitor size. Switching losses will increase at higher frequencies (see MAX1708 IC Power Dissipation).

Setting the Output Voltage

The MAX1708 features Dual Mode ${ }^{\text {TM }}$ operation. When FB is connected to ground, the MAX1708 generates a fixed output voltage of either 3.3 V or 5 V , depending on the logic applied to the $3.3 / 5$ input (Figure 1). The output can be configured for other voltages, using two external resistors as shown in Figure 4. To set the output voltage externally, choose an R3 value that is large enough to minimize load at the output but small enough to minimize errors due to leakage and the time constant to $F B$. A value of $R 4 \leq 50 \mathrm{k} \Omega$ is required

[^0]$$
\mathrm{R} 4=\mathrm{R} 3\left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}}-1\right)
$$
where $\mathrm{V}_{\mathrm{FB}}=1.24 \mathrm{~V}$.

Soft-Start/Current Limit Adjustment

(SS/LIM)
The soft-start pin allows the soft-start time to be adjusted by connecting a capacitor from SS/LIM to GND. Select capacitor C3 (see Figure 1):

$$
\mathrm{tss}=4 \mathrm{~ms}+[110 \times \mathrm{C} 3(\mathrm{in} \mu \mathrm{~F})]
$$

where tss is the time (in milliseconds) it takes output to reach its final value.
To improve efficiency or reduce inductor size at reduced load currents, the current limit can be reduced from its nominal value (see Electrical Characteristics). A resistor (R1 in Figure 1) between SS/LIM and ground reduces the current limit as follows:

$$
\mathrm{R} 1=312 \mathrm{k} \Omega \times \frac{\mathrm{I}_{1}}{\mathrm{I}_{\mathrm{LIM}}}
$$

where I_{1} is the desired current limit in amperes and R1 $\leq 312 k \Omega$. ILIM $=5 A$, if R1 is omitted.

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

Table 3. Component Selection Guide

PRODUCTION	INDUCTORS	CAPACITORS	DIODES
Surface mount	Coiltronics UP2B-2R2	Sanyo 6TPC100M	Motorola MBRD1035CTL
	Coilcraft DO3316P-222HC	Panasonic EEFUEOJ151R	Central CMSH5-20

Table 4. Component Suppliers

SUPPLIER	PHONE	FAX
Central	$631-435-1110$	$631-435-1824$
Coilcraft	$847-639-6400$	$847-639-1489$
Coiltronics	$561-241-7876$	$561-241-9339$
Motorola	$602-303-5454$	$602-994-6430$
Panasonic	$714-373-7939$	$714-373-7183$

Design Procedure

Inductor Selection (L1)

The MAX1708's high switching frequency allows the use of a small-size inductor. Use a $2.2 \mu \mathrm{H}$ inductor for 600 kHz operation. If the MAX1708 is synchronized at a different frequency, scale the inductor value with the inverse of frequency ($\left.\mathrm{L}_{1}=2.2 \mu \mathrm{H} \times 600 \mathrm{kHz} / \mathrm{fSYNC}\right)$. The PWM design tolerates inductor values within $\pm 25 \%$ of this calculated value, so choose the closest standard inductor value. For example, use $3.3 \mu \mathrm{H}$ for 350 kHz and $1.5 \mu \mathrm{H}$ for 1 MHz).
Inductors with a ferrite core or equivalent are recommended; powder iron cores are not recommended for use at high switching frequencies. Ensure the inductor's saturation rating (the current at which the core begins to saturate and inductance falls) exceeds the

Figure 3. Simplified PWM Controller Functional Diagram
internal current limit. Note that this current may be reduced through SS/LIM if less than the MAX1708's full load current is needed (see Electrical Characteristics for ratings). For highest efficiency, use a coil with low DC resistance, preferably under $20 \mathrm{~m} \Omega$. To minimize radiated noise, use a toroid, pot core, or shielded inductor. See Tables 3 and 4 for a list of recommended components and component suppliers. To calculate the maximum output current (in amperes), use the following equation:

$$
\operatorname{loUT}(M A X)=D^{\prime}\left(\operatorname{LIM}-\mathrm{D}^{\prime}\left(\frac{\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathbb{N}}}{2 \times f \times \mathrm{L1}}\right)\right)
$$

where:
VIN = input voltage
$V_{D}=$ forward voltage drop of the Schottky diode at ILIM
VOUT = output voltage
$\mathrm{D}^{\prime}=\left(\mathrm{V}_{\mathrm{IN}}\right) /\left(\mathrm{VOUT}_{\mathrm{O}}+\mathrm{V}_{\mathrm{D}}\right)$, neglecting switch voltage drop
$f=$ switching frequency
L1 = inductor value
LLIM = minimum value of switch current limit from Electrical Characteristics or set by R1 of Figure 1.

Figure 4. Adjustable Output Voltage

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

Figure 5. Momentary Pushbutton On-Off Switch

Diode Selection (D1)

The MAX1708's high switching frequency demands a high-speed rectifier. Use Schottky diodes (Table 3). The diode's current rating must exceed the maximum load current, and its breakdown voltage must exceed VOUT. The diode must be placed within 10 mm of the LX switching node and the output filter capacitor. The diode also must be able to dissipate the power calculated by the following equation:

$$
\text { PDIODE }=\text { IOUT } \times \mathrm{V}_{\mathrm{D}}
$$

where IOUT is the average load current and V_{D} is the diode forward voltage at the peak switch current.

Capacitor Selection
 Input Bypass Capacitor (C1)

A $150 \mu \mathrm{~F}$, low-ESR input capacitor will reduce peak currents and reflected noise due to inductor current ripple. Lower ESR allows for lower input ripple current, but combined ESR values up to $100 \mathrm{~m} \Omega$ are acceptable. Smaller ceramic capacitors may also be used for light loads or in applications that can tolerate higher input current ripple.

Output Filter Capacitor (C2)

The output filter capacitor ESR must be kept under $30 \mathrm{~m} \Omega$ for stable operation. Polymer capacitors of 150 HF (Panasonic EEFUEOJ151R) typically exhibit $10 \mathrm{~m} \Omega$ of ESR. This translates to approximately 35 mV of output ripple at 3.5 A switch current. Bypass the MAX1708 IC supply input (OUT) with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to GND and a 2Ω series resistor (R2, as shown in Figure 1).

MAX1708 IC Power Dissipation
The major components of MAX1708 dissipated power are switch conductance loss (PSW), capacitive loss (PCAP), and switch transition loss (PTRAN). Numerical examples provided in brackets ($\}$) correspond to the following condition:

$$
\left\{\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{VD}_{\mathrm{D}}=0.5 \mathrm{~V}, \mathrm{IOUT}=2 \mathrm{~A}\right\}
$$

An important parameter to compute the power dissipated in the MAX1708 is the approximate peak switch current (ISW):

$$
\begin{aligned}
& I_{S W}=\frac{I_{\text {OUT }}}{D^{\prime}}\{3.33 \mathrm{~A}\} \\
& D^{\prime}=\frac{V_{I N}}{V_{\text {OUT }}+V_{D}}\{0.6\} \\
& \text { PD }=\text { PSW }+ \text { PCAP }+ \text { Ptran }\{0.472 W\} \\
& \text { PSW }=\left(1-D^{\prime}\right) \text { ISW }{ }^{2} \times \operatorname{RSW}\{0.353 W\} \\
& \text { PCAP }=(\text { CDIO }+ \text { CDSW }+ \text { CGSW })(\text { VOUT }+ \text { VD })^{2 f}\{0.045 W\} \\
& \text { Ptran }=\left(\text { VOUT }+\mathrm{VD}_{\mathrm{D}}\right) \text { ISW } \times \mathrm{tSW} \times \mathrm{f} / 3\{0.073 \mathrm{~W}\}
\end{aligned}
$$ where:

RSW $=$ switch resistance $\{80 \mathrm{~m} \Omega\}$
CDIO $=$ catch-diode capacitance $\{500 \mathrm{pF}\}$
CDSW = switch drain capacitance $\{1250 \mathrm{pF}\}$
CGSW $=$ switch gate capacitance $\{750 \mathrm{pF}\}$
$f=$ switching frequency $\{600 \mathrm{kHz}\}$
tsw $=$ switch turn-on or turn-off time $\{20 \mathrm{~ns}\}$

Applications Information

Using a Momentary On/Off Switch

A momentary pushbutton switch can be used to turn the MAX1708 on and off. As shown in Figure 5, when ONA is pulled low and $\overline{O N B}$ is pulled high, the device is off. When the momentary switch is pressed, $\overline{\mathrm{ONB}}$ is pulled low and the regulator turns on. The switch should be on long enough for the microcontroller to exit reset. The controller issues a logic high to ONA, which guarantees that the device will stay on regardless of the subsequent switch state. To turn the regulator off, depress the switch long enough for the controller to read the switch status and pull ONA low. When the switch is released, $\overline{\mathrm{ONB}}$ pulls high and the regulator turns off.

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

Layout Considerations

Due to high inductor current levels and fast switching waveforms, proper PC board layout is essential. Protect sensitive analog grounds by using a star ground configuration. Connect PGND, the input bypass capacitor ground lead, and the output filter capacitor ground lead to a single point (star ground configuration). In addition, minimize trace lengths to reduce stray capacitance and trace resistance, especially from the LX pins to the catch diode (D1) and output capacitor (C2) to PGND pins. If an external resistor-divider is used to set the output voltage (Figure 4), the trace from FB to the resistors must be extremely short and must be shielded from switching signals, such as CLK or LX. To optimize package power dissipation and minimize device heating under heavy loads, expand PC trace area connected to the three PGND pins as much as the layout can allow. This is best accomplished with a large PGND plane on the surface of the board. Also note that outer-layer ground plane area beneath the device provides little heat-sinking benefit. If an outer-layer ground plane is not feasible, the PGND pins should be connected to the inner-layer ground plane with multiple vias (at least three vias per pin is recommended). Since the purpose of these vias is to optimize thermal conductivity to the inner ground plane, be sure that the vias have no gaps in their connections to the ground plane. Refer to a layout example in the MAX1708EVKIT data sheet.

Chip Information
SUBSTRATE: GND
PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

High-Frequency, High-Power, Low-Noise, Step-Up DC-DC Converter

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$7 / 01$	Initial release	-
1	$11 / 10$	Updated the N-Channel Current Limit parameter in the Electrical Characteristics, corrected the equation in the Setting the Output Voltage section	3,10

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1642B-18IMC MCP1642D-ADJIMC

[^0]: Dual Mode is a trademark of Maxim Integrated Products.

