الالالالالالا SIM/Smart Card Level Translators in µMAX

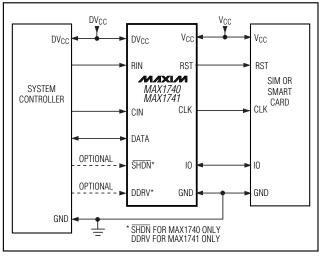
General Description

The MAX1740/MAX1741 subscriber identity module (SIM)/smart card level translators provide level shifting and electrostatic discharge (ESD) protection for SIM and smart card ports. These devices integrate two unidirectional level shifters for the reset and clock signals, a bidirectional level shifter for the serial data stream, and ± 10 kV ESD protection on all card contacts.

The MAX1740 includes a SHDN control input to aid insertion and removal of SIM and smart cards, while the MAX1741 includes a system-side data driver to support system controllers without open-drain outputs. The logic supply voltage range is +1.425V to +5.5V for the "controller side" and +2.25V to +5.5V for the "card side." Total supply current is 2.5µA max. Both devices automatically shut down when either power supply is removed. For a complete SIM-card interface, combine the MAX1740/MAX1741 with the MAX1686H 0V/3V/5V regulated charge pump.

The MAX1740/MAX1741 are available in ultra-small 10- pin μMAX packages that are only 1.09mm high and half the area of an 8-pin SO.

The MAX1740/MAX1741 are compliant with GSM test specifications 11.11 and 11.12.


Applications

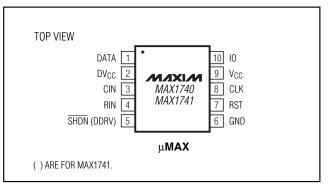
SIM Interface in GSM Cellular Telephones

Smart Card Readers

Logic Level Translation

SPI™/QSPI™/MICROWIRE™ Level Translation

Typical Operating Circuit


_Features

- SIM/Smart Card Level Shifting
- ±10kV ESD Card Socket Protection
- ♦ Allows Level Translation with DV_{CC} ≥ V_{CC} or DV_{CC} ≤ V_{CC}
- Automatically Shuts Down When Either Supply Is Removed
- Card Contacts Actively Pulled Low During Shutdown
- +1.425V to +5.5V Controller Voltage Range
- +2.25V to +5.5V Card Voltage Range
- ♦ 2.5µA (max) Total Quiescent Supply Current
- ♦ 0.01µA Total Shutdown Supply Current
- ♦ Ultra-Small 10-Pin µMAX Package
- Compliant with GSM Test Specifications 11.11 and 11.12

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1740EUB	-40°C to +85°C	10 µMAX
MAX1741EUB	-40°C to +85°C	10 µMAX

Pin Configuration

SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.

Maxim Integrated Products 1

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

DV _{CC} , V _{CC} to GND	0.3V to +6.0V
RIN, CIN, DATA, DDRV,	
SHDN to GND	0.3V to (DV _{CC} + 0.3V)
RST, CLK, IO to GND	0.3V to (V _{CC} + 0.3V)
Continuous Power Dissipation (T _A =	+70°C)
10-Pin µMAX (derate 5.6mW/°C al	bove +70°C)444mW

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 1	0s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Figure 1, $DV_{CC} = +1.8V$, $V_{CC} = +3.0V$ or +5.0V, $\overline{SHDN} = DV_{CC}$, CIN = RIN = GND or DV_{CC} , $IO = V_{CC}$, $DATA = DDRV = DV_{CC}$, $C_{IO} = C_{CLK} = C_{RST} = C_{DATA} = 30pF$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
POWER SUPPLIES								
DV _{CC} Operating Range	DVCC		1.425		5.5	V		
V _{CC} Operating Range	V _{CC}		2.25		5.5	V		
		CIN static			1			
DV _{CC} Operating Current	IDVCC	CIN clocked at 1.625MHz from GND to DV _{CC} with 50% duty cycle		8		μA		
		CIN clocked at 3.25MHz from GND to DV _{CC} with 50% duty cycle		16				
		CIN static			1.5	μA		
V _{CC} Operating Current	IVCC	CIN clocked at 1.625MHz from GND to $\mbox{DV}_{\mbox{CC}}$ with 50% duty cycle		0.5				
		CIN clocked at 3.25MHz from GND to DV _{CC} with 50% duty cycle		1		mA		
Total Shutdown Current	ISHDN	$I_{OFF} = I_{VCC} + I_{DVCC}$, $\overline{SHDN} = GND$ (MAX1740 only), or $DV_{CC} = GND$ or $V_{CC} = GND$		0.01	2	μA		
CIN, RIN, SHDN, DDRV LOGIC	INPUTS							
Digital Input Low Threshold	VIL		0.2 · DV _{CC})		V		
Digital Input High Threshold	VIH			0	.7 • DV _{CC}	V		
Input Leakage Current				0.01	1	μA		
CLK, RST OUTPUTS								
Digital Output Low Level	Vol	I _{SINK} = 200μA			0.4	V		
Digital Output High Level	VOH	$I_{SOURCE} = 20\mu A$	0.9 • V _{CC}			V		
Digital Output Light Level	VOH	I _{SOURCE} = 200µA	0.8 • V _{CC}			v		
DATA INPUT/OUTPUT								
DATA Pull-Up Resistance	Rdata	Between DATA and DV _{CC}	13	20	28	kΩ		
Input Low Threshold	VIL(DATA)	(Note 1)	0.3			V		
Input High Threshold	VIH(DATA)	(Note 2)		D	V _{CC} - 0.6	V		
Input Low Current	Ι _Ι	$V_{CC} = 5.0 V$			1	mA		
Input High Current	Чн				2	μA		

ELECTRICAL CHARACTERISTICS (continued)

(Figure 1, $DV_{CC} = +1.8V$, $V_{CC} = +3.0V$ or +5.0V, $\overline{SHDN} = DV_{CC}$, CIN = RIN = GND or DV_{CC} , $IO = V_{CC}$, $DATA = DDRV = DV_{CC}$, $C_{IO} = C_{CLK} = C_{RST} = C_{DATA} = 30pF$, $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
		IO = GND, I_{SINK} = 100 μ A				0.4	V
Output Low Level	VOL(DATA)	$DV_{CC} = 3.0V, IO = GN$	ND, I _{SINK} = 200µA			0.4	V
Output Lliph Loug		$I_{SOURCE} = 10 \mu A$		0.7 • DV _C	2		V
Output High Level	VOH(DATA)	$DV_{CC} = 3.0V$, $I_{SOURCE} = 20\mu A$		0.7 • DV _C	2		V
IO INPUT/OUTPUT	•						
IO Pull-Up Resistance	RIO	Between IO and V _{CC}		6.5	10	14	kΩ
Input Low Threshold	VIL(IO)	I _{IL(MAX)} = 1mA (Note	1)	0.3			V
Input High Threshold	VIH(IO)	$I_{IH(MAX)} = \pm 20 \mu A$ (Not	te 2)			0.7 • V _{CC}	V
Input Low Current	Ι _{ΙL}					1	mA
Input High Current	Чн					20	μA
Output Low Level	Vol(IO)	DATA = GND or DDRV = GND, I _{SINK} = 200µA				0.4	V
Output High Level	VOH(IO)	ISOURCE = 20µA	0.8 • V _{CC}			V	
SHUTDOWN OUTPUT LEVE	LS						
		I _{SINK} = 200µA, SHDN RIN = DV _{CC} (MAX174	= GND, DATA = CIN = 0 only)			0.4	V
Shutdown Output Levels (IO, CLK, RST)		$\begin{split} &I_{SINK} = 200\mu\text{A}, DV_{CC} = \text{GND}, \overline{\text{SHDN}} \\ &(\text{MAX1740}) = \text{DDRV} (\text{MAX1741}) = \text{DATA} = \\ &CIN = \text{RIN} = \text{DV}_{CC} \\ &I_{SINK} = 200\mu\text{A}, V_{CC} = \text{GND}, \overline{\text{SHDN}} \\ &(\text{MAX1740}) = \text{DDRV} (\text{MAX1741}) = \text{DATA} = \\ &CIN = \text{RIN} = \text{DV}_{CC} \end{split}$				0.4	V
						0.4	V
TIMING						·	
Maximum CLK Frequency (Notes 3, 4)		$V_{CC} = 2.7V \text{ to } 5.5V$	$DV_{CC} = 2.7V$	5			MHz
			$DV_{CC} = 2.25V$	5			
			$DV_{CC} = 1.7V$	5			
	fCLK		$DV_{CC} = 1.425V$	3.5			
(V _{CC} = 2.25V to 3.6V	$DV_{CC} = 2.25V$	4			
			$DV_{CC} = 1.7V$	4]
		$DV_{CC} = 1.425V$		3.5			

ELECTRICAL CHARACTERISTICS

(Figure 1, $DV_{CC} = +1.8V$, $V_{CC} = +3.0V$ or +5.0V, $\overline{SHDN} = DV_{CC}$, CIN = RIN = GND or DV_{CC} , $IO = V_{CC}$, $DATA = DDRV = DV_{CC}$, $CIO = C_{CLK} = C_{RST} = C_{DATA} = 30pF$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	
POWER SUPPLIES						
DV _{CC} Operating Range	DV _{CC}		1.425	5.5	V	
V _{CC} Operating Range	Vcc		2.25	5.5	V	
DV _{CC} Operating Current	IDVCC	CIN static		1	μA	
V _{CC} Operating Current	Ivcc	CIN static		1.5	μA	
Total Shutdown Current	IOFF	$I_{OFF} = I_{VCC} + I_{DVCC}$, $\overline{SHDN} = GND$ (MAX1740 only), or $DV_{CC} = GND$ or $V_{CC} = GND$		2	μA	
CIN, RIN, SHDN, DDRV LOGI				1		
Digital Input Low Threshold	VIL		0.2 • DV _{CC}		V	
Digital Input High Threshold	VIH			0.75 · DV _{CC}	V	
Input Leakage Current				1	μΑ	
CLK, RST OUTPUTS				1		
Digital Output Low Level	Vol	I _{SINK} = 200µA		0.4	V	
Digital Output High Level		ISOURCE = 20µA	0.9 • V _{CC}		V	
	VOH	ISOURCE = 200µA	0.8 • V _{CC}		v	
DATA INPUT/OUTPUT			I	1		
DATA Pull-Up Resistance	RDATA	Between DATA and DV _{CC}	13	28	kΩ	
Input Low Threshold	VIL(DATA)	(Note 1)	0.3		V	
Input High Threshold	VIH(DATA)	(Note 2)		DV _{CC} - 0.6	V	
Input Low Current	١ _١	$V_{CC} = 5.0V$		1	mA	
Input High Current	Ιн			2	μΑ	
Output Low Level	VOL(DATA)	IO = GND, I _{SINK} = 100μA		0.4	V	
	VOL(DATA)	DV_{CC} = 3.0V, IO = GND, I _{SINK} = 200µA		0.4	V	
Output High Level		$I_{\text{SOURCE}} = 10 \mu A$	0.7 • DV _{CC}		V	
	Voh(data)	$DV_{CC} = 3.0V, I_{SOURCE} = 20\mu A$	0.7 • DV _{CC}		V	
IO INPUT/OUTPUT				Ľ		
IO Pull-Up Resistance	RIO	Between IO and V _{CC}	6.5	14	kΩ	
Input Low Threshold	V _{IL(IO)}	I _{IL(MAX)} = 1mA (Note 1)	0.3		V	
Input High Threshold	VIH(IO)	$I_{IH(MAX)} = \pm 20 \mu A \text{ (Note 2)}$		0.7 • V _{CC}	V	
Input Low Current	١L			1	mA	
Input High Current	Ιн			20	μA	
Output Low Level	VOL(IO)	DATA = GND or DDRV = GND, I_{SINK} = 200 μ A		0.4	V	
Output High Level	VOH(IO)	ISOURCE = 20µA	0.8 • V _{CC}		V	

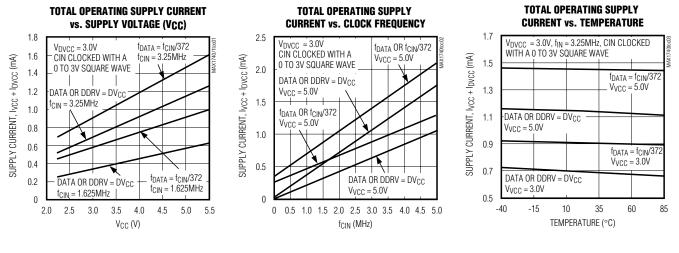
ELECTRICAL CHARACTERISTICS (continued)

(Figure 1, $DV_{CC} = +1.8V$, $V_{CC} = +3.0V$ or +5.0V, $\overline{SHDN} = DV_{CC}$, CIN = RIN = GND or DV_{CC} , $IO = V_{CC}$, $DATA = DDRV = DV_{CC}$, $CIO = C_{CLK} = C_{RST} = C_{DATA} = 30pF$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS		MIN	MAX	UNITS
SHUTDOWN OUTPUT LEVEL	S					
Shutdown Output Levels (IO, CLK, RST)		$I_{SINK} = 200\mu A, \overline{SHDN}$ CIN = RIN = DV _{CC} (M			0.4	V
		$I_{SINK} = 200\mu A, DV_{CC}$ (MAX1740) = DDRV (N CIN = RIN = DV_{CC}			0.4	V
		$\begin{split} I_{SINK} &= 200 \mu A, V_{CC} = GND, \overline{SHDN} \\ (MAX1740) &= DDRV (MAX1741) = DATA = \\ CIN &= RIN = DV_{CC} \end{split}$			0.4	V
TIMING						
			$DV_{CC} = 2.7V$	5		
Maximum CLK Frequency (Notes 3, 4)		$V_{CC} = 2.7 V$ to 5.5 V	$DV_{CC} = 2.25V$	5		 MHz
			$DV_{CC} = 1.7V$	5		
	fCLK		DV _{CC} = 1.425V	3.5		
		$V_{CC} = 2.25V \text{ to } 3.6V$	$DV_{CC} = 2.25V$	4		
			$DV_{CC} = 1.7V$	4		1
			DV _{CC} = 1.425V	3.5		1

Note 1: V_{IL} is defined as the voltage at which the output (DATA/IO) voltage equals 0.5V.

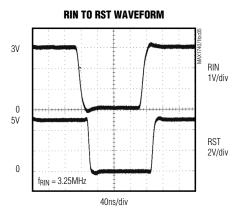
Note 2: VIH is defined as the voltage at which the output (DATA/IO) voltage exceeds the input (IO/DATA) voltage by 100mV.

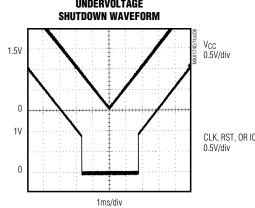

Note 3: Timing specifications are guaranteed by design, not production tested.

Note 4: The maximum CLK frequency is defined as the output duty cycle remaining in the 40% to 60% range when the 50% CIN is applied. CIN has 5ns rise and fall times; levels are GND to DV_{CC}. Input and output levels are measured at 50% of the waveform.
Note 5: Specifications to -40°C are guaranteed by design, not production tested.

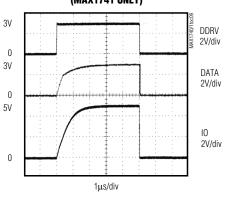
Note 5: Specifications to -40°C are guaranteed by design, not production tested.

Typical Operating Characteristics


(Circuit of Figure 1, DV_{CC} = 3.0V, V_{CC} = 5.0V, DDRV or DATA = DV_{CC}, RIN = CIN = GND, T_A = +25°C, unless otherwise noted.)



CIN TO CLK WAVEFORM ЗV CIN 1V/div 0 5V CLK 2V/div 0 f_{CIN} = 3.25MHz 40ns/div UNDERVOLTAGE SHUTDOWN WAVEFORM V_{CC} 0.5V/div 1.5V 0 1V CLK, RST, OR IO 0.5V/div

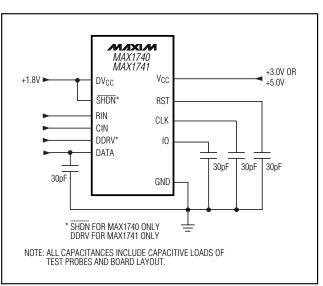

Typical Operating Characteristics (continued)

(Circuit of Figure 1, DV_{CC} = 3.0V, V_{CC} = 5.0V, DDRV or DATA = DV_{CC}, RIN = CIN = GND, T_A = +25°C, unless otherwise noted.)

DDRV TO IO AND DATA WAVEFORM (MAX1741 ONLY)

MAX1740/MAX1741

Pin Description


Р	PIN				FUNCTION		
MAX1740	MAX1741	NAME					
1	1	DATA	System Controller Data Input/Output. An open-drain input/output with a $20k\Omega$ pull-up resistor to DV _{CC} . For bidirectional data transfer, connect to an open-drain controller output capable of sinking 1mA while pulling DATA low. If the controller is not open drain, use DDRV to send data and DATA to receive data.				
2	2	DVCC	Supply Voltage for System Controller Digital Pins. Set at +1.425V to +5.5V.				
3	3	CIN	System Controller Clock Input				
4	4	RIN	System Controller Reset Input				
	5	DDRV	Optional System Controller Data Input. Connect to controllers without an open-drain output. When not used, connect DDRV to DV_{CC} .				
5		SHDN	Shutdown Mode Input. Driving SHDN low reduces the total supply current to less than 2µA. In shutdown mode, RST, CLK, and IO are actively pulled low and the transfer gate between DATA and IO is disabled. When not used, connect SHDN to DV _{CC} .				
6	6	GND	System Controller and Card Ground				
7	7	RST	Reset Output to Card. Actively pulled low during shutdown.				
8	8	CLK	Clock Output to Card. Actively pulled low during shutdown.				
9	9	V _{CC}	Supply Voltage for Card-Side Digital Pins. Set at +2.25V to +5.5V. Proper supply bypass- ing is required to meet ±10kV ESD specifications.				
10	10	IO	Card-Side Bidirectional Input/Output. An open-drain output with a 10k Ω pull-up resistor to V _{CC} . For bidirectional data transfer, connect to an open-drain card output capable of sinking 1mA while pulling IO low. Actively pulled low during shutdown.				

Detailed Description

The MAX1740/MAX1741 provide the necessary level translation for interfacing with subscriber identity modules (SIMs) and smart cards in multivoltage systems. These devices operate with logic supply voltages between +1.425V and +5.5V on the controller side (DV_{CC}) and between +2.25V and +5.5V on the card side (V_{CC}). The total supply current (I_{DVCC} + I_{VCC}) is 2.5µA (max) while operating in an idle state (see *Electrical Characteristics*). Figure 2 shows a typical application circuit and functional diagram.

Level Translation

The MAX1740/MAX1741 provide level translators for a clock input, a reset input, and a bidirectional data input/output. The clock and reset inputs (CIN and RIN) are level shifted from the controller-side supply rails (DV_{CC} to GND) to the card-side supply rails (V_{CC} to GND). When connected to an open-drain controller output, DATA and IO provide bidirectional level translation.

All level translation is valid for DV_{CC} \ge V_{CC} or DV_{CC} \le V_{CC}. The MAX1740/MAX1741 contain internal pull-up resistors from DATA to the controller-side supply (DV_{CC}) and from IO to the card-side supply (V_{CC}). For push-pull controller outputs, see the *Data Driver* section for bidirectional data translation.

Data Driver (MAX1741 only)

When using a microcontroller (μ C) without an open-drain output, use the data driver (DDRV) input to send data to the SIM/smart card, while DATA provides the controller-side output for bidirectional data transfer. When not used, connect DDRV to DV_{CC} to reduce total supply current.

Shutdown Mode

For the MAX1740, drive SHDN low to activate shutdown. Connect SHDN to DV_{CC} or drive high for normal operation. To allow for card insertion and removal, shutdown mode actively pulls CLK, RST, and IO low; it also disconnects the internal 10k Ω pull-up resistor from V_{CC} to prevent excessive current draw. Shutdown mode reduces the total supply current (I_{DVCC} + I_{VCC}) to 0.01µA.

SIM/Smart Card Insertion/Removal

The SIM/smart card specifications require that the card-side pins (V_{CC}, CLK, RST, IO) be at ground potential prior to inserting the SIM/smart card. For applications using the MAX1686H (Figure 4), the easi-

est way to achieve this is by shutting down the MAX1686H or by driving SHDN (MAX1740 only) low. If specific sequencing is desired, pull IO low by driving either DATA or DDRV (MAX1741 only) low, and pull CLK and RST low by driving CIN and RIN low, respectively.

ESD Protection

As with all Maxim devices, ESD-protection structures on all pins protect against electrostatic discharges (ESDs) encountered during handling and assembly. For further protection during card insertion and removal, the pins that connect to the card socket (CLK, RST, IO, V_{CC}, and GND) provide protection against ±10kV of ESD, according to the Human Body Model. The ESD structures withstand high ESD in all states: normal operation, shutdown, and power-down. After an ESD event, the MAX1740/MAX1741 continue working without latchup.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report documenting test setup, test methodology, and test results.

Human Body Model

Figure 3a shows the Human Body Model, and Figure 3b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-

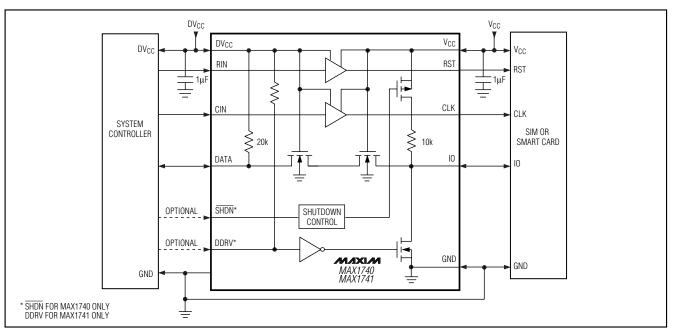


Figure 2. Typical Application Circuit and Functional Diagram

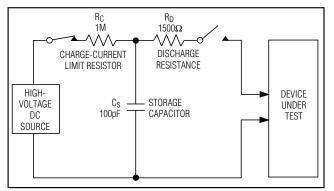


Figure 3a. Human Body ESD Test Model

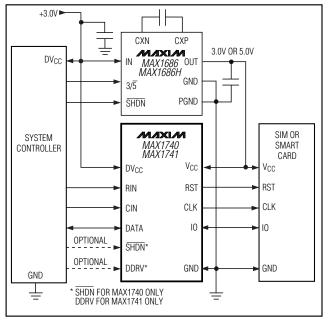


Figure 4. Using MAX1740/MAX1741 and MAX1686/MAX1686H Charge Pump for SIM Card Applications

est, which is then discharged into the test device through a 1.5 $\!\kappa\Omega$ resistor.

Applications Information

SIM/Smart Card Interface

To provide 5V when interfacing with a 5V SIM/smart card, 3V systems require a DC-DC converter. The MAX1686H +5V regulating charge pump for SIM cards provides 0V/3V/5V for full compatibility with SIM/smart card specifications. Figure 4 shows the charge pump for SIM card applications. Alternatively, the MAX619 generates a regulated 5V from input voltages as low as 2V.

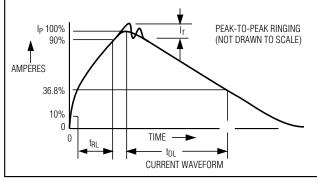


Figure 3b. Human Body Model Current Waveform

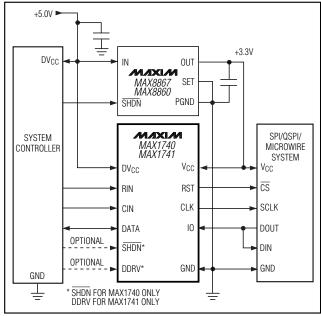
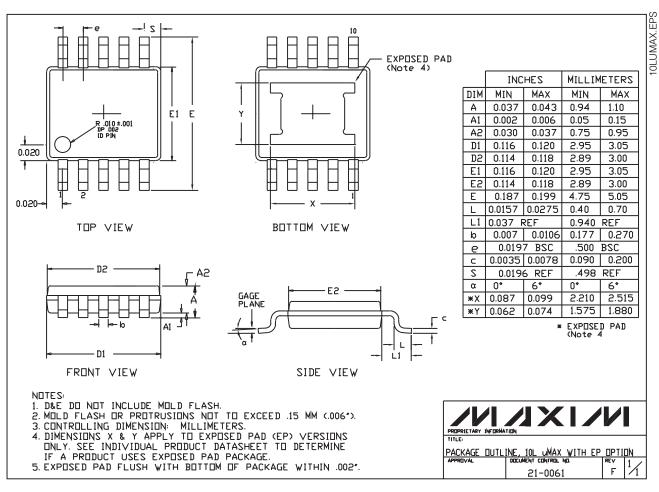
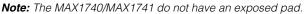


Figure 5. MAX1740/MAX1741 with SPI/QSPI/MICROWIRE Interfaces

SPI/QSPI/MICROWIRE Interface


The MAX1740/MAX1741 are also useful as 3V/5V level shifters in SPI, QSPI, and MICROWIRE applications (Figure <u>5</u>). On the slave side, connect CLK to SCLK, RST to \overline{CS} , and IO to DOUT and DIN. The unidirectional level shifters transfer chip select and clock signals to the slave device(s), while the bidirectional level shifter transfers data.


_Chip Information

TRANSISTOR COUNT: 114

MAX1740/MAX1741

Package Information

NOTES

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2000 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CN#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3242BRJZ-REEL7 ADG3243BRJZ-REEL7 ADG3245BCPZ