

Evaluate: MAX17501H in TDFN Package

General Description

The MAX17501H EV kit provides a proven design to evaluate the MAX17501H high-efficiency, high-voltage, synchronous step-down DC-DC converter in a TDFN package. The EV kit uses the MAX17501H device to generate 2.5V at load currents up to 500mA from a 4.5V to 60V input supply. The MAX17501H features a forced-PWM control scheme that provides constant switchingfrequency operation at all load and line conditions.

Features

- Operates from a 4.5V to 60V Input Supply
- ◆ 2.5V Output Voltage
- ♦ 500mA Output Current
- ♦ 300kHz Switching Frequency
- Enable/UVLO Input
- ♦ Resistor-Programmable UVLO Threshold
- ♦ Open-Drain RESET Output
- Overcurrent and Overtemperature Protection
- Proven PCB Layout
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.

1

EVALUATION KIT

DESIGNATION	QTY	DESCRIPTION]	DESIGNATION	QTY	DESCRIPTION
C1	1	2.2µF ±10%, 100V X7R ceramic capacitor (1210) Murata GRM32ER72A225K		C9	1	47pF ±10%, 50V C0G ceramic capacitor (0402) Murata GRM1555C1H470J
C2	1	1µF ±10%, 6.3V X7R ceramic capacitor (0603) Murata GRM188R70J105K		JU1	1	3-pin header
			_	L1	1	47µH, 1.2A inductor (6mm x 6mm x 3.5mm) Coilcraft LPS6235-473ML
C3	1	6800pF ±10%, 25V X7R ceramic capacitor (0402) Murata GRM155R71E682K		R1	1	$3.32M\Omega \pm 1\%$ resistor (0402)
				R2	1	$1M\Omega \pm 1\%$ resistor (0402)
	1	22µF ±10%, 10V X7R ceramic capacitor (1210) Murata GRM32ER71A226K		R3	1	$20k\Omega \pm 1\% \text{ resistor (0402)}$
C4				R4	1	69.8kΩ ±1% resistor (0402)
				R5	1	39.2 k $\Omega \pm 1\%$ resistor (0402)
C5	1	2200pF ±10%, 50V X7R ceramic capacitor (0402)		R6	1	$10k\Omega \pm 1\%$ resistor (0402)
				TP1, TP2	0	Not installed, test points
C7	C7 1 Murata GRM155R71H222K electrolytic (D = 8mm) Panasonic EEEFK1K330P	-	U1	1	Buck converter (10 TDFN-EP*) Maxim MAX17501HATB+	
		Panasonic EEEFK1K330P			1	Shunt
			-			PCB: MAX17501HT

Component List

*EP = Exposed pad.

Evaluate: MAX17501H in TDFN Package

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Coilcraft, Inc.	847-639-6400	www.coilcraft.com
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
Panasonic Corp.	800-344-2112	www.panasonic.com

Note: Indicate that you are using the MAX17501 when contacting these component suppliers.

Quick Start

Recommended Equipment

- MAX17501H EV kit
- 4.5V to 60V, 1A DC input power supply
- Load capable of sinking 500mA
- Digital voltmeter (DVM)
- Function generator

Procedure

The EV kit is fully assembled and tested. Follow the steps below to verify the board operation. Caution: Do not turn on power supply until all connections are completed.

- 1) Set the power supply at a voltage between 4.5V and 60V. Disable the power supply.
- 2) Connect the positive terminal of the power supply to the VIN PCB pad and the negative terminal to the nearest PGND PCB pad. Connect the positive terminal of the 500mA load to the VOUT PCB pad and the negative terminal to the nearest PGND PCB pad.
- Connect the DVM across the VOUT PCB pad and the nearest PGND PCB pad.
- 4) Verify that a shunt is installed across pins 1-2 on jumper JU1.
- 5) Turn on the DC power supply.
- 6) Enable the load.
- 7) Verify that the DVM displays the expected voltage.

To turn-on/turn-off the part from EN/UVLO, follow the steps below:

- 1) Remove resistors R1 and R2 and the jumper connected across pins 1-2 on jumper JU1.
- Connect the power supply to the EV kit and turn on the power supply. Set the power supply at a voltage between 4.5V and 60V.
- Connect the function generator output to the EN/ UVLO test loop.
- 4) EN/UVLO rising threshold is 1.24V and falling threshold is 1.11V. Make sure that the voltage-high and voltage-low levels of the function generator output are greater than 1.24V and less than 1.11V, respectively.
- 5) While powering down the EV kits, first disconnect the function generator output from the EN/UVLO test loop and then turn off the DC power supply.

Detailed Description of Hardware

The MMAX17501H EV kit provides a proven design to evaluate the MAX17501H high-efficiency, high-voltage, synchronous step-down DC-DC converter in a TDFN package. The EV kit generates 2.5V at load currents up to 500mA from a 4.5V to 60V input supply. The EV kit features a 300kHz fixed switching frequency for optimum efficiency and component size. The EV kit features a forced-PWM control scheme that provides constant switching frequency operation at all load and line conditions.

Evaluate: MAX17501H in TDFN Package

The EV kit includes an EN/UVLO PCB pad and jumper JU1 to enable control of the converter output. An additional RESET PCB pad is available for monitoring the converter output. The VCC PCB pad helps measure the internal LDO voltage.

Soft-Start Input (SS)

The device utilizes an adjustable soft-start function to limit inrush current during startup. The soft-start time is adjusted by the value of C3, the external capacitor from SS to GND. To adjust the soft-start time, determine C3 using the following formula:

$$C3 = 5.55 \text{ x t}_{SS}$$

where $t_{\mbox{SS}}$ is the required soft-start time in milliseconds and C3 is in nanofarads.

Regulator Enable/Undervoltage-Lockout Level (EN/UVLO)

The device features an EN/UVLO input. For normal operation, a shunt should be installed across pins 1-2 on jumper JU1. To disable the output, install a shunt across pins 2-3 on JU1 and the EN/UVLO pin is pulled to GND. See Table 1 for JU1 settings.

Setting the Undervoltage-Lockout Level The device offers an adjustable input undervoltagelockout level. Set the voltage at which the device turns on, with a resistive voltage-divider connected from VIN to GND (see Figure 1). Connect the center node of the divider to EN/UVLO. Choose R1 to be 3.3M $\!\Omega$ and then calculate R2 as follows:

$$R2 = \frac{R1 \times 1.218}{(V_{INU} - 1.218)}$$

where $V_{\rm INU}$ is the voltage at which the IC is required to turn on. Ensure that $V_{\rm INU}$ is higher than 0.8 x $V_{\rm OUT}.$

Adjusting the Output Voltage

The device offers an adjustable output voltage. Set the output voltage with a resistive voltage-divider connected from the positive terminal of the output capacitor (V_{OUT}) to GND (see Figure 1). Connect the center node of the divider to FB/VO.

Select the parallel combination of R4 and R5, Rp to be less than 30k $\Omega.$ Once Rp is selected, calculate R4 as follows:

$$R4 = \frac{R_P \times V_{OUT}}{0.9}$$

Calculate R5 as follows:

$$R5 = \frac{R4 \times 0.9}{(V_{OUT} - 0.9)}$$

Table 1. Regulator Enable (EN/UVLO) Jumper JU1 Description

SHUNT POSITION	EN/UVLO PIN	MAX17501_OUTPUT
1-2*	Connected to IN	Enabled
Not installed	Connected to the center node of resistor-divider R1 and R2	Enabled, UVLO level set through the R1 and R2 resistor-divider
2-3	Connected to GND	Disabled

*Default position.

Evaluate: MAX17501H in TDFN Package



Figure 1. MAX17501H Load and Line Regulation

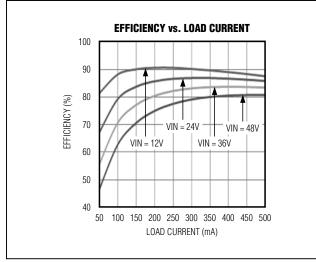


Figure 2. MAX17501H Efficiency

EV Kit Performance Report

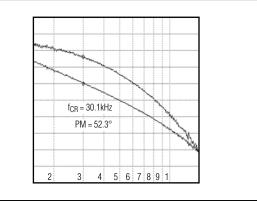


Figure 3. MAX17501H Full-Load Bode Plot (VIN = 24V)

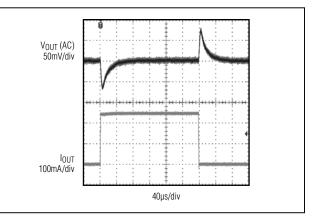


Figure 4. MAX17501H No Load to 250mA Load Transient (VIN = 24V)

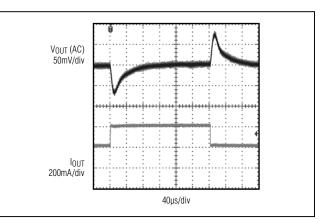


Figure 5. MAX17501H 250mA to 500mA Load Transient (VIN = 24V)

Evaluate: MAX17501H in TDFN Package

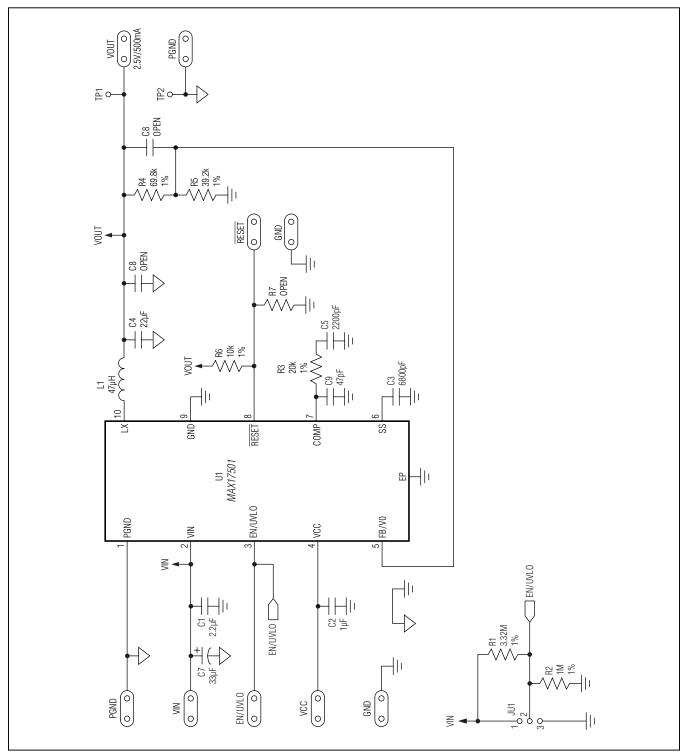


Figure 6. MAX17501H EV Kit Schematic

Evaluate: MAX17501H in TDFN Package

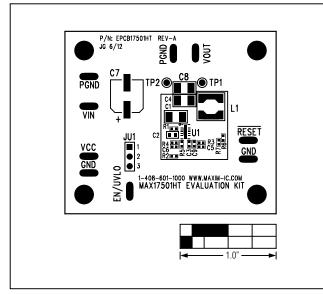


Figure 7. MAX17501H EV Kit Component Placement Guide— Component Side

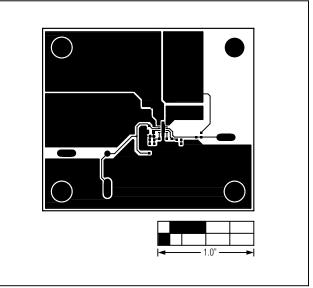


Figure 8. MAX17501H EV Kit PCB Layout—Component Side

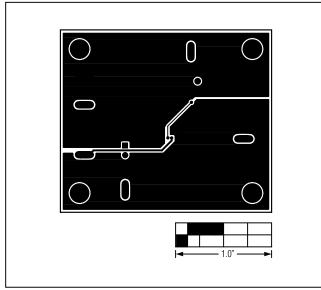


Figure 9. MAX17501H EV Kit PCB Layout—Solder Side

Evaluate: MAX17501H in TDFN Package

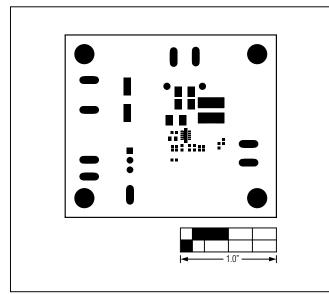


Figure 10. MAX17501H EV Kit PCB Layout—Top Solder Mask

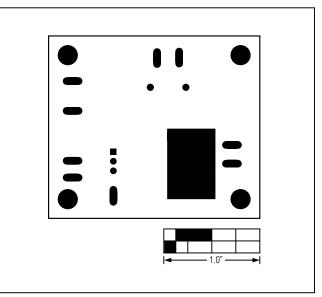


Figure 11. MAX17501H EV Kit PCB Layout—Bottom Solder Mask

Evaluate: MAX17501H in TDFN Package

Ordering Information

PART	TYPE
MAX17501HTEVKIT#	EV Kit

#Denotes RoHS compliant.

Evaluate: MAX17501H in TDFN Package

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	10/12	Initial release	_

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2012 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFLEV MIC5281YMMEEV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP1871-0.6-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKITIZ LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV