

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

General Description

The MAX1760/MAX1760H are high-efficiency, low-noise, step-up DC-DC converters intended for use in batterypowered wireless applications. They combine low quiescent supply current $(100 \mu \mathrm{~A})$ with a high 1 MHz operating frequency. Small external components and tiny 10-pin TDFN and $\mu M A X{ }^{\circledR}$ packages make this device an excellent choice for small hand-held applications. The MAX1760 is activated by a logic-low $\overline{O N}$ signal while the MAX1760H is activated by a logic-high ON input.
Both devices use a synchronous-rectified pulse-widthmodulation (PWM) boost topology to generate 2.5 V to 5.5 V outputs from a wide range of inputs, such as 1 to 3 alkaline or $\mathrm{NiCd} / \mathrm{NiMH}$ cells or a single lithium-ion (Li+) cell. Proprietary Idle-Mode ${ }^{\text {TM }}$ circuitry significantly improves light-load efficiency and smoothly transitions to fixed-frequency PWM operation at higher load currents.
Low-noise, forced-PWM mode is available for applications requiring constant-frequency operation at all load currents. PWM operation can also be synchronized to an external clock to protect sensitive frequency bands in communications equipment. Analog soft-start and adjustable current limit permit optimization of efficiency, external component size, and output voltage ripple.

	Applications	
Digital Cordless Phones	PCS Phones	
Wireless Handsets	Handheld Instruments	
Palmtop Computers	Personal Communicators	

Two-Way Pagers
Typical Operating Circuit

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc Idle Mode is a trademark of Maxim Integrated Products, Inc.

- Up to 94\% Efficiency
- 0.7 V to 5.5 V Input Range
- Up to 800 mA Output
- Fixed 3.3V Output (or Adjustable from 2.5V to 5.5V)
- PWM Synchronous-Rectified Topology
- Low-Noise, Constant-Frequency Operation (1MHz)
- $0.1 \mu \mathrm{~A}$ Logic-Controlled Shutdown
- Synchronizable Switching Frequency
- Adjustable Current Limit
- Adjustable Soft-Start
- 10-Pin μ MAX Package
- 10-Pin 3mm x 3mm TDFN Package

Ordering Information

PART	PIN- PACKAGE	ON LOGIC	PKG CODE
MAX1760ETB	10 TDFN-EP*	Low	T1033-1
MAX1760EUB	$10 \mu \mathrm{MAX}$	Low	U10-2
MAX1760HETB	10 TDFN-EP*	High	T1033-1
MAX1760HEUB	$10 \mu \mathrm{MAX}$	High	U10-2

*EP = Exposed paddle.
Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

Pin Configurations

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

ABSOLUTE MAXIMUM RATINGS

ON, $\overline{O N}$, OUT, CLK/SEL to GND -0.3 V to +6 V
PGND to GND .. $\pm 0.3 \mathrm{~V}$
LX to PGND .-0.3 V to (VPOUT +0.3 V)
POUT to OUT
$\pm 0.3 \mathrm{~V}$
REF, FB, ISET, POUT to GND3V to (VOUT +0.3 V)
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
Single-Layer Board:
$10-$ Pin $\mu \mathrm{MAX}$
(derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).
)....
444 mW
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(C L K / S E L=F B=P G N D=G N D\right.$, ISET $=$ REF, OUT $=$ POUT, VOUT $=3.6 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC-DC CONVERTER					
Input Voltage Range	(Note 1)		0.7	5.5	V
Minimum Startup Voltage	ILOAD $<1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 2)		0.9	1.1	V
Temperature Coefficient of Startup Voltage	ILOAD $<1 \mathrm{~mA}$		-2.3		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Frequency in Startup Mode	VOUT $=1.5 \mathrm{~V}$	125	500	1000	kHz
Internal Oscillator Frequency	CLK/SEL = OUT	0.8	1	1.2	MHz
Oscillator Maximum Duty Cycle	(Note 3)	80	86	90	\%
External Clock Frequency Range		0.5		1.2	MHz
Output Voltage	$\mathrm{V}_{\mathrm{FB}}<0.1 \mathrm{~V}, \mathrm{CLK} / \mathrm{SEL}=\mathrm{OUT}$, includes load regulation for $0<$ ILX $<0.55 \mathrm{~A}$	3.17	3.3	3.38	V
FB Regulation Voltage	Adjustable output, CLK/SEL = OUT, includes load regulation for $0<\operatorname{lLX}<0.55 \mathrm{~A}$	1.215	1.240	1.270	V
FB Input Leakage Current	$\mathrm{V}_{\mathrm{FB}}=1.35 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{MAX} 1760 \mathrm{ETB}\right.$, MAX1760HETB)		0.01	100	nA
Load Regulation	CLK/SEL = OUT, no load to full load ($0<\mathrm{I}_{\mathrm{L}}$ < 1.0A)		-1.5		\%
Output Voltage Adjust Range		2.5		5.5	V
Output Voltage Lockout Threshold	Rising edge (Note 4)	2.00	2.15	2.30	V
ISET Input Leakage Current	$\mathrm{V}_{\text {ISET }}=1.25 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{MAX} 1760 \mathrm{ETB}\right.$, MAX1760HETB)		± 0.01	± 50	nA
Supply Current in Shutdown	$\mathrm{V} \overline{\mathrm{ON}}=3.6 \mathrm{~V}, \mathrm{VON}=0 \mathrm{~V}$		0.1	5	$\mu \mathrm{A}$
No-Load Supply Current	CLK/SEL = GND (Note 5)		100	185	$\mu \mathrm{A}$
No-Load Supply Current Forced-PWM Mode	CLK/SEL = OUT		2.5		mA
DC-DC SWITCHES					
POUT Leakage Current	$\mathrm{V}_{\mathrm{LX}}=0, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},\right.$ MAX1760ETB, MAX1760HETB)		0.1	10	$\mu \mathrm{A}$
LX Leakage Current	$\mathrm{V}_{\mathrm{LX}}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$, in shutdown $\left(\mathrm{T}_{\mathrm{A}}=\right.$ $+25^{\circ} \mathrm{C}$, MAX1760ETB, MAX1760HETB)		0.1	10	$\mu \mathrm{A}$

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

$\left(C L K / S E L=F B=P G N D=G N D, I S E T=R E F, O U T=P O U T\right.$, VOUT $=3.6 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Switch On-Resistance	N-channel		0.15	0.28	Ω
	P-channel		0.25	0.45	
N-Channel Current Limit		1.0	1.25	1.6	A
P-Channel Turn-Off Current	CLK/SEL = GND	20	60	120	mA
REFERENCES					
Reference Output Voltage	IREF $=0$	1.230	1.250	1.270	V
Reference Load Regulation	$-1 \mu \mathrm{~A}<\mathrm{IREF}<+50 \mu \mathrm{~A}$		5	15	mV
Reference Supply Rejection	2.5 V < V $\mathrm{VOUT}^{\text {< }} 5 \mathrm{~V}$		0.2	5	mV
LOGIC INPUTS					
CLK/SEL Input Low Level	$2.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \mathrm{~V}$			0.2 x VOUT	V
CLK/SEL Input High Level	$2.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & 0.8 \times \\ & \text { VOUT } \end{aligned}$			V
ON, $\overline{\text { ON }}$ Input Low Level (Note 6)	$1.1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 1.8 \mathrm{~V}$			0.2	V
	$1.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \mathrm{~V}$			0.4	
ON, $\overline{\mathrm{ON}}$ Input High Level (Note 6)	$1.1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 1.8 \mathrm{~V}$	$\begin{aligned} & \text { Vout } \\ & -0.2 \end{aligned}$			V
	$1.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \mathrm{~V}$	1.6			
Input Leakage Current	CLK/SEL, $\overline{\mathrm{ON}}, \mathrm{ON}\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, MAX1760ETB, MAX1760HETB)		0.01	1	$\mu \mathrm{A}$
Minimum CLK/SEL Pulse Width			200		ns
Maximum CLK/SEL Rise/Fall Time			100		ns

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	MAX	UNITS
DC-DC CONVERTER				
Output Voltage	$\mathrm{V}_{\mathrm{FB}}<0.1 \mathrm{~V}, \mathrm{CLK} / \mathrm{SEL}=\mathrm{OUT}$, includes load regulation for $0<\mathrm{ILX}<0.55 \mathrm{~A}$	3.17	3.38	V
FB Regulation Voltage	Adjustable output, CLK/SEL = OUT, includes load regulation for $0<1$ LX $<0.55 \mathrm{~A}$	1.215	1.270	V
Internal Oscillator Frequency	CLK/SEL = OUT	0.75	1.2	MHz
Oscillator Maximum Duty Cycle	(Note 3)	80	90	\%
Output Voltage Lockout Threshold	Rising edge (Note 4)	2.00	2.30	V
Supply Current in Shutdown	$\mathrm{V} \overline{\mathrm{ON}}=3.6 \mathrm{~V}$		5	$\mu \mathrm{A}$
No-Load Supply Current	CLK/SEL = GND (Note 5)		185	$\mu \mathrm{A}$
DC-DC SWITCHES				
Switch On-Resistance	N-channel		0.28	Ω
	P-channel		0.45	

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)
(CLK/SEL $=\mathrm{FB}=\mathrm{PGND}=\mathrm{GND}$, ISET $=$ REF, OUT $=$ POUT, VOUT $=3.6 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $\mathbf{+ 8 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted.) (Note 7)

PARAMETER	CONDITIONS	MIN	MAX	UNITS
N-Channel Current Limit		1.0	1.6	A
REFERENCE				
Reference Output Voltage	IREF $=0$	1.230	1.270	V
LOGIC INPUTS				
CLK/SEL Input Low Level	$2.5 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$		$\begin{gathered} 0.2 x \\ \text { Vout } \end{gathered}$	V
CLK/SEL Input High Level	$2.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \mathrm{~V}$	$0.8 x$ Vout		V
ON, $\overline{O N}$ Input Low Level (Note 6)	$1.1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 1.8 \mathrm{~V}$		0.2	V
	$1.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \mathrm{~V}$		0.4	
ON, $\overline{O N}$ Input High Level (Note 6)	$1.1 \mathrm{~V} \leq \mathrm{VOUT}^{5} 1.8 \mathrm{~V}$	Vout + 0.2		V
	$1.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5.5 \mathrm{~V}$	1.6		
Input Leakage Current	CLK/SEL, $\overline{O N}, \mathrm{ON}$		1	$\mu \mathrm{A}$

Note 1: Operating voltage-since the regulator is bootstrapped to the output, once started, the MAX1760 operates down to 0.7 V input.
Note 2: Startup is tested with the circuit shown in Figure 6.
Note 3: Defines maximum step-up ratio.
Note 4: The regulator is in startup mode until this voltage is reached. Do not apply full load current until the output exceeds 2.3 V .
Note 5: Supply current into the OUT pin. This current correlates directly to the actual battery-supply current, but is reduced in value according to the step-up ratio and efficiency.
Note 6: $\overline{\mathrm{ON}}$ (MAX1760) and ON (MAX1760H) have a hysteresis of approximately $0.15 \times$ VOUT.
Note 7: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.

Typical Operating Characteristics

(Circuit of Figure 2, $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

Typical Operating Characteristics (continued)
(Circuit of Figure 2, $\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

StaRTUP VOLTAGE
vs. OUTPUT CURRENT

LIGHT-LOAD SWITCHING WAVEFORMS

$t=400 \mathrm{~ns} / \mathrm{div}$
A = LX PIN, 5V/div
$\mathrm{B}=$ INDUCTOR CURRENT, $200 \mathrm{~mA} / \mathrm{div}$
C = OUTPUT RIPPLE, 50mV/div, AC-COUPLED

LOAD-TRANSIENT RESPONSE

$\mathrm{t}=200 \mathrm{~ms} / \mathrm{div}$
$\mathrm{V}_{\text {IN }}=1.1 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$, IOUT $=0$ AND 0.2 A
$\mathrm{A}=\mathrm{l}$ OUt, $100 \mathrm{~mA} /$ div
$B=V_{\text {OUT }}, 50 \mathrm{mV} / \mathrm{div}, ~ A C-C O U P L E D$

INTERNAL OSCILLATOR FREQUENCY vs. TEMPERATURE

HEAVY-LOAD SWITCHING WAVEFORMS

A = LX PIN, 5V/div
$B=$ INDUCTOR CURRENT, $200 \mathrm{~mA} / \mathrm{div}$
$\mathrm{C}=$ OUTPUT RIPPLE, $50 \mathrm{mV} / \mathrm{div}$ AC-COUPLED $\mathrm{t}=400 \mathrm{~ns} / \mathrm{div}$

400 us/div
$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$ T0 1.4V, IOUT $=70 \mathrm{~mA}$
$\mathrm{A}=\mathrm{V}_{\mathrm{IN}}, 1 \mathrm{~V} / \mathrm{div}$
$B=V_{\text {OUT }}, 5 \mathrm{~mA} /$ div, AC-COUPLED

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

Typical Operating Characteristics (continued)
(Circuit of Figure 2, $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SOFT-START WAVEFORMS
RSS $=500 \mathrm{k} \Omega$, $\mathbf{C s s}=0.1 \mu \mathrm{~F}$

Pin Description

PIN	NAME	FUNCTION
1	ISET	N-Channel Current-Limit Control. For maximum current limit, connect to REF. To reduce current, supply a voltage between REF and GND by means of a resistive voltage-divider. If soft-start is desired, connect a capacitor from ISET to GND. When $\overline{\mathrm{ON}}=$ high, or $\mathrm{V}_{\mathrm{REF}}<80 \%$ of nominal value, an on-chip $100 \mathrm{k} \Omega$ switched resistor discharges this pin to GND.
2	REF	1.250V Voltage Reference Bypass. Connect a $0.22 \mu \mathrm{~F}$ ceramic bypass capacitor to GND. Up to $50 \mu \mathrm{~A}$ of external load current is allowed.
3	GND	Ground. Connect to PGND with short trace.
4	FB	DC-DC Converter Feedback Input. To set fixed output voltage of +3.3 V , connect FB to ground. For adjustable output of 2.5 V to 5.5 V , connect to a resistive divider from OUT to GND. FB set point $=1.24 \mathrm{~V}$.
5	OUT	IC Power, Supplied from the Output. Bypass to GND with a $0.68 \mu \mathrm{~F}$ ceramic capacitor, and connect to POUT with a series 4.7Ω resistor (Figure 2).
6	CLK/SEL	Clock Input for the DC-DC Converter. Also serves to program operating mode of switcher as follows: CLK/SEL = LO: Normal operation-operates at a fixed frequency, automatically switching to low-power mode if load is minimized. CLK/SEL = HI: Forced-PWM mode-operates in low-noise, constant-frequency mode at all loads. CLK/SEL = Clocked: Forced-PWM mode with the internal oscillator synchronized to CLK in 500 kHz to 1200 kHz range.
7	PGND	Source of N-Channel Power MOSFET Switch
8	LX	Inductor Connection
9	POUT	Power Output. P-channel synchronous-rectifier source.
10	$\overline{\mathrm{ON}}$	MAX1760 Enable Input. When $\overline{\mathrm{ON}}$ is low, the IC is on. Connect to GND for normal operation.
	ON	MAX1760H Enable Input. When ON is high, the IC is on. Connect to OUT for normal operation.
-	EP	Exposed Paddle (TDFN Package Only). Internally connected to GND. Connect to a large ground plane to maximize thermal dissipation. Do not use as sole ground connection.

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

Figure 1. Functional Diagram

Detailed Description

The MAX1760 is a highly efficient, low-noise power supply for portable RF and hand-held instruments. It combines a boost switching regulator, N-channel power MOSFET, P-channel synchronous rectifier, precision reference, and shutdown control (Figure 1).
The DC-DC converter boosts a 1-cell to 3-cell battery voltage input to a fixed 3.3 V or adjustable voltage between 2.5 V and 5.5 V . An external Schottky diode is required for output voltages greater than 4 V . The MAX1760 guarantees startup with an input voltage as low as 1.1 V and remains operational down to an input of just 0.7 V . It is optimized for use in cellular phones and other applications requiring low noise and low quiescent current for maximum battery life. It features fixed-frequency operation at medium and heavy loads, but at light loads, switches only as needed for optimum efficiency. This device is also capable of constant-frequency (1 MHz), low-noise PWM operation at all load currents, or frequency-synchronized PWM operation when connected to an external clock. Table 1 lists some typical outputs. Shutdown reduces quiescent current to just $1 \mu \mathrm{~A}$. Figure 2 shows the standard application circuit for the MAX1760.

Figure 2. Standard Application Circuit

Step-Up Converter

During DC-DC converter operation, the internal N -channel MOSFET switch turns on for the first part of each cycle, allowing current to ramp up in the inductor and store energy in a magnetic field. During the second part of each cycle, the MOSFET turns off and inductor current flows through the synchronous rectifier to the

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

Table 1. Typical Available Output Current

NUMBER OF NiCd/NiMH CELLS	INPUT VOLTAGE (V)	OUTPUT VOLTAGE (V)	OUTPUT CURRENT $(\mathbf{m A})$
1	1.2	3.3	350
2	2.4	3.3	800
	2.4	5.0	500
	3.6	5.0	750

Table 2. Selecting the Operating Mode

CLK/SEL	MODE	FEATURES
0	Normal operation	High efficiency at all loads. Fixed frequency at all but light loads.
1	Forced PWM	Low noise, fixed frequency at all loads.
External clock	Synchronized PWM	Low noise, fixed frequency at all loads.
500 kHz to 1.2 MHz		

output filter capacitor and the load. As the energy stored in the inductor is depleted, the current ramps down and the synchronous rectifier turns off. At light loads, the device operates at fixed frequency or only as needed to maintain regulation, depending on the CLK/SEL setting (Table 2).

Normal Operation

Pulling CLK/SEL low selects the MAX1760's normal operating mode. In this mode, the device operates in PWM when driving medium-to-heavy loads, and automatically switches to PFM if the load requires less power. PFM operation allows higher efficiency than PWM under light-load conditions.

Forced-PWM Operation

When CLK/SEL is high, the MAX1760 operates in a lownoise PWM-only mode. During forced-PWM operation, the MAX1760 switches at a constant frequency (1 MHz) and modulates the MOSFET switch pulse width to control the power transferred per cycle to regulate the output voltage. Switching harmonics generated by fixed-frequency operation are consistent and easily filtered. See the Noise Spectrum plot in the Typical Operating Characteristics.

Synchronized-PWM Operation

The MAX1760 can be synchronized in PWM mode to an external frequency of 500 kHz to 1.2 MHz by applying an external clock signal to CLK/SEL. This allows interference to be minimized in wireless applications. The synchronous rectifier is active during synchronized-PWM operation.

Synchronous Rectifier

The MAX1760 features an internal, P-channel synchronous rectifier to enhance efficiency. Synchronous rectification provides 5% improved efficiency over similar nonsynchronous boost regulators. In PWM mode, the synchronous rectifier is turned on during the second half of each switching cycle. In low-power mode, an internal comparator turns on the synchronous rectifier when the voltage at LX exceeds the boost regulator output, and turns it off when the inductor current drops below 60 mA . When setting output voltages greater than 4 V , an external 0.5 A Schottky diode must be connected in parallel with the on-chip synchronous rectifier.

Low-Voltage Startup Oscillator

The MAX1760 uses a CMOS, low-voltage startup oscillator for a 1.1 V guaranteed minimum startup input voltage. At startup, the low-voltage oscillator switches the N-channel MOSFET until the output voltage reaches 2.15 V . Above this level, the normal boost-converter feedback and control circuitry take over. Once the device is in regulation, it can operate down to 0.7 V input since internal power for the IC is bootstrapped from the output through OUT. Do not apply full load until the output exceeds 2.3 V .

Shutdown

The MAX1760 has a shutdown mode that reduces quiescent current to $0.1 \mu \mathrm{~A}$. During shutdown ($\overline{\mathrm{ON}}=$ high on MAX1760, $\mathrm{ON}=$ low on MAX1760H), the reference and all feedback and control circuitry are off. During shutdown, the output voltage is one diode drop below the input voltage.

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

Figure 3. Connecting Resistors for External Feedback

Figure 4. Soft-Start with Maximum Switch Limit Current

Reference

The MAX1760 has an internal $1.250 \mathrm{~V} \pm 1 \%$ reference. Connect a $0.22 \mu \mathrm{~F}$ ceramic bypass capacitor from REF to GND within 0.2in (5 mm) of the REF pin. REF can source up to $50 \mu \mathrm{~A}$ of external load current.

Design Procedure

Setting the Output Voltages

For a fixed 3.3 V output, connect FB to GND. To set other output voltages between 2.5 V and 5.5 V , connect a resistor voltage-divider to FB from OUT to GND (Figure 3). The input bias current into FB is $<20 \mathrm{nA}$, allowing large-value divider resistors without sacrificing accuracy. Connect the resistor voltage-divider as close to the IC as possible, within 0.2in (5 mm) of FB. Choose R2 of $270 \mathrm{k} \Omega$ or less, then calculate R1 using:

$$
R 1=R 2\left(\frac{V_{\mathrm{OUT}}}{V_{\mathrm{FB}}}-1\right)
$$

Figure 5. Soft-Start with Reduced Switch Current Limit
where $V_{F B}$, the boost-regulator feedback set point, is 1.24 V .

Setting the Switch Current Limit and Soft-Start

The ISET pin adjusts the inductor current limit and implements soft-start. With ISET connected to REF, the inductor current limits at 1.25A. With ISET connected to a resistive divider set from REF to GND, the current limit is reduced according to:

$$
\mathrm{I}_{\mathrm{LIM}}=1.25 \mathrm{~A}\left(\frac{\mathrm{~V}_{\mathrm{ISET}}}{1.25 \mathrm{~V}}\right)
$$

Implement soft-start by placing a resistor from ISET to REF and a capacitor from ISET to GND. In shutdown, ISET is discharged to GND through an on-chip $100 \mathrm{k} \Omega$ resistor. At power-up, ISET is OV and the LX current is zero. As the capacitor voltage rises, the current increases and the output voltage rises. The soft-start

0.8A, Low-Noise, 1 MHz , Step-Up DC-DC Converter

Table 3. Component Selection Guide

PRODUCTION METHOD	INDUCTORS	CAPACITORS	DIODES
Surface mount	TOKO type D52LC	AVX TPS series	EIC SB series
	TOKO type D518LC	Kemet T510 series	Motorola MBR0520L
	Sumida CDRH5D18	Sanyo POSCAP series	-
	Sumida CDRH4D28	-	-

Table 4. Component Suppliers

SUPPLIER	PHONE
AVX	USA: 843-448-9411
EIC	USA: 916-941-0712
Kemet	USA: 810-287-2536
Motorola	USA: 408-629-4789 Japan: 81-45-474-7030
Sumida	USA: 847-956-0666 Japan: 011-81-3-3667-3302
TOKO	USA: 847-297-0070

Note: Please indicate that you are using the MAX1760 when contacting these component suppliers.
time constant is:

$$
\mathrm{t}_{\mathrm{SS}}=\mathrm{R}_{\mathrm{SS}} \mathrm{C}_{\mathrm{SS}}
$$

where Rss $\geq 470 \mathrm{k} \Omega$.
Placing a capacitor across the lower resistor of the cur-rent-limiting resistive divider provides both current-limit and soft-start features simultaneously (Figures 4 and 5).

Inductor Selection

The MAX1760's high switching frequency allows the use of a small $3.3 \mu \mathrm{H}$ surface-mount inductor. The chosen inductor should generally have a saturation current rating exceeding the N -channel switch current limit; however, it is acceptable to bias the inductor current into saturation by as much as 20% if a slight reduction in efficiency is acceptable. Lower current-rated inductors may be used if ISET is employed to reduce the peak inductor current (see the Setting the Switch Current Limit and Soft-Start section). For high efficiency, choose an inductor with a high-frequency ferrite core material to reduce core losses. To minimize radiated noise, use a toroid or shielded inductor. See Table 3 for suggested components and Table 4 for a list of component suppliers. Connect the inductor from the battery to the LX pin as close to the IC as possible.

External Diode

For output voltages greater than 4 V , an external Schottky diode must be connected from LX to POUT, in parallel with the on-chip synchronous rectifier (Figure 6). The diode should be rated for 0.5A. Representative devices are Motorola MBR0520L, Nihon EP05Q03L, or generic 1N5817. This external diode is also recommended for applications that must start with input voltages at or below 1.8 V . The Schottky diode carries current during startup and after the synchronous rectifier turns off; thus, its current rating only needs to be 500 mA . Connect the diode as close to the IC as possible. Do not use ordinary rectifier diodes; their slow switching speeds and long reverse-recovery times render them unacceptable. For circuits that do not require startup with inputs below 1.8 V and have an output of 4 V or less, no external diode is needed.

Input and Output Filter Capacitors

Choose input and output filter capacitors that will service the input and output peak currents with acceptable voltage ripple. Choose input capacitors with working voltage ratings over the maximum input volt-

Figure 6. Connection with External Schottky Diode for Output Voltages Greater than 4V, or to Assist Low-Voltage Startup

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

age, and output capacitors with working voltage ratings higher than the output.
The input filter capacitor reduces peak currents drawn from the input source and also reduces input switching noise. The input voltage source impedance determines the required value of the input capacitor. When operating directly from one or two NiMH cells placed close to the MAX1760, use a single $33 \mu \mathrm{~F}$ low-ESR input filter capacitor. With higher impedance batteries, such as alkaline and $\mathrm{Li}+$, a higher value input capacitor may improve efficiency.
The output filter capacitor reduces output ripple voltage and provides the load with transient peak currents when necessary. For the output, a $100 \mu \mathrm{~F}$, low-equiva-lent-series-resistance (ESR) capacitor is recommended for most applications.
Sanyo POSCAP, Panasonic SP/CB, and Kemet T510 are good low-ESR capacitors. Low-ESR tantalum capacitors offer a good tradeoff between price and performance. Do not exceed the ripple current ratings of tantalum capacitors. Avoid aluminum electrolytic capacitors; their high ESR typically results in higher output ripple voltage.

Other External Components
Two ceramic bypass capacitors are required for proper operation. Bypass REF to GND with $0.22 \mu \mathrm{~F}$. Also, bypass OUT to GND with a $0.68 \mu \mathrm{~F}$ ceramic capacitor, and connect OUT to POUT with a 4.7Ω resistor. Each of these components should be placed as close to its respective IC pins as possible, within $0.2 \mathrm{in}(5 \mathrm{~mm})$. Table 4 lists suggested suppliers.

Layout Considerations High switching frequencies and large peak currents make PCB layout a critical part of design. Poor design causes excessive EMI and ground bounce, both of which can cause instability or regulation errors by corrupting the voltage and current feedback signals.
Power components-such as the inductor, converter IC, filter capacitors, and output diode-should be placed as close together as possible, and their traces should be kept short, direct, and wide. Keep the voltage feedback network very close to the IC, within 0.2 in (5 mm) of the FB pin. Keep noisy traces, such as those from the LX pin, away from the voltage feedback network and guarded from them using grounded copper. Refer to the MAX1760 evaluation kit for a full PCB example.

Chip Information

TRANSISTOR COUNT: 1361

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

0.8A, Low-Noise, 1 MHz, Step-Up DC-DC Converter

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

0.8A, Low-Noise, 1 MHz , Step-Up DC-DC Converter

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History
Pages changed at Rev 3: 1, 2, 6, 11, 14

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1642B-18IMC MCP1642D-ADJIMC

