Low-Voltage, 400mA Step-Down DC-DC Converters in SOT23

General Description

The MAX1920/MAX1921 step-down converters deliver over 400 mA to outputs as low as 1.25 V . These converters use a unique proprietary current-limited control scheme that achieves over 90% efficiency. These devices maintain extremely low quiescent supply current $(50 \mu A)$, and their high 1.2 MHz (max) operating frequency permits small, low-cost external components. This combination makes the MAX1920/MAX1921 excellent high-efficiency alternatives to linear regulators in space-constrained applications.

Internal synchronous rectification greatly improves efficiency and eliminates the external Schottky diode required in conventional step-down converters. Both devices also include internal digital soft-start to limit input current upon startup and reduce input capacitor requirements.
The MAX1920 provides an adjustable output voltage (1.25V to 4 V). The MAX1921 provides factory-preset output voltages (see the Selector Guide). Both are available in space-saving 6-pin SOT23 packages. The MAX1920 is also available in a 6-pin TDFN package.

Applications

- Next-Generation Wireless Handsets
- PDAs, Palmtops, and Handy-Terminals
- Battery-Powered Equipment
- CDMA Power Amplifier Supply

Typical Operating Circuit

Features

- 400 mA Guaranteed Output Current
- Internal Synchronous Rectifier for > 90\% Efficiency
- Tiny 6-Pin SOT23 Package
- Available in 6-Pin TDFN Package (MAX1920)
- Up to 1.2MHz Switching Frequency for Small External Components
- $50 \mu \mathrm{~A}$ Quiescent Supply Current
- $0.1 \mu \mathrm{~A}$ Logic-Controlled Shutdown
- 2 V to 5.5 V Input Range
- Fixed $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$, and 3.3V Output Voltages (MAX1921)
- Adjustable Output Voltage (MAX1920)
- $\pm 1.5 \%$ Initial Accuracy
- Soft-Start Limits Startup Current

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1920EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6
MAX1920EUT+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6
MAX1920ETT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 TDFN
MAX1920ETT+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 TDFN
MAX1921EUT_- T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6
MAX1921EUT__+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6

Note: The MAX1921 offers five preset output voltage options. See the Selector Guide, and then insert the proper designator into the blanks above to complete the part number. +Denotes a lead-free package.

Pin Configuration

A"+" SIGN WILL REPLACE THE FIRST PIN INDICATOR ON LEAD-FREE PACKAGES.

Low-Voltage, 400mA Step-Down DC-DC Converters in SOT23

Absolute Maximum Ratings

IN, FB, SHDN to AGND..-0.3V to +6V
OUT to AGND, LX to PGND.........................-0.3V to (IN + 0.3V)
AGND to PGND.. 0.3 V to +0.3 V
OUT Short Circuit to GND
ation $\left(T_{A}=+70^{\circ} \mathrm{C}\right)$
ontinuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
6 -Pin SOT23-6 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots695 \mathrm{~mW}$ 6 -Pin TDFN (derate $18.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... .1454 .5 mW
Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature
..
\qquad -
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) \qquad $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{IN}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical parameters are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	$\mathrm{V}_{\text {IN }}$	$\mathrm{l}(\mathrm{LX})<400 \mathrm{~mA}$	2.5		5.5	V
		$\begin{array}{\|l\|} \hline \mathrm{I}(\mathrm{LX})<200 \mathrm{~mA} \\ \text { (MAX1921EUT15, MAX1921EUT18) } \end{array}$	2.0		2.5	
Startup Voltage					2.0	V
UVLO Threshold	UVLO	$\mathrm{V}_{\text {IN }}$ rising		1.85	1.95	V
		$\mathrm{V}_{\text {IN }}$ falling	1.50	1.65		
UVLO Hysteresis				200		mV
Quiescent Supply Current	IIN	No switching, no load		50	70	$\mu \mathrm{A}$
Quiescent Supply Current Dropout	IN	$\overline{\text { SHDN }}=\mathrm{IN}, \mathrm{OUT} / \mathrm{FB}=0$		220	300	$\mu \mathrm{A}$
Shutdown Supply Current	ISHDN	$\overline{\text { SHDN }}=\mathrm{GND}$		0.1	4.0	$\mu \mathrm{A}$
Output Voltage Accuracy (MAX1921)		$\mathrm{I}_{\text {OUT }}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1.5		+1.5	\%
		$\mathrm{I}_{\text {OUT }}=0$ to $400 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-3		+3	
		$\mathrm{I}_{\text {OUT }}=0$ to $200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-3		+3	
OUT BIAS Current	Iout	$\overline{\text { SHDN }}=0$			1	$\mu \mathrm{A}$
		OUT at regulation voltage		8	16	
Output Voltage Range (MAX1920)		Figure 4, $\mathrm{IN}=4.5 \mathrm{~V}$	1.25		4.00	V
FB Feedback Threshold (MAX1920)	$V_{\text {FB }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.231	1.25	1.269	V
			1.220	1.25	1.280	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.210		1.280	
FB Feedback Hysteresis (MAX1920)	$\mathrm{V}_{\mathrm{HYS}}$			5		mV
FB Bias Current (MAX1920)	$\mathrm{I}_{\text {FB }}$	$\mathrm{FB}=1.5 \mathrm{~V}$		0.01	0.20	$\mu \mathrm{A}$
Load Regulation		I OUT $=0$ to 400 mA		0.005		\%/mA
Line Regulation		$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V		0.2		\%/V
SHDN Input Voltage High	V_{IH}		1.6			V
$\overline{\text { SHDN }}$ Input Voltage Low	V_{IL}				0.4	V
$\overline{\text { SHDN }}$ Leakage Current	ISHDN	$\overline{\text { SHDN }}=\mathrm{GND}$ or IN		0.001	1.000	$\mu \mathrm{A}$
High-Side Current Limit	lıIMP		525	730	950	mA

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{IN}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical parameters are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Low-Side Current Limit	liImN		350	550	800	mA
High-Side On-Resistance	RONHS	$\mathrm{L}_{\mathrm{LX}}=-40 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}$		0.6	1.1	Ω
Rectifier On-Resistance	RONSR	$\mathrm{l}_{\mathrm{LX}}=40 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}$		0.5	0.9	Ω
Rectifier Off-Current Threshold	ILXOFF			60		mA
LX Leakage Current	ILXLEAK	$\mathrm{IN}=\overline{\mathrm{SHDN}}=5.5 \mathrm{~V}, \mathrm{LX}=0$ to IN		0.1	5.0	$\mu \mathrm{A}$
LX Reverse Leakage Current	ILXLKR	IN unconnected, $\mathrm{V}_{\mathrm{LX}}=5.5 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{GND}$		0.1	5.0	$\mu \mathrm{A}$
Minimum On-Time	ton(MIN)		0.28	0.4	0.5	$\mu \mathrm{s}$
Minimum Off-Time	toff(MIN)		0.28	0.4	0.5	$\mu \mathrm{s}$

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

Typical Operating Characteristics

($\mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}$ ceramic, Circuit of Figure 1, components of Table 1, unless otherwise noted.)

Typical Operating Characteristics (continued)

($\mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}$ ceramic, Circuit of Figure 1, components of Table 1, unless otherwise noted.)

Pin Description

PIN		NAME	FUNCTION
SOT	TDFN*		
1	2	IN	Supply voltage input for MAX1921EUT15 and MAX1921EUT18 is 2 V to 5.5 V . Supply voltage input for MAX1920 and other voltage versions of MAX1921 is 2.5 V to 5.5 V . Bypass IN to GND with a $2.2 \mu \mathrm{~F}$ ceramic capacitor as close as possible to IN .
2	6	AGND	Analog Ground. Connect to PGND.
3	1	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. Connect $\overline{\text { SHDN }}$ to IN for normal operation. In shutdown, LX becomes high-impedance and quiescent current drops to $0.1 \mu \mathrm{~A}$.
4	-	OUT	MAX1921 Voltage Sense Input. OUT is connected to an internal voltage-divider.
4	5	FB	MAX1920 Voltage Feedback Input. FB regulates to 1.25 V nominal. Connect FB to an external resistive voltage-divider between the output voltage and GND.
5	3	PGND	Power Ground. Connect to AGND.
6	4	LX	Inductor Connection

*MAX1920 only.

Detailed Description

The MAX1920/MAX1921 step-down DC-DC converters deliver over 400 mA to outputs as low as 1.25 V . They use a unique proprietary current-limited control scheme that maintains extremely low quiescent supply current $(50 \mu \mathrm{~A})$, and their high 1.2 MHz (max) operating frequency permits small, low-cost external components.

Control Scheme

The MAX1920/MAX1921 use a proprietary, current-limited control scheme to ensure high-efficiency, fast transient response, and physically small external components. This control scheme is simple: when the output voltage is out of regulation, the error comparator begins a switching cycle by turning on the high-side switch. This switch remains on until the minimum on-time of 400 ns expires and the output voltage regulates or the current-limit threshold is exceeded. Once off, the high-side switch remains off until the minimum off-time of 400 ns expires and the output voltage falls out of regulation. During this period, the lowside synchronous rectifier turns on and remains on until

Figure 1. Typical Output Application Circuit (MAX1921)
either the high-side switch turns on again or the inductor current approaches zero. The internal synchronous rectifier eliminates the need for an external Schottky diode.
This control scheme allows the MAX1920/MAX1921 to provide excellent performance throughout the entire loadcurrent range. When delivering light loads, the high-side switch turns off after the minimum on-time to reduce peak inductor current, resulting in increased efficiency and reduced output voltage ripple. When delivering medium and higher output currents, the MAX1920/MAX1921 extend either the on-time or the off-time, as necessary to maintain regulation, resulting in nearly constant frequency operation with high-efficiency and low-output voltage ripple.

Shutdown Mode

Connecting SHDN to GND places the MAX1920/ MAX1921 in shutdown mode and reduces supply current to $0.1 \mu \mathrm{~A}$. In shutdown, the control circuitry, internal switching MOSFET, and synchronous rectifier turn off and LX becomes high impedance. Connect SHDN to IN for normal operation.

Soft-Start

The MAX1920/MAX1921 have internal soft-start circuitry that limits current draw at startup, reducing transients on the input source. Soft-start is particularly useful for higher impedance input sources, such as $\mathrm{Li}+$ and alkaline cells. Soft-start is implemented by starting with the current limit at 25% of its full current value and gradually increasing it in 25% steps until the full current limit is reached. See Soft-Start and Shutdown Response in the Typical Operating Characteristics.

Low-Voltage, 400mA Step-Down DC-DC Converters in SOT23

Design Procedure

The MAX1920/MAX1921 are optimized for small external components and fast transient response. There are several application circuits (Figures 1 through 4) to allow the choice between ceramic or tantalum output capacitor and internally or externally set output voltages. The use of a small ceramic output capacitor is preferred for higher reliability, improved voltage-positioning transient response, reduced output ripple, and the smaller size and greater availability of ceramic versus tantalum capacitors.

Voltage Positioning

Figures 1 and 2 are the application circuits that utilize small ceramic output capacitors. For stability, the circuit obtains feedback from the LX node through R1, while load transients are fed-forward through CFF. Because there is no D.C. feedback from the output, the output voltage exhibits load regulation that is equal to the output load current multiplied by the inductor's series resistance. This small amount of load regulation is similar to voltage positioning as used by high-powered microprocessor supplies intended for personal computers. For the MAX1920/ MAX1921, voltage positioning eliminates or greatly reduces undershoot and overshoot during load transients (see the Typical Operating Characteristics), which effectively halves the peak-to-peak output voltage excursions compared to traditional step-down converters.

Table 1. MAX1921 Suggested Components for Figure 1

OUTPUT	INPUT SOURCE		
	5 V	$\begin{gathered} 3.3 \mathrm{~V}, 1 \mathrm{Li}+, \\ 3 \times \mathrm{AA} \end{gathered}$	$2.5 \mathrm{~V}, 2 \times \mathrm{AA}$
$\begin{aligned} & 3.3 \mathrm{~V} \\ & 3.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{L}=10 \mu \mathrm{H}, \mathrm{C}_{\mathrm{OUT}}=10 \mu \mathrm{~F}, \\ \mathrm{R} 1=8.25 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FF}}=3300 \mathrm{pF} \end{gathered}$		N/A
2.5 V			
$\begin{aligned} & 1.8 \mathrm{~V} \\ & 1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{L}=10 \mu \mathrm{H}, \\ \mathrm{COUT}=10 \mu \mathrm{~F}, \\ \mathrm{R} 1=8.25 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{FF}}=3300 \mathrm{pF} \end{gathered}$		

For convenience, Table 1 lists the recommended external component values for use with the MAX1921 application circuit of Figure 1 with various input and output voltages.

Induction Selection

In order to calculate the smallest inductor, several calculations are needed. First, calculate the maximum duty cycle of the application as:

$$
\text { DutyCycle(MAX) }=\frac{V_{\text {OUT }}}{V_{\text {IN }}(\text { MIN })} \times 100 \%
$$

Second, calculate the critical voltage across the inductor as:

$$
\begin{gathered}
\text { if DutyCycle }(\mathrm{MAX})<50 \% \\
\text { then } \mathrm{V}_{\text {CRITICAL }}=\left(\mathrm{V}_{\text {IN }}(\mathrm{MIN})-\mathrm{V}_{\mathrm{OUT}}\right) \\
\text { else } \mathrm{V}_{\text {CRITICAL }}=\mathrm{V}_{\mathrm{OUT}}
\end{gathered}
$$

Last, calculate the minimum inductor value as:

$$
\mathrm{L}(\mathrm{MIN})=2.5 \times 10^{-6} \times \mathrm{V}_{\mathrm{CRITI}}
$$

Select the next standard value larger than $L(M I N)$. The L(MIN) calculation already includes a margin for inductance tolerance. Although values much larger than L(MIN) work, transient performance, efficiency, and inductor size suffer.
A 550 mA rated inductor is enough to prevent saturation for output currents up to 400 mA . Saturation occurs when the inductor's magnetic flux density reaches the maximum level the core can support and inductance falls. Choose a low DC-resistance inductor to improve efficiency. Tables 2 and 3 list some suggested inductors and suppliers.

Table 2. Suggested Inductors

PART NUMBER	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}} \\ \text { (ohms max) } \end{gathered}$	Isat (A)	SIZE
Coilcraft LPO1704	4.7	0.200	1.10	$\begin{gathered} 6.6 \times 5.5 \times 1.0 \\ =36.3 \mathrm{~mm}^{3} \end{gathered}$
	6.8	0.320	0.90	
	10	0.410	0.80	
$\begin{gathered} \text { Sumida } \\ \text { CDRH3D16 } \end{gathered}$	4.7	0.080	0.90	$\begin{gathered} 3.8 \times 3.8 \times 1.8 \\ =26.0 \mathrm{~mm}^{3} \end{gathered}$
	6.8	0.095	0.73	
	10	0.160	0.55	
$\begin{aligned} & \text { Sumida } \\ & \text { CDRH2D18 } \end{aligned}$	4.7	0.081	0.63	$\begin{gathered} 3.2 \times 3.2 \times 2.0 \\ =20.5 \mathrm{~mm}^{3} \end{gathered}$
	6.8	0.108	0.57	
$\begin{aligned} & \text { Toko } \\ & \text { D312F } \end{aligned}$	4.7	0.38	0.74	$\begin{gathered} 3.6 \times 3.6 \times 1.2 \\ =15.6 \mathrm{~mm}^{3} \end{gathered}$
	10	0.79	0.50	
$\begin{aligned} & \text { Toko } \\ & \text { D412F } \end{aligned}$	4.7	0.230	0.84	$\begin{gathered} 4.6 \times 4.6 \times 1.2 \\ =25.4 \mathrm{~mm}^{3} \end{gathered}$
	10	0.490	0.55	
$\begin{aligned} & \text { Toko } \\ & \text { D52LC } \end{aligned}$	4.7	0.087	1.14	$\begin{gathered} 5.0 \times 5.0 \times 2.0 \\ =50.0 \mathrm{~mm}^{3} \end{gathered}$
	6.8	0.105	0.95	
	10	0.150	0.76	

Capacitor Selection

For nearly all applications, the input capacitor, C_{IN}, may be as small as $2.2 \mu \mathrm{~F}$ ceramic with X 5 R or X 7 R dielectric. The input capacitor filters peak currents and noise at the voltage source and, therefore, must meet the input ripple requirements and voltage rating. Calculate the maximum RMS input current as:

$$
\mathrm{I}_{\text {IN }}(\mathrm{RMS})=\mathrm{I}_{\text {OUT }}(\mathrm{MAX}) \times \frac{\sqrt{\mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}}{\mathrm{V}_{\text {IN }}}
$$

The output capacitor, COUT, may be either ceramic or tantalum depending upon the chosen application circuit (see Figures 1 through 4). Table 3 lists some suggested capacitor suppliers.

Ceramic Output Capacitor

For ceramic COUT, use the application circuit of Figure 1 or Figure 2. Calculate the minimum capacitor value as:

$$
\operatorname{COUT}(\mathrm{MIN})=2.5 \times 10^{-6} \times \mathrm{V}_{\mathrm{CRITICAL}}
$$

Select the next standard value larger than $\mathrm{C}_{\mathrm{OUT}}(\mathrm{MIN})$. The COUT(MIN) calculation already includes a margin for capacitor tolerance. Values much larger than COUT(MIN) always improve transient performance and stability, but capacitor size and cost increase.

Figure 2. Typical Application Circuit (MAX1920)

Tantalum Output Capacitor

For tantalum CoUT, use the application circuit of Figure 3 or Figure 4. With tantalum COUT, the equivalent series resistance (ESR) of COUT must be large enough for stability. Generally, 25 mV of ESR-ripple at the feedback node is sufficient. The simplified calculation is:

$$
\operatorname{ESR}_{\mathrm{COUT}}(\mathrm{MIN})=8.0 \times 10^{-2} \times \mathrm{V}_{\text {OUT }}
$$

Because tantalum capacitors rarely specify minimum ESR, choose a capacitor with typical ESR that is about twice as much as ESR ${ }_{\text {COUT }}(\mathrm{MIN})$. Although ESRs greater than this work, output ripple becomes larger.
For tantalum COUT, calculate the minimum output capacitance as:

$$
\mathrm{C}_{\text {OUT }}(\mathrm{MIN})=1.25 \times \frac{\mathrm{L} \times \mathrm{I}_{\text {OUT }}(\mathrm{MAX})}{\mathrm{ESR}_{\text {COUT }}(\mathrm{MIN}) \times \mathrm{V}_{\text {CRITICAL }}}
$$

The 1.25 multiplier is for capacitor tolerance. Select any standard value larger than COUT(MIN).

Feedback and Compensation

The MAX1921 has factory preset output voltages of 1.5 V , $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$, and 3.3 V , while the MAX1920 is externally adjusted by connecting FB to a resistive voltage-divider. When using a ceramic output capacitor, the feedback network must include a compensation feed-forward capacitor, C_{FF}.

Figure 3. MAX1921 Application Circuit Using Tantalum Output Capacitor

Low-Voltage, 400mA Step-Down DC-DC Converters in SOT23

Table 3. Component Suppliers

SUPPLIER		PHONE	WEBSITE
Coilcraft	$847-639-6400$	www.coilcraft.com	
Kemet	$408-986-0424$	www.kemet.com	
Murata			www.murata.com
Sumida	USA	$847-956-0666$	
	Japan	$81-3-3607-5111$	
	USA	$408-573-4150$	www.T-Yuden.com
	Japan	$81-3-3833-5441$	
Toko	USA	$847-297-0070$	www.tokoam.com
	Japan	$81-3-3727-1161$	www.toko.co.jp

MAX1921 Using Ceramic Cout

When using the application circuit of Figure 1, the inductor's series resistance causes a small amount of load regulation, as desired for a voltage-positioning load transient response. Choose R1 such that $\mathrm{V}_{\text {OUT }}$ is high at no load by about half of this load regulation. The simplified calculation is:

$$
\mathrm{R} 1=5 \times 10^{4} \times \mathrm{R}_{\mathrm{L}}(\mathrm{MAX})
$$

where $R_{L}(M A X)$ is the maximum series resistance of the inductor. Select a standard resistor value that is within 20% of this calculation.
Next, calculate $C_{F F}$ for 25 mV ripple at the internal feedback node. The simplified calculation is:

$$
C_{F F}=2.5 \times 10^{-5} / \mathrm{R} 1
$$

where R 1 is the standard resistor value that is used. Select a standard capacitor value that is within 20% of the calculated C_{FF}.

Figure 4. MAX1920 Application Circuit Using Tantalum Output Capacitor

MAX1920 Using Ceramic CoUT

When using the application circuit of Figure 2, the inductor's series resistance causes a small amount of load regulation, as desired for a voltage-positioning load transient response. Choose R1 and R2 such that VOUT is high at no load by about half of this load regulation:

$$
\mathrm{R} 1=\mathrm{R} 2 \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}+\mathrm{R}_{\mathrm{L}} \times \mathrm{I}_{\mathrm{OUT}}(\mathrm{MAX}) / 2}{\mathrm{~V}_{\mathrm{REF}}}-1\right)
$$

where R 2 is chosen in the $50 \mathrm{k} \Omega$ to $500 \mathrm{k} \Omega$ range, $\mathrm{V}_{\mathrm{REF}}$ $=1.25 \mathrm{~V}$ and R_{L} is the typical series resistance of the inductor. Use 1% or better resistors.
Next, calculate the equivalent resistance at the FB node as:

$$
R e q=R 1 \| R 2=\frac{R 1 \times R 2}{R 1+R 2}
$$

Then, calculate C_{FF} for 25 mV ripple at FB. The simplified calculation is:

$$
C_{F F}=2.5 \times 10^{-5} / \operatorname{Req}
$$

Select a standard capacitor value that is within 20% of the calculated C_{FF}.

MAX1920 Using Tantalum COUT

When using the application circuit of Figure 4, choose R1 and R2 such as to obtain the desired $\mathrm{V}_{\text {OUT }}$:

$$
\mathrm{R} 1=\mathrm{R} 2 \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{REF}}}-1\right)
$$

where R 2 is chosen to be less than $50 \mathrm{k} \Omega$ and $\mathrm{V}_{\text {REF }}=$ 1.25 V . Use 1% or better resistors.

Layout Considerations

High switching frequencies make PC board layout a very important part of design. Good design minimizes excessive EMI on the feedback paths and voltage gradients in the ground plane, both of which can result in instability or regulation errors. Connect the inductor, input filter capacitor, and output filter capacitor as close to the device as possible, and keep their traces short, direct, and wide. Connect their ground pins at a single common node in a star ground configuration. The external voltage-feedback network should be very close to the FB pin, within 0.2in (5 mm). Keep noisy traces, such as the LX trace, away from the voltagefeedback network; also keep them separate, using grounded copper. The MAX1920/MAX1921 evaluation kit data sheet includes a proper PC board layout and routing scheme.

Selector Guide

PART	V $_{\text {OUT }}$ (V)	TOP MARK
MAX1920EUT	Adjustable	ABCO
MAX1920ETT	Adjustable	ADR
MAX1921EUT33	3.3	ABCJ
MAX1921EUT30	3.0	ABCK
MAX1921EUT25	2.5	ABCL
MAX1921EUT18	1.8	ABCM
MAX1921EUT15	1.5	ABCN

Chip Information

TRANSISTOR COUNT: 1467

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

COMMON DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.	
A	0.70	0.75	0.80	
D	2.90	3.00	3.10	
E	2.90	3.00	3.10	
A1	0.00	0.025	0.05	
L	0.20	0.30	0.40	
k	0.25 MIN.			
A2	0.20 REF.			

PACKAGE VARIATIONS							
PKG. CODE	N	D 2	E 2	e	JEDEC SPEC	b	$[(\mathrm{N} / 2)-1]$ x e
T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
T633-2C	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
T633MK-1	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T833-2C	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033-1C	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033MK-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033-2	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-2C	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433-3F	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF

NOTES:

1. ALL DIMENSIONS ARE $I N \mathrm{~mm}$. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 \& T1433-2.
6. " N " IS THE TOTAL NUMBER OF LEADS.
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
9. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PKG. CODES.

(1) maxim integrated			
TTLE: PACKAGE OUTLINE, $6,8,10$ \& 14L, TDFN, EXPDSED PAD, $3 \times 3 \times 0.75 \mathrm{~mm}$			
APPROVAL JEROLD LEE 03/31/14	DOCUMENT CONTROL NO $21-0137$	$\stackrel{\text { Rev. }}{\square}$	2/2

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or " - " in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

NaTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. FIGT LENGTH MEASURED AT INTERCEPT PGINT BETWEEN DATUM A \& lead surface
3. PACKAGE DUTLINE EXCLUSIVE \quad FF MDLD FLASH \& METAL BURR. MILD FLASH, PROTRUSION DR METAL BURR SHDULD NDT EXCEED 0.25 mm .
4. PACKAGE dutLine inclusive bf salder plating.
5. PIN 1 IS LIWER LEFT PIN WHEN READING TUP MARK FRIM LEFT TD RIGHT. (SEE EXAMPLE TIP MARK)
6. PIN 1 I.D. DUT IS $0.3 \mathrm{~mm} \varnothing$ MIN. LICATED ABCVE PIN 1 .
7. MEETS JEDEC MD178, VARIATION AB.
8. SULDER THICKNESS MEASURED AT FLAT SECtian af LEAD betwEEN 0.08 mm AND 0.15 mm FRDM LEADTIP.

SYMBDL	MIN	NDMINAL	MAX
A	0.90	1.25	1.45
A1	0.00	0.05	0.15
A2	0.90	1.10	1.30
b	0.35	0.40	0.50
C	0.08	0.15	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.625	1.75
L	0.35	0.45	0.60
L1	0.60 REF.		
e1	1.90 BSC.		
e	0.95 BSC.		
a	0°	2.5°	10°

PKG CIDES:
U6-1, U6-2, U6-4, U6CN-2,
U6SN-1, U6F-6, U6FH-6; U6FH-7
9. LEAD TI BE CIPLANAR WITHIN 0.1mm.
10. NUMBER aF LEADS SHIDN ARE FOR REFERENCE $\quad \mathrm{NLL}$.
11. MARKING IS FIR PACKAGE aRIENTATION REFERENCE \quad anly.
12. ALL dimensions apply ta bath leaded (-) and PbFree (+) PKG. CODES.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC

