

General Description

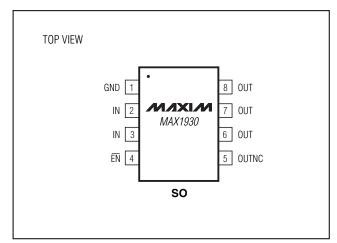
The MAX1930 current-limited $70m\Omega$ switch with built-in fault blanking provides an accurate, preset 1.2A to 2.3A current limit, making it ideal for dual USB applications. Its low quiescent supply current (16µA) and standby current (1µA) conserve battery power in portable applications. The MAX1930 operates with inputs from 2.7V to 5.5V, making it ideal for both 3V and 5V systems.

The MAX1930 has several safety features to ensure that the USB port is protected. Built-in thermal-overload protection limits power dissipation and junction temperature. The device also has accurate internal current-limiting circuitry to protect the input supply against overload.

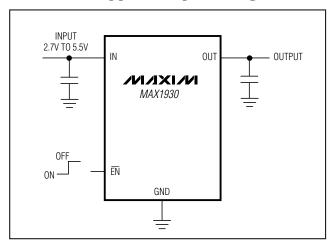
The MAX1930 is offered in a space-saving 8-pin SO package and operates over the extended (-40°C to +85°C) temperature range.

Applications

Notebook Computers USB Ports and Hubs **Docking Stations**


Features

- ♦ Pin Compatible with TPS2010-TPS2013
- ♦ Accurate Current Limit (1.2A min, 2.3A max)
- ♦ 125mΩ (max) High-Side MOSFET
- ♦ Short-Circuit and Thermal Protection
- **♦ Undervoltage Lockout**
- ♦ 16µA Quiescent Supply Current
- ♦ 1µA (max) Standby Supply Current
- ♦ 2.7V to 5.5V Supply Range
- ♦ UL Recognized: UL# E211395


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	
MAX1930ESA	-40°C to +85°C	8 SO	

Pin Configuration

Typical Operating Circuit

ABSOLUTE MAXIMUM RATINGS

===	
IN, EN to GND	0.3V to +6V
OUT to GND	
Maximum Switch Current	2.3A (internally limited)
OUT Short Circuit to GND	Continuous

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
8-Pin SO (derate 5.88mW/°C above +70°C)471mV	Ν
Operating Temperature Range (extended)40°C to +85°C	С
Storage Temperature Range65°C to +150°C	С
Lead Temperature (soldering, 10s)+300°C	С

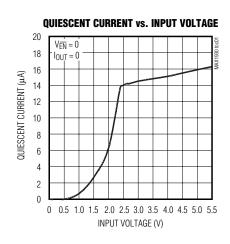
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

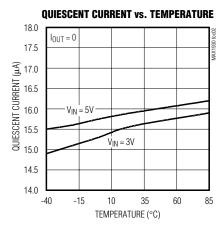
ELECTRICAL CHARACTERISTICS

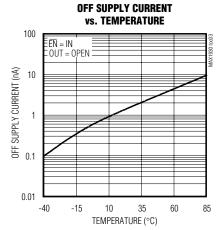
 $(V_{IN} = 5V, T_A = 0$ °C to +85°C, unless otherwise noted. Typical values are at $T_A = +25$ °C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OPERATING CONDITION	•						•	
Input Voltage	V _{IN}			2.7		5.5	V	
POWER SWITCH							-	
		T _A = +25°C	V _{IN} = 4.4V to 5.5V		70	100		
Switch Static Drain-Source On-Resistance	R _{DS(ON)}	T _A = 0°C to +85°C	V _{IN} = 4.4V to 5.5V			125	mΩ	
On-nesistance			V _{IN} = 3V		72	150		
Switch Turn-On Time	ton	I _{LOAD} = 400mA			80	200	μs	
Switch Turn-Off Time	toff	I _{LOAD} = 400mA		3	6	20	μs	
ENABLE INPUT (EN)							•	
TN High Lovel Inner Voltage	V	$V_{IN} = 2.7V \text{ to } 3.6V$		2.0			- v	
EN High-Level Input Voltage	VIH	$V_{IN} = 3.7V \text{ to } 5.5V$		2.4				
EN Low-Level Input Voltage	VIL	$V_{IN} = 2.7V \text{ to } 5.5V$				0.8	V	
EN Input Current		VEN = VIN or GND	VEN = VIN or GND			+1	μΑ	
Startup Time		$V_{IN} = 5V$, $C_{OUT} = 150\mu F$ from \overline{EN} driven low to 50% full V_{OUT}			1		ms	
CURRENT LIMIT		I						
Overload Output Current	I _{LIMIT}	Force V _{OUT} to 4.5V		1.2	1.75	2.3	А	
Short-Circuit Output Current	Isc	OUT shorted to GND	OUT shorted to GND		1	1.5	А	
SUPPLY CURRENT							•	
Supply Current, Low-Level Input		VEN = VIN = VOUT =	5.5V		0.002	1	μΑ	
Consider Consider History	IQ	V <u>EN</u> = 0, I _{OUT} = 0	Timer not running		16	25	μΑ	
Supply Current, High-Level Input			Timer running		35			
Cumple Lagles as Cumpet		$V_{\overline{EN}} = V_{IN} = 5.5V,$ $V_{OUT} = 0$	T _A = +25°C		0.01	2	μА	
Supply Leakage Current			$T_A = 0$ °C to +85°C			15		
UNDERVOLTAGE LOCKOUT								
Undervoltage Lockout	UVLO	Rising edge, 100mV hysteresis		2.0	2.4	2.6	V	
THERMAL SHUTDOWN								
Thermal-Shutdown Threshold					165		°C	

ELECTRICAL CHARACTERISTICS

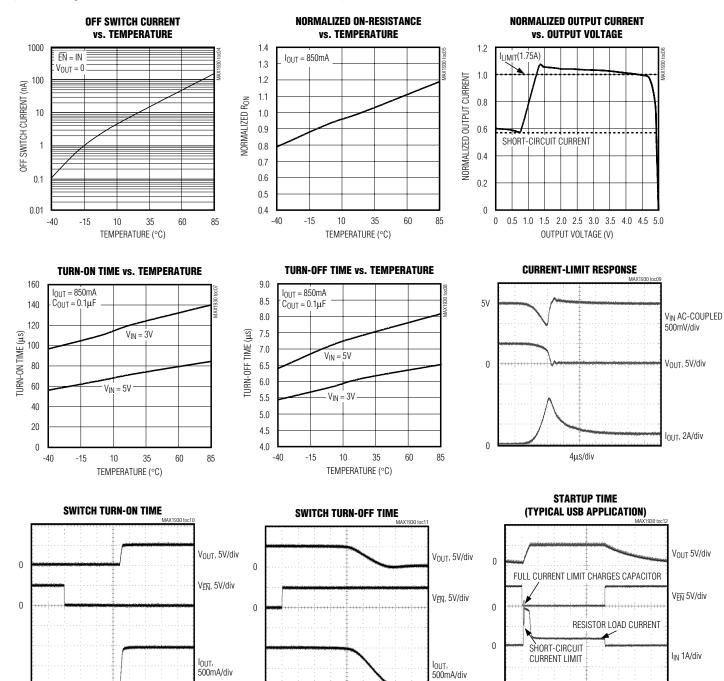

 $(V_{IN} = 5V, T_A = -40$ °C to +85°C, unless otherwise noted.) (Note 1)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
OPERATING CONDITION			•				
Input Voltage	VIN		3.0		5.5	V	
POWER SWITCH							
Switch Static Drain-Source	D	V _{IN} = 4.4V to 5.5V			125		
On-Resistance	R _{DS} (ON)	$V_{IN} = 3V$			150	mΩ	
Switch Turn-On Time	ton	$I_{LOAD} = 400 \text{mA}$			200	μs	
Switch Turn-Off Time	toff	$I_{LOAD} = 400 \text{mA}$	1		20	μs	
ENABLE INPUT (EN)							
TNI High Lovel Input Veltore	VIH	$V_{IN} = 3V$ to 3.6V	2.0				
EN High-Level Input Voltage		$V_{IN} = 3.7V \text{ to } 5.5V$	2.4]	
EN Low-Level Input Voltage	V _{IL}	$V_{IN} = 3V$ to 5.5V			0.8	V	
EN Input Current		$V_{\overline{EN}} = V_{IN}$ or GND	-1		+1	μΑ	
CURRENT LIMIT							
Overload Output Current	ILIMIT	Force V _{OUT} to 4.5V	1.2		2.3	А	
Short-Circuit Output Current	I _{SC}	OUT shorted to GND			1.5	А	
SUPPLY CURRENT							
Supply Current, Low-Level Input		$V_{\overline{\text{EN}}} = V_{\text{IN}} = V_{\text{OUT}} = 5.5V$			2	μΑ	
Supply Current, High-Level Input	IQ	$V_{\overline{EN}} = GND$, $I_{OUT} = 0$, timer not running			25	μΑ	
Supply Leakage Current		$V_{\overline{EN}} = V_{IN} = 5.5V, V_{OUT} = GND$			15	μΑ	
UNDERVOLTAGE LOCKOUT							
Undervoltage Lockout	UVLO	Rising edge, 100mV hysteresis	2.0	<u> </u>	2.9	V	


Note 1: Specifications to -40°C are guaranteed by design, not production tested.

Typical Operating Characteristics

(Circuit of Figure 2, $V_{IN} = 5V$, $T_A = +25$ °C, unless otherwise noted.)



Typical Operating Characteristics (continued)

(Circuit of Figure 2, $V_{IN} = 5V$, $T_A = +25$ °C, unless otherwise noted.)

1µs/div

0

1ms/div

20μs/div

Pin Description

PIN	NAME	FUNCTION
1	GND	Ground
2, 3	IN	Input. P-channel MOSFET source—connect all IN pins together and bypass with a 1µF capacitor to ground.
4	ĒN	Active-Low Switch Enable Input. A logic low turns on the switch.
5	OUTNC	No Connection. This pin is not internally connected and can be connected to OUT.
6, 7, 8	OUT	Switch Output. P-channel MOSFET drain—connect all OUT pins together and bypass with a 0.1µF capacitor to ground.

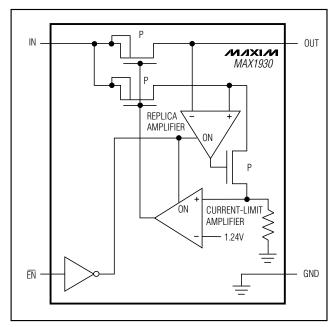


Figure 1. Functional Diagram

Detailed Description

The MAX1930 P-channel MOSFET power switch limits output current to 1.2A (min) and 2.3A (max). When the output current increases beyond the current limit (I_{LIMIT}), the current also increases through the replica switch (I_{OUT} / 13,000). The current-limit error amplifier compares the voltage to the internal 1.24V reference and regulates the current back to the I_{LIMIT} (Figure 1).

These switches are not bidirectional. As a result, the input voltage must be higher than the output voltage.

Continuous Short-Circuit Protection

The MAX1930 is a short-circuit protected switch. In the event of an output short-circuit condition, the current through the switch is foldback-current-limited to 1A continuous.

Thermal Shutdown

The MAX1930 has a thermal shutdown feature. The switch turns off when the junction temperature exceeds +165°C. When the MAX1930 cools 20°C, the switch turns back on. If the fault short-circuit condition is not removed, the switch cycles on and off, resulting in a pulsed output.

Applications Information

Input Capacitor

To limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN to GND. A 1µF ceramic capacitor is adequate for most applications; however, higher capacitor values further reduce the voltage drop at the input (Figure 2).

Output Capacitor

Connect a 0.1µF capacitor from OUT to GND. This capacitor helps to prevent inductive parasitics from pulling OUT negative during turn-off.

Layout and Thermal Dissipation

It is important to optimize the switch response time to output short-circuit conditions by keeping all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close as possible to the device (no more than 5mm away). All IN and OUT pins must be connected with short traces to the power bus. Wide power-bus planes provide superior heat dissipation through the MAX1930's IN and OUT pins.

Under normal operating conditions, the package can dissipate and channel heat away. Calculate the maximum power dissipation as follows:

$$P = (I_{I \text{ IMIT}})^2 \times R_{ON}$$

where I_{LIMIT} is the preset current limit (2.3A max) and R_{ON} is the on-resistance of the switch (125m Ω max).

When the output is short circuited, foldback-current-limiting activates and the voltage drop across the switch equals the input supply voltage. The power dissipated across the switch increases, as does the die tempera-

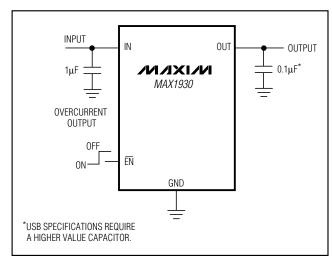
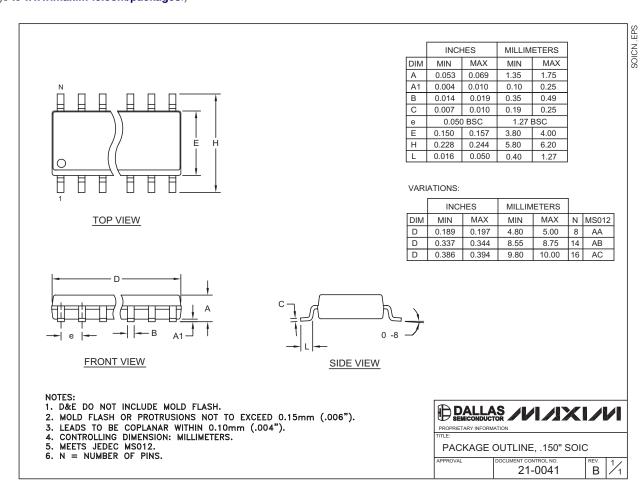


Figure 2. Typical Application Circuit

ture. If the fault condition is not removed, the thermaloverload protection circuitry activates (see the *Thermal Shutdown* section). Wide power-bus planes connected to IN and OUT and a ground plane in contact with the device help dissipate additional heat.

Driving Inductive Loads


A wide variety of devices (mice, keyboards, cameras, and printers) can load the USB port. These devices commonly connect to the port with cables, which can add an inductive component to the load. This inductance causes the output voltage at the USB port to ring during a load step. The MAX1930 is capable of driving inductive loads, but avoid exceeding the device's absolute maximum ratings. Usually the load inductance is relatively small, and the MAX1930's input includes a substantial bulk capacitance from an upstream regulator, as well as local bypass capacitors, limiting overshoot. If severe ringing occurs due to large load inductance, clamp the MAX1930 output below 6V and above -0.3V.

Chip Information

TRANSISTOR COUNT: 715
PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12 AP22814ASN-7 MIC2043-2YTS