General Description
The MAX1955/MAX1956 are dual-output, fixed-frequency, voltage-mode, pulse-width modulated (PWM) step-down controllers with 0.5% output accuracy. Each controller switches at a constant 600 kHz and is 180° out-of-phase with the other controller, reducing input ripple current and the number of input capacitors.
An on-chip bias supply generates a 5V gate drive to deliver up to 25A output current per phase with low-cost N-channel MOSFETs at up to 93\% efficiency. Lossless adjustable current limit eliminates expensive currentsense resistors and improves efficiency. Foldback current limit reduces power dissipation during short-circuit conditions and handles transient overloads better than controllers using hiccup-mode short-circuit protection.
Output voltage margining shifts output voltage by $\pm 4 \%$ from the nominal value to simplify system test. Outputs also can be powered up and down in selectable sequences to meet core and logic supply-rail requirements.
The MAX1955/MAX1956 are available in a 28-lead thin QFN package with exposed pad.

Applications

Base Stations

Telecom and Network Equipment
Servers
DSP, ASIC, μ P, and FPGA Supplies

Features

- Operates from a 1.6 V to 5.5 V Supply (MAX1956)
- 0.5\% Output Accuracy
- 0.8 V to 0.9 V IN Output Range
- Up to 25A per Phase Output Current
- On-Chip Boost Regulator Provides 5V Gate Drive
- Up to 93\% Efficiency
- 180° Out-of-Phase Operation
- $\pm 4 \%$ Voltage Margining
- Lossless, Foldback Current Limit
- Selectable Voltage Sequencing
- Synchronizable to External Clock
- Digital Soft-Start and Soft-Stop
- Small 28-Pin, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Thin QFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1955ETI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Thin QFN-EP*
MAX1956ETI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Thin QFN-EP*

*EP = Exposed pad.
Pin Configuration appears at end of data sheet.
Typical Operating Circuit

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

PGN	$-0.3 V$ to +0.3 V
REF Short-Circuit to GND	Continuous
IVDD.	250 mA
Continuous Power Dissipation* ($\mathrm{TA}^{\text {a }}=+70^{\circ} \mathrm{C}$)	
28-Lead Thin QFN	
(derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	.. 1667 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$\ldots .+150^{\circ} \mathrm{C}$
Storage Temperature Range	.$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10s). $+300^{\circ} \mathrm{C}$
Exposed pad soldered to PC board.	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V}\right.$; $\mathrm{V}_{\mathrm{VDD}}=\mathrm{V}_{\mathrm{AVDD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{PGND}}=\mathrm{V}_{\mathrm{GND}}=0 ; \mathrm{C}_{\mathrm{REF}}=0.22 \mu \mathrm{~F} ; \mathrm{SEQ}=\mathrm{SYNC}=\mathrm{GND} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IN Input Voltage Range	MAX1955		2.25		5.50	V
	MAX1956 (Note 1)		1.6		5.5	
IN Input Voltage UVLO	Rise or fall	MAX1955, hysteresis $=35 \mathrm{mV}$	1.9		2.2	V
		MAX1956, hysteresis $=30 \mathrm{mV}$	1.30		1.58	
FB Regulation Voltage			0.796	0.8	0.804	V
FB Regulation Voltage with Positive Voltage Margining	Percentage change from nominal regulation voltage		3	4	5	\%
FB Regulation Voltage with Negative Voltage Margining	Percentage change from nominal regulation voltage		-5	-4	-3	\%
Line Regulation Error	Note 2			0.1	0.3	\%
Feedback Input Bias			-0.2		+0.2	$\mu \mathrm{A}$
Feedback Transconductance			1	2	3	mS
COMP Source Current			100	150		$\mu \mathrm{A}$
COMP Sink Current			100	150		$\mu \mathrm{A}$
COMP Pulldown Resistance	In shutdow				100	Ω
Output Soft-Start Time				4.27		ms
Step-Down Switching Frequency	SYNC = GN	Note 3)	540	600	660	kHz
SYNC Frequency Range	2 times step	wn switching frequency	1080		1320	kHz
Maximum Duty Cycle	Measured		90	93	97	\%
Minimum Duty Cycle	Measured			7	10	\%

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=V_{E N}=3.3 V ; V_{V D D}=V_{A V D D}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{PGND}}=\mathrm{V}_{\mathrm{GND}}=0 ; \mathrm{C}_{\text {REF }}=0.22 \mu \mathrm{~F} ; \mathrm{SEQ}=\mathrm{SYNC}=\mathrm{GND} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $\mathbf{+ 8 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
VDD No-Load Supply Current	Total of VDD1 + VDD2 + AVDD current, SYNC = GND, no load on DH_ or DL_			20	32	mA
IN Supply Current				35	100	$\mu \mathrm{A}$
IN Shutdown Supply Current					20	$\mu \mathrm{A}$
REF Voltage			1.267	1.28	1.293	V
REF Load Regulation	IREF $=-50 \mu \mathrm{~A}$ to $+50 \mu \mathrm{~A}$				0.01	V
Default Current-Limit Threshold	ILIM_ = V ${ }_{\text {DD }}$, measured from PGND to LX_		127.5	150	172.5	mV
Adjustable Current-Limit Threshold	Measured from PGND to LX	R\|LIM_ $=100 \mathrm{k} \Omega$	60	75	90	mV
		RILIM_ $=400 \mathrm{k} \Omega$	240	300	360	
Thermal-Shutdown Threshold	TJ rising, $15^{\circ} \mathrm{C}$ hysteresis			160		${ }^{\circ} \mathrm{C}$
DH_ Gate-Driver On-Resistance	Pulling up or down			1	1.8	Ω
DL_ Gate-Driver Pullup On-Resistance	DL_ high state			1	1.8	Ω
DL_ Gate-Driver Pulldown On-Resistance	DL_ low state			0.35	0.65	Ω
Dead Time (Adaptive)	DH_ falling to DL_ rising			23		ns
	DL_ falling to DH_{-}rising			26		
SYNC Minimum Pulse Width	High or low		200			ns
EN Voltage Range for Nominal Output Voltage	Percentage of VIN		80	90	100	\%
EN Voltage Range for Positive Voltage Margining	Percentage of VIN		55		70	\%
EN Voltage Range for Negative Voltage Margining	Percentage of VIN		30		45	\%
EN Voltage Range for Shutdown	Percentage of VIN		0		20	\%
EN, SEQ, SYNC Input High Voltage	(Note 4)		VIN - 0.5			V
SEQ, SYNC Input Low Voltage					0.5	V
EN, SEQ, SYNC Input Current			-1		+1	$\mu \mathrm{A}$
BST_Leakage Current in Shutdown			-20		+20	$\mu \mathrm{A}$
VDD Output Voltage	IVDD $=0$ to 150 mA		4.75		5.50	V

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=V_{E N}=3.3 V ; V_{V D D}=V_{A V D D}=5 \mathrm{~V} ; \mathrm{PGND}=G N D=0 ; C_{\text {REF }}=0.22 \mu F ; S Y N C=G N D ; \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0}{ }^{\circ} \mathbf{C}\right.$ to $\mathbf{+ 8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 5)

PARAMETER	CONDITIONS		MIN	TYP MAX	UNITS
IN Input Voltage Range	MAX1955		2.25	5.50	V
	MAX1956 (Note 1)		1.6	5.5	
IN Input Voltage UVLO	Rise or fall	MAX1955	1.9	2.2	V
		MAX1956	1.30	1.58	
FB Regulation Voltage			0.794	0.806	V
FB Regulation Voltage with Positive Voltage Margining	Percentage change from nominal regulation voltage		+3	+5	\%
FB Regulation Voltage with Negative Voltage Margining	Percentage change from nominal regulation voltage		-5	-3	\%
Line Regulation Error	(Note 2)			0.3	\%
FB_ Input Bias			-0.2	+0.2	$\mu \mathrm{A}$
Feedback Transconductance			1.0	3.1	mS
COMP_ Source Current			100		$\mu \mathrm{A}$
COMP_Sink Current			100		$\mu \mathrm{A}$
COMP_Pulldown Resistance	In shutdown			100	Ω
Step-Down Switching Frequency	SYNC = GND (Note 3)		540	660	kHz
SYNC Frequency Range	2 times step-down switching frequency		1080	1320	kHz
Maximum Duty Cycle	Measured at DH_		90	97	\%
Minimum Duty Cycle	Measured at DH_			10	\%
VDD Quiescent Supply Current	Total of VDD1 + VDD2 + AVDD current, SYNC = GND, no load on DH_ or DL_			32	mA
IN Quiescent Supply Current				100	$\mu \mathrm{A}$
IN Shutdown Supply Current				20	$\mu \mathrm{A}$
REF Voltage			1.267	1.293	V
REF Load Regulation	IREF $=-50 \mu \mathrm{~A}$ to $+50 \mu \mathrm{~A}$			0.01	V
Default Current-Limit Threshold	ILIM_ = V DD ; measured from P	GND to LX_	127.5	172.5	mV
Adjustable Current-Limit	Sured from PGND to	RILIM_ $=100 \mathrm{k} \Omega$	60	90	
Threshold	Measured from PGND to LX	RILIM_ $=400 \mathrm{k} \Omega$	240	360	

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=V_{E N}=3.3 V ; V_{V D D}=V_{A V D D}=5 V ; P G N D=G N D=0 ; C_{R E F}=0.22 \mu F ; S Y N C=G N D ; \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}\right.$ to $\mathbf{+ 8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 5)

PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
DH_ Gate-Driver On-Resistance	Pulling up or down		1.8	Ω
DL_ Gate-Driver Pullup On-Resistance	DL_ high state		1.8	Ω
DL_ Gate-Driver Pulldown On-Resistance	DL_ low state		0.65	Ω
SYNC Minimum Pulse Width	High or low	200		ns
EN Voltage Range for Nominal Output Voltage	Percentage of $\mathrm{V}_{\text {IN }}$	80	100	\%
EN Voltage Range for Positive Voltage Margining	Percentage of $\mathrm{V}_{\text {IN }}$	55	70	\%
EN Voltage Range for Negative Voltage Margining	Percentage of $\mathrm{V}_{\text {IN }}$	30	45	\%
EN Voltage Range for Shutdown	Percentage of $\mathrm{V}_{\text {IN }}$	0	20	\%
EN, SEQ, SYNC Input High Voltage	(Note 4)	VIN - 0.5		V
SEQ, SYNC Input Low Voltage			0.5	V
EN, SEQ, SYNC Input Current		-1	+1	$\mu \mathrm{A}$
BST_ Leakage Current in Shutdown		-20	+20	$\mu \mathrm{A}$
VDD Output Voltage	IVDD $=0$ to 150 mA	4.75	5.50	V

Note 1: IN input voltage must not drop below minimum voltage because of ripple or transient conditions.
Note 2: Guaranteed by design.
Note 3: Boost frequency is $2 x$ step-down frequency.
Note 4: For proper startup, EN must exceed VIN - 0.5V.
Note 5: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design but not production tested.

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Typical Operating Characteristics

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Typical Operating Characteristics (continued)
(Circuit of Figure $5, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

CHANGE IN OUTPUT VOLTAGE vs. INPUT VOLTAGE WITH NO LOAD

10us/div

OUTPUT VOLTAGE
vs. INPUT VOLTAGE WITH 25A LOAD

CHANGE IN OUTPUT VOLTAGE vs. INPUT VOLTAGE WITH 25A LOAD

400ns/div

CHANGE IN OUTPUT VOLTAGE vs. INPUT VOLTAGE WITH 25A LOAD

SYNCHRONIZATION WAVEFORMS

$2 \mu \mathrm{~s} / \mathrm{div}$

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

40 us/div
(Circuit of Figure $5, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)
$100 \mu \mathrm{~s} / \mathrm{div}$

Typical Operating Characteristics (continued)

$40 \mu \mathrm{~s} / \mathrm{div}$

$100 \mu \mathrm{~s} / \mathrm{div}$

4ms/div

Pin Description

PIN	NAME	FUNCTION
1	DL1	Low-Side MOSFET Gate-Driver Output. Connect to the low-side MOSFET gate. DL1 is pulled low in shutdown.
2	LX1	Inductor Connection. Connect to the switched side of the inductor.
3	DH1	High-Side MOSFET Gate-Driver Output. Connect to the high-side MOSFET gate. DH1 is pulled low in shutdown.
4	BST1	High-Side MOSFET Gate-Driver Bootstrap Connection. Connect a capacitor from BST1 to LX1 and a Schottky diode from VDD to BST1.
5	SYNC	Frequency Synchronization Input. Connect to GND for normal 600kHz operation, or drive with a clock signal from 1080kHz to 1320kHz. The two step-down regulators are synchronized to alternating clock pulses, resulting in 180 out-of-phase operation at half the synchronization frequency.

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Pin Description (continued)

PIN	NAME	FUNCTION
6	EN	Enable and Voltage Margining Input. Connect EN to IN for normal operation or connect to GND for shutdown. Set $\mathrm{V}_{\mathrm{EN}}=(1 / 3) \mathrm{V}_{\text {IN }}$ to set the outputs to -4% of nominal. Set $\mathrm{V}_{E N}=(2 / 3) \mathrm{V}_{\text {IN }}$ to set the outputs to $+4 \%$ of nominal (see the Shutdown and Output Voltage Margining (EN) section).
7	ILIM1	Current-Limit Adjust. Sets the threshold for current sensing across the low-side MOSFET's RDS(ON). Connect ILIM1 to AVDD for a 150 mV threshold. For adjustable constant current or foldback current-limit setting, see the Current Limit section.
8	FB1	Feedback Input. Connect to a voltage-divider from the output to GND to set the output voltage (see the Setting the Output Voltage section).
9	COMP1	Compensation. Internally pulled to ground during shutdown (see the Compensation Design section).
10	GND1	Ground. Connect to the PC board analog ground plane. Connect PC board power ground plane and analog ground plane with a single connection.
11	REF	1.28 V Reference. Connect a $0.22 \mu \mathrm{~F}$ capacitor from REF to GND.
12	GND	Ground. Connect to the PC board analog ground plane. Connect the PC board power ground plane and analog ground plane with a single connection.
13	COMP2	Compensation. Internally pulled to ground during shutdown (see the Compensation Design section).
14	FB2	Feedback Input. Connect to a voltage-divider from the output to GND to set the output voltage (see the Setting the Output Voltage section).
15	ILIM2	Current-Limit Adjust. Sets the threshold for current sensing across the low-side MOSFET's RDS(ON). Connect ILIM2 to AVDD for a 150 mV threshold. For adjustable constant current or foldback current-limit setting, see the Current Limit section.
16	AVDD	Analog Supply Input. Connect a 10Ω resistor from $\mathrm{V}_{\text {DD }}$ to $A V_{\text {DD }}$ and a $0.47 \mu \mathrm{~F}$ capacitor from AV ${ }_{\text {dD }}$ to GND.
17	SEQ	Power-Sequence Input. Connect SEQ to GND to set OUT1 and OUT2 to power up and power down simultaneously. Connect SEQ to IN to make OUT1 power up first and power down last.
18	BST2	High-Side MOSFET Gate-Driver Bootstrap Connection. Connect a capacitor from BST2 to LX2 and a Schottky diode from VDD to BST2.
19	DH2	High-Side MOSFET Gate-Driver Output. Connect to the high-side MOSFET gate. DH2 is pulled low in shutdown.
20	LX2	Inductor Connection. Connect to the switched side of the inductor.
21	DL2	Low-Side MOSFET Gate-Driver Output. Connect to the low-side MOSFET gate. DL2 is pulled low in shutdown.
22	PGND2	Power Ground. Connect to the low-side MOSFET source for regulator 2 and PC board power ground plane.
23	IN	Input Supply
24	VDD2	Internal Boost Regulator Output. Connect to V ${ }_{\text {DD1 }}$, and bypass with a 10 $\mu \mathrm{F}$ capacitor to GND.
25	LXB	Internal Boost Regulator Inductor Connection. Connect a $4.7 \mu \mathrm{H}$ inductor from LXB to IN. Internally shorted to VDD2 in shutdown.
26	PGND	Power Ground. Connect to PC board power ground plane.
27	VDD1	Internal Boost Regulator Output. Connect to VDD2.
28	PGND1	Power Ground. Connect to the low-side MOSFET source for regulator 1 and PC board power ground plane.
Exposed Pad	-	Exposed Pad. Solder to the PC board analog ground plane for optimum power dissipation.

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

MAX1955/MAX1956

Figure 1. Functional Diagram

Detailed Description

The MAX1955/MAX1956 are dual-output, fixed-frequency, voltage-mode, PWM step-down controllers with 0.5\% output accuracy. Each controller switches at a constant 600 kHz and is 180° out-of-phase with the other controller, which reduces input ripple current and the number of input capacitors. Figure 1 is the functional diagram.

An on-chip step-up bias supply generates a 5 V gate drive to deliver up to 25A output current per phase with low-cost N -channel MOSFETs at up to 93% efficiency. Lossless adjustable current limit eliminates expensive current-sense resistors and improves efficiency. Foldback current limit reduces power dissipation during short-circuit condition and handles transient overloads better than controllers using hiccup-mode short-circuit protection.

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Output voltage margining shifts the output voltage by $\pm 4 \%$ from the nominal value to simplify system testing. Outputs also can be powered up and down in selectable sequences to meet core and logic supply rail requirements.

DC-to-DC PWM Controller

The MAX1955/MAX1956 step-down DC-to-DC converters use a PWM voltage-mode control scheme. The controller generates the clock signal by dividing down the internal oscillator (or SYNC signal when using an external clock) so that each controller's switching frequency equals $1 / 2$ the oscillator frequency. An internal transconductance error amplifier produces an integrated error voltage at the COMP_ pin, providing high DC accuracy. The voltage at COMP sets the duty cycle, using a PWM comparator and a ramp generator. At the rising edge of the clock, Regulator 1's high-side N-channel MOSFET turns on and remains on until either the appropriate duty cycle or the maximum duty cycle is reached. Regulator 2 operates out of phase, so its high-side MOSFET turns on at the falling edge of the clock. During the on-time of each high-side MOSFET, the associated inductor current ramps up.
During the second half of the switching cycle, the highside MOSFET turns off and the low-side N-channel MOSFET (synchronous rectifier) turns on. The inductor releases its stored energy as its current ramps down, providing current to the load.

> High-Side Gate-Drive Supply (BST)

The gate-drive voltage for the high-side N -channel switch is generated by a flying capacitor. This capacitor between BST and LX is alternately charged from the VDD supply and placed in parallel to the high-side MOSFET's gate and source terminal through the high-side driver.
On startup, the low-side MOSFET forces LX to ground and charges the boost capacitors to VDD through the Schottky diodes (D1 and D2 of Figure 5). On the second half cycle, the controller turns on the high-side MOSFET by closing an internal switch between BST and DH. This provides the necessary gate-to-source voltage to turn on the high-side MOSFET, an action that boosts the 5V gate-drive signal above the input voltage.

Current Limit

The current-limit circuit employs a "valley" currentsensing algorithm that uses the on-resistance of the low-side MOSFET as a current-sensing element. If the
current-sense signal (measured from PGND_ to LX_) is above the current-limit threshold, the MAX1955/ MAX1956 do not initiate a new cycle, and COMP_ is pulled to ground. Since valley current sensing is used, the actual peak current is greater than the current-limit threshold by an amount equal to the inductor ripple current (Figure 2). The exact current-limit characteristic and maximum load capacity are a function of the lowside MOSFET's on-resistance, the current-limit threshold, the inductor value, and the input voltage. This provides a robust lossless current sense that does not require current-sense resistors.
An added feature is the implementation of Schottky diodes D3 and D4 (as shown in Figure 5), which reduce output short-circuit currents.

Constant-Current Limit The adjustable current limit accommodates MOSFETs with a wide range of on-resistance values. The currentlimit threshold is adjusted with an external resistor connected from ILIM_ to GND (RILIM_). The adjustment range is 75 mV to 300 mV , measured across the low-side MOSFET. The value of RILIM_ is calculated using the following formula:

$$
R_{\text {ILIM }}^{-}=\frac{I_{\text {VALLEY }}}{0.15 \times 5 \mu \mathrm{~A}} \times R_{\mathrm{DS}(\mathrm{ON})}
$$

where IVALLEY is the valley current limit and $\operatorname{RDS}(O N)$ is the on-resistance of the low-side MOSFET. To avoid reaching the current limit at a lower current than expected, use the maximum value for $\operatorname{RDS}(O N)$ at an elevated junction temperature. Refer to the MOSFET manufacturer's data sheet for maximum values.

Figure 2. Inductor Current Waveform

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Foldback Current Limit

Foldback current limit is used to reduce power dissipation during overload and short-circuit conditions. This is accomplished by lowering the current-limit threshold as the output voltage drops because of overload.
To use foldback current limit, connect one resistor (RFOBK) from ILIM_ to the corresponding output, and connect another resistor (RILIM) from ILIM_ to GND. The values of RILIM and RFOBK are calculated as follows:

1) First, select the percentage of foldback (PFB). This percentage corresponds to the current limit when VOUT equals zero, divided by the current limit when VOUT equals its nominal voltage. Typical values are 15% to 30%. To solve for the resistor values, use the following equations:

$$
\mathrm{R}_{\mathrm{FOBK}}=\frac{\mathrm{P}_{\mathrm{FB}} \times \mathrm{V}_{\mathrm{OUT}}}{5 \mu \mathrm{~A}\left(1-\mathrm{P}_{\mathrm{FB}}\right)}
$$

$R_{\text {ILIM }}=\frac{6.67 \times R_{D S(O N)} \times I_{V A L L E Y} \times\left(1-P_{F B}\right) \times R_{\text {FOBK }}}{V_{\text {OUT }}-\left(6.67 \times R_{D S(O N)} \times I_{V A L L E Y} \times\left(1-P_{F B}\right)\right)}$
2) Select PFB values that provide RILIM greater than zero.

Recovery from Overload and Short Circuit

The MAX1955/MAX1956 do not recover to nominal output voltage at heavy load (near full load) after an overload or short-circuit condition, but they might operate at a voltage below the nominal output until the input power or EN pin is cycled through the OFF state. If automatic recovery is mandatory, without cycling EN or input power, add an RC filter of 1Ω and $0.015 \mu \mathrm{~F}$ at LX_'s pins, as shown in Figure 6. Doing so decreases the efficiency by 2% to 3%, depending on the input voltage, output voltage, and current.

AVDD Decoupling

Due to high switching frequency and tight output tolerance ($\pm 0.5 \%$), decoupling between $V_{D D}$ and $A V_{D D}$ is recommended. Connect a 10Ω resistor between VDD and AVDD and a $0.47 \mu F$ capacitor between $A V_{D D}$ and GND. Place the capacitor as close to $A V_{D D}$ as possible.

Undervoltage Lockout (UVLO)

When the voltage at IN drops below its undervoltage lockout (UVLO) threshold (see the Electrical Characteristics), the MAX1955/MAX1956 determine that the input supply voltage is too low to power the IC.

In this event, the main outputs and the internal boost regulator are disabled. The boost regulator starts up again once the voltage at IN rises above the UVLO threshold.

Startup and Output Sequencing

The MAX1955/MAX1956 use a digital soft-start to reduce input inrush current during startup. In soft-start, the output voltage is ramped up by increasing the FB_ regulation voltage in 80 steps of 10 mV . Total soft-start time is typically 4.27 ms .
Some power supplies exhibit soft regulation during softstart. If the MAX1955/MAX1956 are powered from such a power supply and enabled at or before power-up, the input voltage might dip below the UVLO threshold, and the output might not soft-start properly. To avoid such issues, enable the MAX1955/MAX1956 after the input supply has stabilized or add an RC filter to the IN pin of the IC as shown in Figure 6. The value of R20 is $\sim 510 \Omega$, and the value of capacitor C31 is from $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$, depending on the startup characteristic of the input power supply. The capacitor value is chosen to provide power to the IC $(100 \mu \mathrm{~A}$ max) and keep it from falling below the UVLO threshold during the input powersupply dip.
The outputs can be set to power up at the same time, or output 1 can be set to power up first and power down last. Connect SEQ to GND for simultaneous power up/down. Connect SEQ to IN to make output 1 power up first and power down last. Figure 3 is a timing diagram.
If there is a fault condition (such as a short circuit) on output 1 causing its voltage to drop below 90% of its nominal regulation voltage, and SEQ is connected to IN , then output 2 shuts down. Once the fault is cleared, allowing the voltage on output 1 to rise above 90% of its nominal regulation voltage, output 2 soft-starts and powers up again.

Figure 3. Timing Diagram

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Synchronization

An external clock of 1080 kHz to 1320 kHz at SYNC forces the controller to switch at half of this clock frequency. DH1 and DH2 positive-going edges alternately synchronize to the rising edge of the external clock, thus operating 180° out-of-phase with each other. See the Synchronization and Switching Waveforms in the Typical Operating Characteristics.

Shutdown and Output Voltage Margining (EN)

The MAX1955/MAX1956 feature a low-power shutdown mode that reduces the IC's current consumption to less than $20 \mu \mathrm{~A}$. For normal operation, connect EN to IN. To place the part in low-current shutdown mode, connect EN to GND.

When the MAX1955/MAX1956 enter shutdown (EN goes low), soft-stop begins. In soft-stop, the output voltage is ramped down by lowering the FB_ regulation voltage to zero in 80 steps of 10 mV . Total soft-stop time is typically 4.27 ms .
Each controller can be shut down individually by pulling COMP_ to GND with an open collector NPN transistor (Figure 6). This shuts down the controller immediately without going through soft-stop. Once COMP_ is released, the controller powers up without going through soft-start. To protect against inrush current when using this power-up/-down method, use foldback current limit. Also, connect SEQ to GND to prevent output 2 from powering down when the voltage on output 1 drops.
In an effort to improve quality, many OEMs are testing their system's operation over the range of minimum and maximum supply voltage. To facilitate this testing, the MAX1955/MAX1956 have a voltage-margining feature that increases or decreases the output voltages by 4%.
The voltage on EN controls voltage margining. To increase the output voltage by 4%, apply $(2 / 3)$ VIN to EN. To reduce the output voltage by 4%, apply ($1 / 3$) VIN to EN. One easy way to use the voltage-margining feature is to make two control logic inputs (CTL1 and CTL2) by connecting two resistors to EN. Connect a $200 \mathrm{k} \Omega$ resistor from EN to CTL1, and a $100 \mathrm{k} \Omega$ resistor from EN to CTL2 (Figure 5). The voltage margining is then controlled by connecting CTL1 and CTL2 to IN or GND, as shown in Table 1. Before applying voltage-margining, pull VCTL1 and VCTL2 to $>$ VIN -0.5 V to ensure proper startup.

Thermal-Overload Protection
Thermal-overload protection limits total power dissipation of the MAX1955/MAX1956. When the junction temperature exceeds $+160^{\circ} \mathrm{C}$, an internal thermal sensor shuts down the device, allowing the IC to cool. The thermal sensor turns the device on after the junction temperature cools by $15^{\circ} \mathrm{C}$. In a continuous thermaloverload condition, this results in a pulsed output.

Low-Side MOSFET NegativeCurrent Conduction
Under most operating conditions, the low-side MOSFET conducts only positive inductor currents that flow from source to drain and $1 / 2$ of the inductor peak-to-peak ripple current ($\sim 15 \%$ full load current) in the negative direction when output is at no load. If the MAX1955/ MAX1956 are disabled before their soft-start cycle is complete $(\sim 4 \mathrm{~ms})$, the converter is disabled without a soft-stop, and the output discharges through its load. In this case, if the converter is reenabled before the output capacitor discharges completely, the soft-start cycle resets the reference input to the error amp to zero and ramps up again.
The converter forces DL on until the feedback drops below the reference input. If the output is almost fully charged when the converter turns back on, a large negative current can build up in the inductor. If the negative current is excessive, a high LX voltage spike can occur because of parasitic circuit inductances as DL is released. This high LX voltage spike can shut down and latch off the circuit. To prevent this from happening, add a series resistor between DL and the gate of the low-side MOSFET (Figure 6) to slow down the turn-off di/dt, reducing the voltage spike and preventing the circuit from shutting down. A 1Ω resistor works fine for most applications without noticeable degrading impact on efficiency or Cdv/dt-induced turn-on effect.

Table 1. Voltage Margining

CTL1	CTL2	EN	OUTPUT
$\mathrm{V}_{I N}$	$\mathrm{~V}_{I N}$	$\mathrm{~V}_{I N}$	Nominal
0	$\mathrm{~V}_{I N}$	$(2 / 3) \mathrm{V}_{I N}$	$+4 \%$
$\mathrm{~V}_{I N}$	0	$(1 / 3) \mathrm{V}_{I N}$	-4%
0	0	0	Shutdown

1.6 V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Design Procedure

Setting the Output Voltage

Output voltage is set with a resistor-divider, as shown in Figure 4. The output voltage can be set to as low as 0.8 V . The maximum output voltage is limited by maximum duty cycle and external component selection. Select Rx (the resistor from FB to GND) between $8 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$, and calculate Ry from:

$$
R_{Y}=R_{X} \times\left(\frac{V_{O U T}}{0.8}-1\right)
$$

Inductor Selection
Three key inductor parameters must be specified for operation with the MAX1955/MAX1956: inductance value (L), peak inductor current (IPEAK), and DC resistance (RDC). A good compromise between size and efficiency is to set the inductor peak-to-peak ripple current equal to 30% of maximum load current, thus LIR = 0.3 . The switching frequency, input voltage, output voltage, and selected LIR determine the inductor value as follows:

$$
L=\frac{V_{\text {OUT }}\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{V_{\text {IN }} \times f_{\text {SW }} \times I_{\text {OUT(MAX }} \times \mathrm{LIR}}
$$

where fsw is the switching frequency (typically 600 kHz). The exact inductor value is not critical and can be adjusted in order to make trade-offs among size, cost, and efficiency. Lower inductor values minimize size and cost, and also improve transient response, but reduce efficiency and increase output voltage ripple because of higher peak currents. Higher inductance increases efficiency by reducing the RMS current. However, resistive losses because of extra wire turns could exceed the benefit gained from lower AC current levels, especially when the inductance is increased without also allowing larger inductor dimensions.
Find a low-loss inductor with the lowest possible DC resistance that fits in the allotted dimensions. The inductor's saturation current rating must exceed the peak inductor current at the maximum defined load current (ILOAD(MAX)):

$$
\mathrm{I}_{\text {PEAK }}=\mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}+\left(\frac{\mathrm{LIR}}{2}\right) \times \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}
$$

Figure 4. Feedback Divider Network and Compensation Circuitry

Input Capacitor Selection

The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit's switching. The input capacitor must meet the ripple current requirement (IRMS) imposed by the switching currents defined by the following equation:

$$
\mathrm{I}_{\text {RMS }}=\frac{1}{\mathrm{~V}_{\text {IN }}} \sqrt{\left(\begin{array}{l}
\left.\mathrm{l}_{\text {OUT1 }}\right)^{2} \times \mathrm{V}_{\text {OUT1 }} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT1 }}\right)+\left(\mathrm{l}_{\text {OUT2 }}\right)^{2} \\
\times \mathrm{V}_{\text {OUT2 }} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT2 }}\right)
\end{array}\right.}
$$

Output Capacitor Selection

The key selection parameters for the output capacitor are the actual capacitance value, the ESR, the ESL, and the voltage-rating requirements, which affect the overall stability, output ripple voltage, and transient response.
The output ripple has three components: variations in the charge stored in the output capacitor, the voltage drop across the capacitor's ESR, and the voltage drop across the capacitor's ESL caused by the current into and out of the capacitor:

$$
V_{R I P P L E}=V_{R I P P L E(E S R)}+V_{R I P P L E(C)}+V_{\operatorname{RIPPLE}(E S L)}
$$

The output voltage ripple from the ESR is:

$$
\text { VRIPPLE(ESR) }=\operatorname{IP}-P \times E S R
$$

The output voltage ripple because of the output capacitance is:

$$
V_{\text {RIPPLE }(C)}=\frac{l_{P-P}}{8 \times C_{O U T} \times f_{S W}}
$$

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

The output voltage ripple due to the ESL of the output capacitor is:

$$
V_{R I P P L E}(E S L)=V_{I N}\left[\frac{E S L}{E S L+L}\right]
$$

IP-P is the peak-to-peak inductor current:

$$
I_{P-P}=\frac{V_{I N}-V_{O U T}}{f_{S W} \times L} \times \frac{V_{O U T}}{V_{I N}}
$$

These equations are suitable for initial capacitor selection to meet the ripple requirement, but final values can depend on the relationship between the LC double-pole frequency and the capacitor ESR zero. Generally, the ESR zero is higher than the LC double pole. However, it is preferable to keep the ESR zero as close to the LC double pole as possible to negate the sharp phase shift of the typically high-Q double-LC pole (see the Compensation Design section). Solid polymer electrolytic capacitors are recommended because of their low ESR and ESL at the switching frequency. Higher output-current applications require multiple output capacitors connected in parallel to meet the output ripple voltage requirements.
The response to a load transient depends on the output capacitor. After a load transient, the output voltage instantly changes by ESR x Δ LLOAD + ESL x dl/dt. Before the controller can respond, the output deviates further, depending on the inductor and output capacitor values. After a short time (see the Typical Operating Characteristics), the controller responds by regulating the output voltage back to its nominal state. The response time depends on the closed-loop bandwidth. With a higher bandwidth, the response is faster, thus preventing the output voltage from deviating further from its nominal value. Do not exceed the capacitor's voltage or ripple-current ratings.

MOSFET Selection
The MAX1955/MAX1956 drive external, logic-level, Nchannel MOSFETs as the circuit-switch elements. The key selection parameters:
On-resistance (RDS(ON)): the lower the better.
Maximum drain-to-source voltage (VDSS): should be at least 20% higher than input supply rail at the highside MOSFET's drain.
Gate charges ($\left.\mathbf{Q G}_{\mathbf{G}}, \mathbf{Q}_{\mathbf{G}}, \mathbf{Q}_{\mathbf{G S}}\right)$: the lower the better.
Choose the MOSFETs with rated RDS(ON) at $V_{G S}=$ 4.5 V . For a good compromise between efficiency and cost, choose the high-side MOSFET that has a conduction
loss equal to switching loss at nominal input voltage and maximum output current (see below). For low-side MOSFET, make sure that it does not spuriously turn on because of $\mathrm{dV} / \mathrm{dt}$ caused by high-side MOSFET turning on, as this would result in shoot-through current degrading the efficiency. MOSFETs with a lower QGD-to-QGS ratio have higher immunity to $\mathrm{dV} / \mathrm{dt}$.
For proper thermal-management design, calculate the power dissipation at the desired maximum operating junction temperature, maximum output current, and worst-case input voltage (for low-side MOSFET, worst case is at $\mathrm{VIN}(M A X)$; for high-side MOSFET, it could be either at VIN(MIN) or VIN(MAX)). High-side MOSFET and low-side MOSFET have different loss components due to the circuit operation. Low-side MOSFET operates as a zero voltage switch; therefore, major losses are: the channel conduction loss (PLSCC), the bodydiode conduction loss (PLSDC), and the gate-drive loss (PLSDR):

$$
P_{\text {LSCC }}=\left(1-\frac{V_{O U T}}{V_{I N}}\right) \times\left(l_{\text {LOAD }}\right)^{2} \times R_{\text {DS }}(\mathrm{ON})
$$

Use $\operatorname{RDS}(O N)$ at $T_{J(M A X)}$:

$$
P_{\text {LSDC }}=2 I_{\text {LOAD }} \times V_{F} \times t_{D T} \times f_{S W}
$$

where V_{F} is the body-diode forward-voltage drop, tDT is the dead time ($\sim 25 n s$), and fsw is the switching frequency.
Because of the zero-voltage switch operation, low-side MOSFET gate-drive loss occurs as a result of charging and discharging the input capacitance, (CISS). This loss is distributed among the average DL gate driver's pullup and pulldown resistance, ($\operatorname{RDL}_{\mathrm{D}}(0.68 \Omega$ typ)), and the internal gate resistance (RGATE) of the MOSFET $(\sim 2 \Omega)$. The drive power dissipated is given by:

$$
P_{\mathrm{LSDR}}=\mathrm{C}_{\mathrm{ISS}} \times\left(\mathrm{V}_{\mathrm{GS}}\right)^{2} \times \mathrm{f}_{S W} \times \frac{R_{\mathrm{GATE}}}{R_{\mathrm{GATE}}+R_{\mathrm{DL}}}
$$

High-side MOSFET operates as a duty-cycle control switch and has the following major losses: the channel conduction loss (PHSCC), the VI overlapping switching loss (PHSSW), and the drive loss (PHSDR). High-side MOSFET does not have body-diode conduction loss because the diode never conducts current:

$$
P_{\text {HSCC }}=\frac{V_{\text {OUT }}}{V_{\text {IN }}} \times\left(\mathrm{I}_{\text {LOAD }}\right)^{2} \times R_{\text {DS }}(\mathrm{ON})
$$

1.6 V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Figure 5. Typical Application Circuit

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Figure 6. Independent Output On/Off Control

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Use RDS(ON) at TJ(MAX).

$$
\mathrm{P}_{\mathrm{HSSW}}=\mathrm{V}_{\mathrm{N}} \times \mathrm{I}_{\mathrm{LOAD}} \times \mathrm{f}_{\mathrm{SW}} \times \frac{\mathrm{Q}_{\mathrm{GS}}+\mathrm{Q}_{\mathrm{Gd}}}{I_{\mathrm{GATE}}}
$$

where IGATE is the average DH driver output-current determined by:

$$
I_{\mathrm{GATE}}(\mathrm{ON})=\frac{2.5}{\mathrm{R}_{\mathrm{DH}}+\mathrm{R}_{\mathrm{GATE}}}
$$

where RDH is the high-side MOSFET driver's on-resistance (1Ω typical) and Rgate is the internal gate resistance of the MOSFET ($\sim 2 \Omega$):

$$
P_{H S D R}=Q_{G} \times V_{G S} \times f_{S W} \times \frac{R_{G A T E}}{R_{G A T E}+R_{D H}}
$$

where $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{VDD}}=5 \mathrm{~V}$.
In addition to the losses above, allow about 20\% more for additional losses because of MOSFET output capacitances and low-side MOSFET body-diode reverse recovery charge dissipated in the high-side MOSFET that is not well defined in the MOSFET data sheet. Refer to the MOSFET data sheet for thermal-resistance specifications to calculate the PC board area needed to maintain the desired maximum operating junction temperature with the above-calculated power dissipations.
To reduce EMI caused by switching noise, add a $0.1 \mu \mathrm{~F}$ ceramic capacitor from the high-side switch drain to the low-side switch source, or add resistors in series with DH and DL to slow down the switching transitions. Adding series resistors increases the power dissipation of the MOSFET, so ensure that this does not overheat the MOSFET.

MOSFET Snubber Circuit Fast switching transitions cause ringing because of resonating circuit parasitic inductance and capacitance at the switching nodes. This high-frequency ringing occurs at LX's rising and falling transitions and can interfere with circuit performance and generate EMI. To dampen this ringing, a series R-C snubber circuit is added across each switch. Below is the procedure for selecting the value of the series R-C circuit:

1) Connect a scope probe to measure VLX to GND, and observe the ringing frequency, fR.
2) Find the capacitor value (connected from $L X$ to GND) that reduces the ringing frequency by half.
The circuit parasitic capacitance (CPAR) at LX is then equal to $1 / 3$ the value of the added capacitance above. The circuit parasitic inductance (LPAR) is calculated by:

$$
L_{\text {PAR }}=\frac{1}{\left(2 \pi f_{R}\right)^{2} \times \mathrm{C}_{\mathrm{PAR}}}
$$

The resistor for critical dampening (RSNUB) is equal to 2π $\times f_{R} \times$ LPAR. Adjust the resistor value up or down to tailor the desired damping and the peak voltage excursion.
The capacitor (CSNUB) should be at least 2 to 4 times the value of the CPAR in order to be effective. The power loss of the snubber circuit is dissipated in the resistor (PRSNUB) and can be calculated as:

$$
P_{\mathrm{RSNUB}}=C_{S N U B} \times\left(\mathrm{V}_{\mathbb{I N}}\right)^{2} \times \mathrm{f}_{\mathrm{SW}}
$$

where $\mathrm{V}_{\mathbb{I}}$ is the input voltage and fsw is the switching frequency. Choose an RSNUB power rating that meets the specific application's derating rule for the power dissipation calculated.

Boost-Supply Diode and Capacitor

A low-current Schottky diode, such as CMSSH-3 from Central Semiconductor, works well for most applications. Do not use large-power diodes, because higher junction capacitance can charge up the BST to LX voltage and can exceed the device rating of 6 V . The boost capacitor should be $0.1 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$, depending on the input and output voltages, external components, and PC board layout. The boost capacitance should be as large as possible to prevent it from charging to excessive voltage, but small enough to adequately charge during the minimum low-side MOSFET conduction time, which happens at maximum operating duty cycle (this occurs at minimum input voltage). In addition, ensure that the boost capacitor does not discharge to below the minimum gate-to-source voltage required to keep the high-side MOSFET fully enhanced for lowest on-resistance. This minimum gate-to-source voltage $\mathrm{V}_{\mathrm{GS}}(\mathrm{MIN})$ is determined by:

$$
V_{G S}(\mathrm{MIN})=V_{V D D}-\frac{Q_{G}}{C_{B O O S T}}
$$

where VVDD is $5 \mathrm{~V}, \mathrm{QG}_{\mathrm{G}}$ is the total gate charge of the high-side MOSFET, and CBOOST is the boost capacitor value.

Compensation Design

The MAX1955/MAX1956 use a voltage-mode control scheme that regulates the output voltage by comparing the error amplifier output (COMP) with a fixed internal ramp to produce the required duty cycle. The inductor and output capacitor create a double pole at the resonant frequency, which has a gain drop of 40 dB per decade and phase shift of 180°. The error amplifier

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

must compensate for this gain drop and phase shift in order to achieve a stable high-bandwidth closed-loop system.
The basic regulator loop consists of a power modulator, an output feedback divider, and an error amplifier. The power modulator has DC gain set by VIN/VRAMP, with a double pole set by the inductor and output capacitor and a single zero set by the output capacitor (COUT) and its ESR. Equations that define the power modulator follow:
The DC gain of the power modulator:

$$
\mathrm{G}_{\mathrm{MOD}(\mathrm{DC})}=\frac{\mathrm{V}_{\mathbb{I N}}}{\mathrm{V}_{\mathrm{RAMP}}}
$$

where $V_{\text {RAMP }}=1 \mathrm{~V}$. The double-pole frequency because of the inductor and output capacitor is:

$$
f_{\text {PMOD }}=\frac{1}{2 \pi \sqrt{\mathrm{LC}_{O U T}}}
$$

The zero frequency because of the output capacitor's ESR is:

$$
\mathrm{f}_{\mathrm{ZESR}}=\frac{1}{2 \pi \times \mathrm{ESR} \times \mathrm{C}_{\mathrm{OUT}}}
$$

The output capacitor is usually composed of several same-value capacitors connected in parallel. With n capacitors in parallel, the output capacitance is:

$$
\mathrm{C}_{\mathrm{OUT}}=\mathrm{n} \times \mathrm{C}_{\mathrm{EACH}}
$$

The total ESR is:

$$
E S R=\frac{E S R_{E A C H}}{n}
$$

The ESR zero (fZESR) for a parallel combination of capacitors is the same as that of an individual capacitor. The feedback divider has a gain of GFB $=\mathrm{V}_{\mathrm{FB}} / \mathrm{VOUT}_{\text {O }}$, where V_{FB} is 0.8 V .
The transconductance error amplifier has DC gain GEA(dc) of 80 dB . A dominant pole is set by the com-
pensation capacitor (CC), the amplifier-output resistance ($R_{0} \cong 5 \mathrm{M} \Omega$), and the compensation resistor (R_{C}):

$$
f_{P E A}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{C}} \times\left(\mathrm{R}_{\mathrm{O}}+\mathrm{R}_{\mathrm{C}}\right)}
$$

A zero is set by the compensation resistor and the compensation capacitor:

$$
\mathrm{f}_{\mathrm{ZEA}}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{C}} \times \mathrm{R}_{\mathrm{C}}}
$$

The total closed-loop gain must equal unity at the crossover frequency, where the crossover frequency should be higher than fZESR, so that the -1 slope is used to cross over at unity gain. Also, the crossover frequency should be less than or equal to $1 / 5$ the switching frequency:

$$
f_{Z E S R}<f_{C}<\frac{f_{S W}}{5}
$$

The loop-gain equation at the crossover frequency is:

$$
\frac{V_{\text {FB }}}{V_{O U T}} \times G_{E A(f c)} \times G_{M O D(f c)}=1
$$

where:

$$
\mathrm{G}_{\mathrm{EA}(\mathrm{fc})}=\mathrm{gm}_{\mathrm{m}} \mathrm{~A} \times \mathrm{R}_{\mathrm{C}}, \text { and }
$$

$G_{M O D}(\mathrm{fc})=\mathrm{GMOD}_{\mathrm{M}}(\mathrm{DC}) \times(\mathrm{fPMOD})^{2} /\left(\mathrm{f}_{\mathrm{ESR}} \times \mathrm{ff}_{\mathrm{C}}\right)$
The compensation resistor $\left(\mathrm{R}_{\mathrm{C}}\right)$ is calculated from:

$$
R_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{g_{\mathrm{mEA}} \times \mathrm{V}_{\mathrm{FB}} \times \mathrm{G}_{\mathrm{MOD}(\mathrm{fc})}}
$$

where $\mathrm{gmEA}=2 \mathrm{mS}$.
Because of the underdamped $(Q>1)$ nature of the output LC double pole, the error amplifier compensation zero should be approximately 0.2 fPMOD to provide good phase boost. Cc is calculated from:

$$
\mathrm{C}_{\mathrm{C}}=\frac{5}{2 \pi \times R_{\mathrm{C}} \times \mathrm{f}_{\mathrm{PMOD}}}
$$

A small capacitor (C_{F}) also can be added from COMP to GND to provide high-frequency decoupling. CF adds

1.6 V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

another high-frequency pole (fPHF) to the error-amplifier response. This pole should be greater than 100 times the error-amplifier zero frequency in order to have negligible impact on the phase margin. This pole also should be less than half the switching frequency for effective decoupling:

$$
\text { 100fZEA }<\mathrm{fPHF}<0.5 f \text { SW }
$$

Select a value for fPHF in the range given above, and then solve for CF using the following equation:

$$
C_{F}=\frac{1}{2 \pi \times R_{C} \times f_{P H F}}
$$

With two converters in proximity, there is a potential for crosstalk between the converters. Crosstalk can be managed by board layout and high-frequency filtering, which can be inserted by adding a high-frequency pole in the feedback network. To do so and minimize effect on phase margin, add capacitors C7 and C8 (Figure 5) with a pole frequency of:

$$
\begin{aligned}
\mathrm{fPFB} 2 & =(\mathrm{R} 4+\mathrm{R} 6) / 2 \pi \times \mathrm{R} 4 \times \mathrm{R} 6 \times \mathrm{C} 7) \\
\mathrm{fPFB} 1 & =(\mathrm{R} 2+\mathrm{R} 3) /(2 \pi \times \mathrm{R} 2 \times \mathrm{R} 3 \times \mathrm{C} 8)
\end{aligned}
$$

Set the poles above ~ 4 to 5 times the crossover frequency.
Below is a numerical example to calculate the compensation values used in the typical application circuit of Figure 5:
$\mathrm{V} I \mathrm{~N}=3 \mathrm{~V}$ (the midpoint of the input voltage range)
$V_{\text {RAMP }}=1 \mathrm{~V}$
VOUT $=1.8 \mathrm{~V}$
$V_{F B}=0.8 \mathrm{~V}$
$\operatorname{IOUT}(\mathrm{MAX})=25 \mathrm{~A}$
Cout $=2 \times 680 \mu \mathrm{~F}$
$E S R=0.008 \Omega / 2=0.004 \Omega$
$L=0.3 \mu H$
gmEA $=2 \mathrm{mS}$
fSw $=600 \mathrm{kHz}$

$$
\begin{aligned}
\text { f. }_{\text {PMOD }} & =\frac{1}{2 \pi \times \sqrt{\mathrm{L} \mathrm{\times C}_{\text {OUT }}}} \\
& =\frac{1}{2 \pi \times \sqrt{0.3 \times 10^{-6} \times 1360 \times 10^{-6}}}=7.879 \mathrm{kHz}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{f}_{\text {ZESR }} & =\frac{1}{2 \pi \times \text { C }_{\text {OUT }} \times \mathrm{ESR}}=\frac{1}{2 \pi \times 1360 \times 10^{-6} \times 0.004} \\
& =29.3 \mathrm{kHz}
\end{aligned}
$$

Pick the crossover frequency (fc) in the range $\mathrm{f} Z E S R<$ $\mathrm{f}_{\mathrm{C}}<\mathrm{fsw} / 5$:

$$
29.3 \mathrm{kHz}<\mathrm{f}_{\mathrm{C}}<120 \mathrm{kHz}
$$

Select $\mathrm{f} \mathrm{C}=100 \mathrm{kHz}$ (this meets the criteria above), and the bandwidth is high enough for good transient response.
The power-modulator gain at f_{C} is:

$$
\begin{aligned}
G_{M O D(f c)} & =\frac{V_{I N}}{V_{R A M P}} \times \frac{\left(f_{\text {PMOD }}\right)^{2}}{f_{Z E S R} \times f_{C}} \\
& =\frac{3}{1} \times \frac{(7.879 \mathrm{kHz})^{2}}{29.3 \mathrm{kHz} \times 100 \mathrm{kHz}}=0.0477
\end{aligned}
$$

Pick $\mathrm{Rx}=8.06 \mathrm{k} \Omega$, then $\mathrm{Ry}=10 \mathrm{k} \Omega$ (see the Setting the Output Voltage section).

$$
\begin{aligned}
R_{\mathrm{C}} & =\frac{V_{\mathrm{OUT}}}{g_{\mathrm{mEA}} \times \mathrm{G}_{\mathrm{MOD}(\mathrm{fc})} \times \mathrm{V}_{\mathrm{FB}}} \\
& =\frac{1.8}{0.002 \times 0.8 \times .0636}=17.6 \mathrm{k} \Omega
\end{aligned}
$$

Select $R_{C}=18 \mathrm{k} \Omega$ (nearest standard resistor value).

$$
C_{C}=\frac{5}{2 \pi \times R_{C} \times f_{P M O D}}=\frac{5}{2 \pi \times 18 \mathrm{k} \Omega \times 7.879 \mathrm{kHz}}=5620 \mathrm{pF}
$$

Select C C $=6800 \mathrm{pF}$ (rounded up to the next standard capacitor value).
Select fPHF in the range 100fZEA $<$ fPHF <0.5 fsw. Hence:

$$
157.6 \mathrm{kHz}<\mathrm{fPHF}<300 \mathrm{kHz}
$$

Select fPHF $=250 \mathrm{kHz}$, and then solve for $\mathrm{CF}_{\text {: }}$

$$
C_{F}=\frac{1}{2 \pi \times R_{C} \times f_{P H F}}=\frac{1}{2 \pi \times 18 \mathrm{k} \Omega \times 250 \mathrm{kHz}}=33 \mathrm{pF}
$$

A summary of feedback divider and compensation components follows:
$R \mathrm{R}=8.06 \mathrm{k} \Omega$
$R Y=10 k \Omega$
$R_{C}=18 \mathrm{k} \Omega$
Cc $=6800 \mathrm{pF}$
$C F=33 p F$

1.6V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

Applications Information

PC Board Layout Guidelines
Careful PC board layout is important in any switching regulator. The switching power stage requires particular attention. Follow these guidelines for good PC board layout:

1) Place decoupling capacitors as close as possible to the IC pins.
2) Keep a separate power ground plane (connect to the sources of the low-side MOSFETs, the input and output capacitors, and PGND_ pins). Connect the input decoupling capacitors across the drain of the high-side MOSFETs and the source of the low-side MOSFETs. The signal ground plane (connected to the GND pin) is connected to the power ground plane at a single point. Keep the high-current paths as short as possible.
3) Connect the drains of the MOSFETs to a large land area to help cooling the devices to further improve efficiency and long-term reliability.
4) Ensure all feedback connections are short and direct. Place the feedback resistors as close to the IC as possible.
5) Route high-speed switching nodes (LX_) away from sensitive analog areas (FB_, COMP_).
For a sample PC board layout, refer to the MAX1955 evaluation kit. Table 2 lists typical application circuit components.

Table 2. Typical Application Circuit Components

DESIGNATION	QTY	DESCRIPTION
C10-C13	4	680hF, 2.5V POSCAPs Sanyo 2R5TPD680M8
C28, C29	2	470 FF, 6.3V POSCAPs Sanyo 6TPB470M
D1-D4	4	Schottky diodes (SOT 323) Central CMSSH-3
L1, L2	2	0.3 HH, 35A inductors Sumida CDEP125(U)-0R3
L3	1	4.7 HH inductor TDK LDR655312T-4R7W
N1, N2, N5, N6	4	N-channel MOSFETs Vishay Si7892DP
N3, N4, N7, N8	4	N-channel MOSFETs Vishay Si4842DY

Pin Configuration

Chip Information

TRANSISTOR COUNT: 8694
PROCESS: BiCMOS

1.6 V to 5.5V Input, 0.5\% Accurate, Dual 180° Out-of-Phase Step-Down Controllers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
AZ7500EP-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81205MNTXG SJE6600 SMBV1061LT1G SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C MAX8778ETJ+ NTBV30N20T4G NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF TC105333ECTTR NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M NCP81101MNTXG IFX81481ELV NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1251FSN65T1G NCP1246BLD065R2G NTE7154 NTE7242 LTC7852IUFD-1\#PBF LTC7852EUFD-1\#PBF MB39A136PFT-G-BNDERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG NCV1397ADR2G AZ494AP-E1 UTC3843D XDPL8219XUMA1

