SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

General Description

The MAX19998 single, high-linearity downconversion mixer provides 8.7 dB of conversion gain, +24.3 dBm input IP3, +11.3 dBm 1 dB input compression point, and a noise figure of 9.7 dB for 2300 MHz to 4000 MHz WiMAX ${ }^{\top M}$, LTE, and MMDS receiver applications. With an ultra-wide LO 2600 MHz to 4300 MHz frequency range, the MAX19998 can be used in either low-side or high-side LO injection architectures for virtually all 2.5 GHz and 3.5 GHz applications. For a 2.5 GHz variant tuned specifically for high-side injection, refer to the MAX19996A.

In addition to offering excellent linearity and noise performance, the MAX19998 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19998 requires a nominal LO drive of 0 dBm , and supply current is typically 230 mA at $\mathrm{VCC}=5.0 \mathrm{~V}$ or 150 mA at $\mathrm{VCC}=3.3 \mathrm{~V}$.
The MAX19998 is pin compatible with the MAX19996/ MAX19996A 2000MHz to 3900MHz mixer family. The device is also pin similar with the MAX9984/MAX9986/ MAX9986A 400 MHz to 1000 MHz mixers and the MAX9993/MAX9994/MAX9996 1700MHz to 2200 MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands.
The MAX19998 is available in a compact, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems

Features

- 2300MHz to 4000 MHz RF Frequency Range
- 2600 MHz to 4300 MHz LO Frequency Range
- 50 MHz to 500 MHz IF Frequency Range
- 8.7dB Conversion Gain
- 9.7dB Noise Figure
- +24.3dBm Typical Input IP3
- +11.3dBm Typical Input 1dB Compression Point
- 67dBc Typical 2RF - 2LO Spurious Rejection at $P_{R F}=-10 \mathrm{dBm}$
- Integrated LO Buffer
- Integrated RF and LO Baluns for Single-Ended Inputs
- Low -3dBm to +3dBm LO Drive
- Pin Compatible with the MAX19996/MAX19996A 2000MHz to 3900MHz Mixers
- Pin Similar with the MAX9984/MAX9986/ MAX9986A Series of 400 MHz to 1000 MHz Mixers and the MAX9993/MAX9994/MAX9996 Series of 1700MHz to 2200MHz Mixers
- Single 5.0V or 3.3V Supply
- External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX19998ETP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP*
MAX19998ETP +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

ABSOLUTE MAXIMUM RATINGS

VCC to GND.. 0.3 V to +5.5 V
IF+, IF-, LOBIAS, IFBIAS to GND............. -0.3 V to (VCC +0.3 V)
RF, LO Input Power.. +12 dBm
RF, LO Current
(RF and LO is DC shorted to GND through balun)........ 50 mA
Continuous Power Dissipation (Note 1)5W

ӨJA (Notes 2, 3)... $+38^{\circ} \mathrm{C} / \mathrm{W}$
OJC $^{(N o t e s ~ 1, ~ 3) \ldots \ldots \ldots \ldots . ~}+13^{\circ} \mathrm{C} / \mathrm{W}$
Operating Case Temperature Range
(Note 4)... $\mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: Based on junction temperature $T_{J}=T_{C}+\left(\theta_{J C} \times V_{C C} \times I C C\right)$. This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 2: Junction temperature $T_{J}=T_{A}+\left(\theta_{J A} \times V_{C C} \times I C C\right)$. This formula can be used when the ambient temperature of the $P C B$ is known. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: T_{C} is the temperature on the exposed pad of the package. T_{A} is the ambient temperature of the device and PCB.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, R1 $=\mathbf{6 9 8 \Omega}$, R2 $=\mathbf{6 0 4} \Omega, \mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V , no input RF or LO signals. $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, all parameters are production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		4.75	5.0	5.25	V
Supply Current	ICC	Total supply current	230	247	mA	

3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS

 erwise noted. Typical values are at $\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, parameters are guaranteed by design, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		3.0	3.3	3.6	V
Supply Current	ICC	Total supply current	150	mA		

RECOMMENDED AC OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency Range	frF	(Notes 5, 6)	2300		4000	MHz
LO Frequency	flo	(Notes 5, 6)	2600		4300	MHz
IF Frequency	fiF	Using a Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6)	100		500	MHz
		Using a Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6)	50		250	
LO Drive	PLO		-3	0	+3	dBm

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION

(Typical Application Circuit, with tuning elements outlined in Table 1, R1 $\mathbf{= 6 9 8 \Omega}$, R2 $\mathbf{= 6 0 4 \Omega}$, VCC $=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}=3100 \mathrm{MHz}$ to $3900 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}, \mathrm{fLO}=2800 \mathrm{MHz}$ to $3600 \mathrm{MHz}, \mathrm{fRF}>\mathrm{fLO}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PRF}_{\mathrm{P}}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=3500 \mathrm{MHz}$, $\mathrm{fLO}=3200 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}$. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Small-Signal Conversion Gain	Gc	TC $=+25^{\circ} \mathrm{C}($ Notes 8,9$)$		7.6	8.7	9.4	dB
Gain Variation vs. Frequency	$\Delta \mathrm{Gc}$	fRF $=3100 \mathrm{MHz}$ to 3900 MHz , any 100 MHz band			0.15		dB
		fRF $=3100 \mathrm{MHz}$ to 3900 MHz , any 200 MHz band		0.3			
Conversion Gain Temperature Coefficient	TCCG	$\begin{aligned} & \mathrm{fRF}=3100 \mathrm{MHz} \text { to } 3900 \mathrm{MHz}, \\ & \mathrm{~T}^{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		-0.01			$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 1dB Compression Point	$1 P_{1 d B}$	(Note 10)		10.0	11.4		dBm
Third-Order Input Intercept Point	IIP3	$\begin{aligned} & \text { fRF1 }- \text { fRF2 }=1 \mathrm{MHz} \text {, PRF1 }=\text { PRF2 }=-5 \mathrm{dBm} / \text { tone, } \\ & \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}(\text { Note } 9) \end{aligned}$		22	24.3		dBm
IIP3 Variation with TC		$\begin{aligned} & \text { fRF }=3100 \mathrm{MHz} \text { to } 3900 \mathrm{MHz}, \text { fRF1 }- \text { fRF2 }=1 \mathrm{MHz}, \\ & \text { PRF1 }=\text { PRF2 }=-5 \mathrm{dBm} / \text { tone }, \mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			± 0.2		dBm
Single-Sideband Noise Figure	NFSSB	No blockers present (Note 5)			9.7	12.5	dB
		No blockers present, $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$ (Note 5)			9.7	11.0	
Noise Figure Temperature Coefficient	TCNF	Single sideband, no blockers present, $\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.018			$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure Under Blocking	NF_{B}	+8 dBm blocker tone applied to RF port, $f R F=3500 \mathrm{MHz}$, fLO $=3200 \mathrm{MHz}$, $\mathrm{fBLOCKER}=3750 \mathrm{MHz}, \mathrm{PLO}=0 \mathrm{dBm}$, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}($ Notes 5,11$)$			21	25	dB
2RF-2LO Spur Rejection	2×2	fSPUR $=$ fLO $+150 \mathrm{MHz} / \mathrm{P}_{\text {Pr }} \mathrm{P}_{\text {R }}$	-10dBm (Note 5)	63	67		dBc
			-5 dBm (Note 9)	58	62		
3RF - 3LO Spur Rejection	3×3	fSPUR $=$ fLO +100 MHz	$=-10 \mathrm{dBm}$ (Note 5)	80	85		dBc
			$=-5 \mathrm{dBm}$ (Note 9)	70	75		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance			25		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance			16		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs			200		Ω
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values.	$\begin{aligned} & \mathrm{fIF}=450 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2=120 \mathrm{nH} \end{aligned}$		20		dB
			$\begin{aligned} & \mathrm{fIF}=350 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2=270 \mathrm{nH} \end{aligned}$		20		
			$\begin{aligned} & \mathrm{fIF}=300 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2=390 \mathrm{nH} \end{aligned}$		20		

SiGe, High-Linearity, 2300MHz to 4000 MHz Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION (continued)

(Typical Application Circuit, with tuning elements outlined in Table 1, R1 $=\mathbf{6 9 8 \Omega}$, R2 $=\mathbf{6 0 4 \Omega}$, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3100 \mathrm{MHz}$ to $3900 \mathrm{MHz}, \mathrm{f}_{\mathrm{f}}=300 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=2800 \mathrm{MHz}$ to 3600 MHz , fRF $>\mathrm{fLO}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=3500 \mathrm{MHz}$, $\mathrm{fLO}=3200 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}$. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
RF-to-IF Isolation		fRF $=3500 \mathrm{MHz}$, PLO $=+3 \mathrm{dBm}($ Note 9)	27	29.5
LO Leakage at RF Port		$\mathrm{fLO}=2800 \mathrm{MHz}$ to 3600 MHz, PLO $=+3 \mathrm{dBm}$ $($ Note 9 $)$	-26	dB
2LO Leakage at RF Port		PLO $=+3 \mathrm{dBm}$	dBm	
LO Leakage at IF Port		PLO $=+3 \mathrm{dBm}($ Note 9)	-29	dBm

3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION

(Typical Application Circuit, with tuning elements outlined in Table 1, R1 $\mathbf{= 8 4 5 \Omega}, \mathbf{R 2} \mathbf{= 1 . 1} \mathbf{k} \Omega, \mathrm{RF}$ and LO ports are driven from 50Ω sources, fRF $>\mathrm{f}_{\mathrm{LO}}$. Typical values are for $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}_{\mathrm{R}}=3500 \mathrm{MHz}, \mathrm{fLO}=3200 \mathrm{MHz}, \mathrm{fIF}$ $=300 \mathrm{MHz}$, unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal Conversion Gain	Gc			8.4		dB
Gain Variation vs. Frequency	$\Delta \mathrm{G}_{\mathrm{C}}$	fRF $=3100 \mathrm{MHz}$ to 3900 MHz , any 100 MHz band		0.15		dB
Conversion Gain Temperature Coefficient	TCCG	$\begin{aligned} & \mathrm{fRF}=3100 \mathrm{MHz} \text { to } 3900 \mathrm{MHz}, \\ & \mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		-0.01		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 1dB Compression Point	$1 P_{1 d B}$	(Note 10)		7.7		dBm
Third-Order Input Intercept Point	IIP3			20.1		dBm
IIP3 Variation with TC		$\begin{aligned} & \text { fRF1 }- \text { fRF2 }=1 \mathrm{MHz}, \text { PRF1 }=\text { PRF2 }=-5 \mathrm{dBm} / \text { tone }, \\ & \mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		± 0.2		dB
Single-Sideband Noise Figure	NFSSB	No blockers present		9.3		dB
Noise Figure Temperature Coefficient	TCNF	Single sideband, no blockers present,$\mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$		0.018		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
2RF-2LO Spur Rejection	2×2	f fPUR $=$ fLO +150 MHz	$\mathrm{P}_{\text {RF }}=-10 \mathrm{dBm}$	64		dBc
			PRF $=-5 \mathrm{dBm}$	59		
3RF-3LO Spur Rejection	3×3	f fPUR $=$ fLO +100 MHz	PRF $=-10 \mathrm{dBm}$	74		dBc
			PRF $=-5 \mathrm{dBm}$	64		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance		30		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance		20		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs		200		Ω

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION (continued)

(Typical Application Circuit, with tuning elements outlined in Table 1, $\mathbf{R 1} \mathbf{= 8 4 5 \Omega} \mathbf{\Omega} \mathbf{R 2} \mathbf{= 1 . 1} \mathbf{k} \Omega$, RF and LO ports are driven from 50Ω
 $=300 \mathrm{MHz}$, unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values.	$\begin{aligned} & \mathrm{fIF}=450 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2=120 \mathrm{nH} \end{aligned}$		17		dB
			$\begin{aligned} & \mathrm{fIF}=350 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2=270 \mathrm{nH} \end{aligned}$		17		
			$\begin{aligned} & \mathrm{fIF}=300 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2=390 \mathrm{nH} \end{aligned}$		17		
RF-to-IF Isolation		$\mathrm{fRF}^{\text {a }} 3100 \mathrm{MHz}$ to $3900 \mathrm{MHz}, \mathrm{PLO}=+3 \mathrm{dBm}$			27		dB
LO Leakage at RF Port		$\mathrm{fLO}=2800 \mathrm{MHz}$ to 3600 MHz , PLO $=+3 \mathrm{dBm}$			-30		dBm
2LO Leakage at RF Port		$\mathrm{fLO}=2800 \mathrm{MHz}$ to 3600 MHz , PLO $=+3 \mathrm{dBm}$			-26.5		dBm
LO Leakage at IF Port		$\mathrm{fLO}=2800 \mathrm{MHz}$ to 3600 MHz , PLO $=+3 \mathrm{dBm}$			-27.5		dBm

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF $=3100 \mathrm{MHz}$ to 3900 MHz , HIGH-SIDE LO INJECTION

(Typical Application Circuit, with tuning elements outlined in Table 1, R1 $=\mathbf{6 9 8} \Omega$, R2 $\mathbf{= 6 0 4} \Omega, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to +3 dBm , $\mathrm{PRF}=-5 \mathrm{dBm}$, $\mathrm{fRF}=3100 \mathrm{MHz}$ to $3900 \mathrm{MHz}, \mathrm{f}_{\mathrm{f}}=300 \mathrm{MHz}, \mathrm{fLO}=3400 \mathrm{MHz}$ to 4200 MHz , fRF $<\mathrm{fLO}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{TC}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=$ 3500 MHz , fLO $=3800 \mathrm{MHz}$, $\mathrm{fIF}=300 \mathrm{MHz}$, unless otherwise noted.) (Note 7)

SiGe, High-Linearity, 2300 MHz to 4000 MHz Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF $=3100 \mathrm{MHz}$ to 3900 MHz , HIGH-SIDE LO INJECTION (continued)

(Typical Application Circuit, with tuning elements outlined in Table $1, \mathbf{R 1}=\mathbf{6 9 8} \mathbf{2}, \mathbf{R 2}=\mathbf{6 0 4} \Omega, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3100 \mathrm{MHz}$ to $3900 \mathrm{MHz}, \mathrm{fIF}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{fLO}=3400 \mathrm{MHz}$ to $4200 \mathrm{MHz}, \mathrm{fRF}<\mathrm{fLO}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{TC}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}$, $\mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=$ $3500 \mathrm{MHz}, \mathrm{fLO}=3800 \mathrm{MHz}$, fIF $=300 \mathrm{MHz}$, unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance			24		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance			18		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs			200		Ω
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values.	$\begin{aligned} & \mathrm{fiF}=450 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2=120 \mathrm{nH} \end{aligned}$		20		dB
			$\begin{aligned} & \mathrm{fIF}=350 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2=270 \mathrm{nH} \end{aligned}$		20		
			$\begin{aligned} & \mathrm{fiF}=300 \mathrm{MHz}, \\ & \mathrm{~L} 1=\mathrm{L} 2=390 \mathrm{nH} \end{aligned}$		20		
RF-to-IF Isolation		PLO $=+3 \mathrm{dBm}$			30		dB
LO Leakage at RF Port		PLO $=+3 \mathrm{dBm}$			-30.3		dBm
2LO Leakage at RF Port		PLO $=+3 \mathrm{dBm}$			-19		dBm
LO Leakage at IF Port		PLO $=+3 \mathrm{dBm}$			-23		dBm

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF $=2300 \mathrm{MHz}$ to 2900 MHz , HIGH-SIDE LO INJECTION

(Typical Application Circuit, with tuning elements outlined in Table 1, R1 $=\mathbf{6 9 8 \Omega}$, R2 $\mathbf{= 6 0 4 \Omega}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to +3 dBm , $\mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}=2300 \mathrm{MHz}$ to $2900 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}$, fLO $=2600 \mathrm{MHz}$ to 3200 MHz , fRF $<\mathrm{fLO}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=$ $2600 \mathrm{MHz}, \mathrm{fLO}=2900 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}$, unless otherwise noted.) (Note 7)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Small-Signal Conversion Gain	GC	TC $=+25^{\circ} \mathrm{C}$		8.4		dB
Gain Variation vs. Frequency	$\Delta \mathrm{G}^{\prime}$	$\mathrm{fRF}=2300 \mathrm{MHz}$ to 2900 MHz , any 100 MHz band		0.15		dB
		$\mathrm{fRF}=2300 \mathrm{MHz}$ to 2900 MHz , any 200 MHz band		0.3		
Conversion Gain Temperature Coefficient	TCCG	$\begin{aligned} & \mathrm{fRF}=2300 \mathrm{MHz} \text { to } 2900 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		-0.01		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 1dB Compression Point	$1 P_{1 d B}$	(Note 10)		11.4		dBm
Third-Order Input Intercept Point	IIP3	fRF1 - fRF2 $=1 \mathrm{MHz}$, PRF1 $=$ PRF2 $=-5 \mathrm{dBm} /$ tone, $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		25.0		dBm

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF $=2300 \mathrm{MHz}$ to 2900 MHz , HIGH-SIDE LO INJECTION (continued)

(Typical Application Circuit, with tuning elements outlined in Table 1, R1 $=\mathbf{6 9 8 \Omega}$, R2 $\mathbf{= 6 0 4 \Omega}$, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}=2300 \mathrm{MHz}$ to $2900 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{fLO}=2600 \mathrm{MHz}$ to 3200 MHz , $\mathrm{fRF}<\mathrm{fLO}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are for $\mathrm{TC}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=$ $2600 \mathrm{MHz}, \mathrm{fLO}=2900 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}$, unless otherwise noted. (Note 7)

Note 5: Not production tested.
Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics.
Note 7: All limits reflect losses of external components, including a 0.8 dB loss at $\mathrm{fIF}=300 \mathrm{MHz}$ due to the $4: 1$ impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: Guaranteed by design and characterization.
Note 9: 100\% production tested for functional performance.
Note 10: Maximum reliable continuous input power applied to the RF port of this device is +12 dBm from a 50Ω source.
Note 11: Measured with external LO source noise filtered so that the noise floor is $-174 \mathrm{dBm} / \mathrm{Hz}$. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{fRF}=3100 \mathrm{MHz}$ to 3900 MHz , LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

2RF-2LO RESPONSE
vs. RF FREQUENCY

CONVERSION GAIN vs. RF FREQUENCY

2RF-2LO RESPONSE
vs. RF FREQUENCY

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Vcc $=5.0 \mathrm{~V}, \mathrm{fRF}=3100 \mathrm{MHz}$ to 3900 MHz , LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe，High－Linearity，2300MHz to 4000MHz Downconversion Mixer with LO Buffer

（Typical Application Circuit with tuning elements outlined in Table 1， $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=3100 \mathrm{MHz}$ to 3900 MHz ，LO is low－side injected for a 300 MHz IF，PRF $=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

SiGe, High-Linearity, 2300 MHz to 4000 MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V} \mathbf{C C}=5.0 \mathrm{~V}, \mathrm{fRF}=\mathbf{3 1 0 0 \mathrm { MHz }}$ to $\mathbf{3 9 0 0 \mathrm { MHz } \text { , LO } \text { is low-side injected }}$ for a 300 MHz IF, PRF $=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{fRF}=3100 \mathrm{MHz}$ to 3900 MHz , LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

2RF - 2LO RESPONSE
vs. RF FREQUENCY

INPUT IP3 vs. RF FREQUENCY

2RF - 2LO RESPONSE
vs. RF FREQUENCY

CONVERSION GAIN vs. RF FREQUENCY

2RF - 2LO RESPONSE
vs. RF FREQUENCY

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC $=3.3 \mathrm{~V}, \mathrm{fRF}=3100 \mathrm{MHz}$ to 3900 MHz , LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

(Typical Application Circuit with tuning elements outlined in Table 1, VCC $=3.3 \mathrm{~V}, \mathrm{f} \mathrm{fF}=3100 \mathrm{MHz}$ to 3900 MHz , LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{fRF}=3100 \mathrm{MHz}$ to 3900 MHz , LO is low-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

RF PORT RETURN LOSS
vs. RF FREQUENCY

LO PORT RETURN LOSS
vs. LO FREQUENCY

2LO LEAKAGE AT RF PORT vs. LO FREQUENCY

2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY

SiGe, High-Linearity, 2300 MHz to 4000 MHz Downconversion Mixer with LO Buffer

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=3100 \mathrm{MHz}$ to 3900 MHz , LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300 MHz to 4000 MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{fRF}=3100 \mathrm{MHz}$ to 3900 MHz , LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

NOISE FIGURE vs. RF FREQUENCY

3LO-3RF RESPONSE
vs. RF FREQUENCY

3LO-3RF RESPONSE
vs. RF FREQUENCY

NOISE FIGURE vs. RF FREQUENCY

INPUT P1dB vs. RF FREQUENCY

SiGe, High-Linearity, 2300MHz to 4000 MHz Downconversion Mixer with LO Buffer

(Typical Application Circuit with tuning elements outlined in Table 1, VCC $=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=3100 \mathrm{MHz}$ to 3900 MHz , LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}, \mathrm{fRF}=3100 \mathrm{MHz}$ to 3900 MHz , LO is high-side injected for a 300MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 3 0 0} \mathrm{MHz}$ to 2900 MHz , LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

2LO-2RF RESPONSE

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{fRF}=\mathbf{2 3 0 0 M H z}$ to 2900 MHz , LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000 MHz Downconversion Mixer with LO Buffer

(Typical Application Circuit with tuning elements outlined in Table 1, VCC $=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 3 0 0} \mathrm{MHz}$ to $\mathbf{2 9 0 0 M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC $=\mathbf{5 . 0 V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 3 0 0} \mathbf{M H z}$ to $\mathbf{2 9 0 0} \mathbf{M H z}$, LO is high-side injected for a 300 MHz IF, PRF $=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

Pin Description

PIN	NAME	FUNCTION
$1,6,8,14$	VCC	Power Supply. Bypass to GND with 0.01μ capacitors as close as possible to the pin.
2	RF	Single-Ended 50Ω RF Input. Internally matched and DC shorted to GND through a balun. Provide an input DC-blocking capacitor if required.
$4,9,13,15$	GND	Ground. Not internally connected. Pins can be grounded.
$17,5,12$,	GND	Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together.
7	LOBIAS	LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604Ω (5V, 230mA bias condition) from LOBIAS to ground.
11	LO	Local Oscillator Input. This input is internally matched to 50 Ω. Requires an input DC-blocking capacitor.
18	LEXT	External Inductor Connection. Connect a low-ESR 4.7nH inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation. Connect this pin directly to ground to reduce the component count at the expense of reduced RF-to-IF and LO-to-IF isolation.
20	IF-, IF+	Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit).
-	IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698 Ω (5V, 230mA bias condition) from IFBIAS to GND.	
	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.	

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

Detailed Description

The MAX19998 provides high linearity and low noise figure for a multitude of 2300 MHz to 4000 MHz WiMAX, LTE, and MMDS base-station applications. This device operates over a 2600 MHz to 4300 MHz LO range and a 50 MHz to 500 MHz IF range. Integrated baluns and matching circuitry allow 50Ω single-ended interfaces to the RF and LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19998's input to a range of -3 dBm to +3 dBm . The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO and 2LO-2RF performance.

RF Input and Balun

The MAX19998 RF input provides a 50Ω match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 17 dB over the RF frequency range of 3200 MHz to 3900 MHz . See Table 1 for lower band tuning.

LO Inputs, Buffer, and Balun
The LO input is internally matched to 50Ω, requiring only a 2 pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3 dBm to +3 dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer
The core of the MAX19998 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifier, IIP3, 2RF - 2LO rejection, and noise-figure performance are typically $+24.3 \mathrm{dBm}, 67 \mathrm{dBc}$, and 9.7 dB , respectively, for low-side LO injection architectures covering the 3000 MHz to 4000 MHz RF band.

Differential IF Output Amplifier

The MAX19998 has a 50 MHz to 500 MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. The MAX19998 mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequencies
would require higher L1 and L2 inductor values to maintain a good IF match. The differential, open-collector IF output ports require that these inductors be connected to VCC.
Note that these differential ports are ideal for providing enhanced 2RF - 2LO performance. Single-ended IF applications require a $4: 1$ (impedance ratio) balun to transform the 200Ω differential IF impedance to a 50Ω single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200 MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200 MHz . The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/ IF- ports to keep external DC from entering the IF ports of the mixer.

Applications Information

Input and Output Matching

The RF and LO inputs provide 50Ω matches when combined with the proper tuning. Use an 8.2 pF capacitor value on the RF port for frequencies ranging from 3000 MHz to 4000 MHz . Use a 3.3 nH series inductor and a 0.3 pF shunt capacitor on the RF port for frequencies ranging from 2300 MHz to 2900 MHz . On the LO port, use a 2 pF DC-blocking capacitor to cover operations spanning the 2600 MHz to 4300 MHz range.
The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω single-ended output (see the Typical Application Circuit).

Reduced-Power Mode

The MAX19998 has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. See Table 1 for nominal values for these resistors. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If $\pm 1 \%$ resistors are not readily available, substitute with $\pm 5 \%$ resistors.
Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3 V . Doing so reduces the overall power consumption by 57% (typ). See the 3.3V Supply AC Electrical Characteristics table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance trade-offs.

都

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

LEXT Inductor

Short LEXT to ground using a 0Ω resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the Typical Operating Characteristics). However, the load impedance presented to the mixer must be such that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 120 mA flows through LEXT, it is important to use a low-DCR wire-wound inductor.

Layout Considerations

A properly designed PCB is an essential part of any RF/ microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground
does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19998 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each Vcc pin with the capacitors shown in the Typical Application Circuit and see Table 1 for component values.

Table 1. Component Values

DESIGNATION	QTY	DESCRIPTION	COMPONENT SUPPLIER
C1	1	8.2pF microwave capacitor (0402). Use for RF frequencies ranging from 3000 MHz to 4000 MHz .	Murata Electronics North America, Inc.
		3.3nH microwave inductor (0402). Use for RF frequencies ranging from 2300 MHz to 2900 MHz .	Coilcraft, Inc.
C2, C6, C8, C11	4	$0.01 \mu \mathrm{~F}$ microwave capacitors (0402)	Murata Electronics North America, Inc.
C3, C9	0	Not installed, capacitors	-
C10	1	2pF microwave capacitor (0402)	Murata Electronics North America, Inc.
C13, C14	2	1000pF microwave capacitors (0402)	Murata Electronics North America, Inc.
C15	1	82pF microwave capacitor (0402)	Murata Electronics North America, Inc.
C16	1	Not installed for RF frequencies ranging from 3000 MHz to 4000 MHz	-
		0.3pF microwave capacitor (0402). Use for RF frequencies ranging from 2300 MHz to 2900 MHz .	Murata Electronics North America, Inc.
L1, L2	2	390nH wire-wound high-Q inductors* (0805)	Coilcraft, Inc.
L3	1	4.7nH wire-wound high-Q inductor (0603)	Coilcraft, Inc.
R1	1	$698 \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V C C}=\mathbf{5 . 0 V}$ applications.	Digi-Key Corp.
		$845 \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V c c}=\mathbf{3 . 3 V}$ applications.	
R2	1	$604 \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V C C}=\mathbf{5 . 0 V}$ applications.	Digi-Key Corp.
		$1.1 \mathrm{k} \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V C C}=\mathbf{3 . 3} \mathbf{V}$ applications.	
R3	1	0Ω resistor (1206)	Digi-Key Corp.
T1	1	4:1 IF balun TC4-1W-17*	Mini-Circuits
U1	1	MAX19998 IC (20 Thin QFN-EP)	Maxim Integrated Products, Inc.

[^0]
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer

Exposed Pad RF/Thermal Considerations The exposed pad (EP) of the MAX19998's 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19998 is mounted be designed to conduct
heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

Typical Application Circuit

SiGe, High-Linearity, 2300 MHz to 4000 MHz Downconversion Mixer with LO Buffer

\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Up-Down Converters category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
HMC7586-SX HMC7587 HMC8119-SX HMC7587-SX HMC6147ALC5ATR MDS-158-PIN LA8153QA-WH HMC7912LP5ETR
HMC377QS16GETR MY87C CSM2-10 CHR3762-QDG AD6620ASZ-REEL ADF5904ACPZ ADF5904WCCPZ AD6623ASZ
AD6633BBCZ AD6634BBCZ AD9957BSVZ AD9957BSVZ-REEL ADMV1009AEZ ADMV1010AEZ ADMV1011AEZ ADMV1012AEZ ADRF6658BCPZ HMC951ALP4E HMC1190ALP6NE HMC571 HMC6146BLC5A HMC6146BLC5ATR HMC571LC5 HMC572LC5 HMC925LC5 HMC6787ALC5A HMC6787ALC5ATR HMC683LP6CE HMC682LP6CE HMC571LC5TR HMC7911LP5E HMC7912LP5E HMC908ALC5 HMC966LP4E HMC967LP4E HMC977LP4E AD6634BBC HMC6505ALC5 MAUC-011003-TR0500 MAX19996AETP+ MAX2039ETP+ MAX2410EEI +

[^0]: *Use larger value inductors and a TC4-1W-7A 4:1 balun for IF frequencies below 200 MHz .

