MAX20010C/MAX20010D/ MAX20010E

Automotive Single 6A Step-Down Converters

General Description

The MAX20010C/MAX20010D/MAX20010E ICs are highefficiency, synchronous step-down converters that operate with a 3.0 V to 5.5 V input voltage range and provide a 0.5 V to 1.5875 V output voltage range. The wide input/ output voltage range and the ability to provide up to 6 A load current make these ICs ideal for on-board point-ofload and post-regulation applications. The ICs achieve $\pm 2 \%$ output error over load, line, and temperature ranges. The MAX20010D/MAX20010E offers improved transient response.
The ICs feature a 2.2 MHz fixed-frequency PWM mode for better noise immunity and load-transient response, and a pulse-frequency modulation mode (skip) for increased efficiency during light-load operation. The 2.2 MHz frequency operation allows the use of all-ceramic capacitors and minimizes the solution footprint. The programmable spread-spectrum frequency modulation minimizes radiated electromagnetic emissions. Integrated low RDS(ON) switches improve efficiency at heavy loads and make the layout a much simpler task with respect to discrete solutions.
The ICs are offered with factory-preset output voltages (see the Ordering Information for options). The $\mathrm{I}^{2} \mathrm{C}$ interface supports dynamic voltage adjustment with programmable slew rates. Other features include programmable soft-start, overcurrent, and overtemperature protections.

Applications

- Automotive

Benefits and Features

- Fully Integrated, Synchronous 6A DC-DC Converter Enables Small Solution Size
- 3.0 V to 5.5 V Operating Supply Voltage
- High-Precision Voltage Regulator for Applications

Processors

- $\pm 2 \%$ Output-Voltage Accuracy
- Differential Remote Voltage Sensing
- $1^{2} \mathrm{C}$-Controlled Output Voltage of 0.5 V to 1.27 V in 10 mV Steps, or 0.625 V to 1.5875 V in 12.5 mV Steps
- Excellent Load-Transient Performance
- Low-Noise Feature Reduces EMI
- 2.2 MHz Operation
- Spread-Spectrum Option
- Frequency-Synchronization Input/Output
- Current-Mode, Forced-PWM, and Skip Operation
- Robust for the Automotive Environment
- PGOOD Output
- Overtemperature and Short-Circuit Protection
- 20-Pin ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) TQFN with an Exposed Pad
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range
- AECQ-100 Qualified

Typical Application Circuits

Absolute Maximum Ratings

PV, AV to GND	to +6 V
ADDR, EN, PG, RS+, RS-, SYNC to GND....-0.3V to $\mathrm{V}_{\mathrm{AV}}+0.3 \mathrm{~V}$	
SDA, SCL to GND ... -0.3V to +6V	
GND to PGND .. 0.3 V to +0.3 V	
LX to PGND (Note 1)................................-0.3V to VPV +0.3 V	
Output Short-C	Continuous

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) TQFN (derate $30.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	

Note 1: Self-protected against transient voltages exceeding these limits for $\leq 50 \mathrm{~ns}$ under normal operation and loads up to the maximum rating output current.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

20 TQFN-EP

Package Code	T2044+4C
Outline Number	$\underline{21-100172}$
Land Pattern Number	$\underline{90-0409}$

20 SW TQFN-EP

Package Code	T2044Y+4C
Outline Number	$\underline{21-100068}$
Land Pattern Number	$\underline{90-0409}$
THERMAL RESISTANCE, SINGLE-LAYER BOARD	$33^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$2^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{AV}}=5.0 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ under normal conditions, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	$\mathrm{V}_{\text {IN }}$	Fully operational		3.0		5.5	V
Undervoltage Lockout	UVLO	Rising			2.85	3	
		Falling			2.55		
Shutdown Supply Current	In	$\mathrm{EN}=$ low	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		4.5		
Supply Current	In	$\begin{aligned} & \mathrm{EN}=\text { high, } \mathrm{IOUT}=0 \mathrm{~mA}, \\ & \text { skip mode } \end{aligned}$			300		$\mu \mathrm{A}$

MAX20010C/MAX20010D/ MAX20010E

Automotive Single 6A Step-Down Converters

Electrical Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{AV}}=5.0 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ under normal conditions, unless otherwise noted.) (Note 2)

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{AV}}=5.0 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ under normal conditions, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Hysteresis				0.1		V
EN Input Leakage Current		$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV}} \leq 5.5 \mathrm{~V}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{AV}} \leq 5.5 \mathrm{~V} \end{aligned}$		0.1		$\mu \mathrm{A}$
Enable Time		Rising EN to beginning of soft-start		140		$\mu \mathrm{s}$
SYNC Input Pulldown				100	150	k ת
SYNC Input Frequency Range			1.8		2.6	MHz
SYNC OUTPUT						
Output Low	V_{OL}	ISINK $=3 \mathrm{~mA}$			0.4	V
Output High	V_{OH}	$\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{AV}}=5.0 \mathrm{~V}$, $\mathrm{I}_{\text {SOURCE }}=3 \mathrm{~mA}$	4.2			V
DIGITAL INPUTS (SDA, SCL)						
Input High Level	$\mathrm{V}_{1 \mathrm{H}+12 \mathrm{C}}$		1.3			V
Input Low Level	$\mathrm{V}_{\text {IL }}$ I2C				0.5	V
Input Hysteresis				0.1		V
Input Leakage Current		$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV}} \leq 5.5 \mathrm{~V}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{AV}} \leq 5.5 \mathrm{~V} \end{aligned}$		0.1		$\mu \mathrm{A}$
1²C INTERFACE						
Clock Frequency	$\mathrm{f}_{\text {SCL }}$				3.4	MHz
Setup Time (Repeated) START	tsu:STA	(Note 3)	160			ns
Hold Time (Repeated) START	${ }_{\text {thb }}$ STA	(Note 3)	160			ns
SCL Low Time	tow	(Note 3)	160			ns
SCL High Time	$\mathrm{t}_{\mathrm{HIGH}}$	(Note 3)	60			ns
Data Setup Time	$\mathrm{t}_{\text {SU:DAT }}$	(Note 3)	50			ns
Data Hold Time	$\mathrm{t}_{\mathrm{HD} \text { : DAT }}$	(Note 3)	0		70	ns
Setup Time for STOP Condition	tsu:Sto	(Note 3)	160			ns
Spike Suppression		(Note 3)		20		ns
SDA Output Low	VOL_SDA	$\mathrm{I}_{\text {SINK }}=13 \mathrm{~mA}$			0.4	V

Note 2: All units are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 3: Guaranteed by design. Not production tested.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX20010C/MAX20010D/
 Automotive Single 6A Step-Down Converters MAX20010E

Typical Operating Characteristics (continued)
 ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1-4	LX	Inductor Connection. Connect LX to the switched side of the inductor. Connect all LX pins together.
5-7	PGND	Power Ground. Connect all PGND pins together.
8	SDA	${ }^{12} \mathrm{C}$ Data I/O
9	SCL	${ }^{2} \mathrm{C}$ C Clock Input
10	RS-	Buck Regulator Remote Voltage-Sense Negative Input
11	RS+	Buck Regulator Remote Voltage-Sense Positive Input
12	PG	Open-Drain Power-Good Output. This output remains low for $120 \mu \mathrm{~s}$ after the output has reached its regulation level (see the Electrical Characteristics table). To obtain a logic signal, pull up PG with an external resistor.
13	EN	Active-High Enable Input. When EN is high, the device enters soft-start. When EN is low, the device enters soft-shutdown.
14	SYNC	SYNC I/O. When configured as an input, connect SYNC to GND or leave unconnected to enable skipmode operation under light loads. Connect SYNC to AV or an external clock to enable fixedfrequency, forced-PWM (FPWM) mode operation. When configured as an output, connect SYNC to other devices' SYNC inputs.
15	GND	Analog Ground
16	AV	Analog Input Supply. Filter AV using a 100Ω resistor from PV and a $1 \mu \mathrm{~F}$ ceramic capacitor from AV to GND.
17	ADDR	$1^{2} \mathrm{C}$ Address Select. See the Ordering Information table for default ${ }^{2} \mathrm{C}$ settings.
18-20	PV	Power Input Supply. Connect a $4.7 \mu \mathrm{~F}$ or larger ceramic capacitor from PV to PGND. Connect all PV pins together.
-	EP	Exposed Pad. Connect EP to ground. Connecting the exposed pad to ground does not remove the requirement for proper ground connections to PGND. The exposed pad is attached with epoxy to the substrate of the die, making it an excellent path to remove heat from the IC.

MAX20010C/MAX20010D/ MAX20010E

Automotive Single 6A Step-Down Converters

Detailed Description

The MAX20010C/MAX20010D/MAX20010E ICs are high-efficiency, synchronous step-down converters that operate with a 3.0 V to 5.5 V input voltage range and provide a 0.5 V to 1.5875 V output voltage range. The ICs deliver up to 6 A of load current and achieve $\pm 2 \%$ output error over load, line, and temperature ranges. The MAX20010D/MAX20010E offers improved transient performance.

Optional spread-spectrum frequency modulation minimizes radiated electromagnetic emissions due to the switching frequency. The $I^{2} \mathrm{C}$-programmable I/O (SYNC) enables system synchronization.

Integrated low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ switches help improve efficiency at heavy loads and make the layout a much simpler task with respect to discrete solutions. The ICs are offered with a factory-preset output voltage that is dynamically adjustable through the ${ }^{2}{ }^{2} \mathrm{C}$ interface. The output voltage can be set to any desired value between 0.5 V and 1.27 V in 10 mV steps, and between 0.625 V and 1.5875 V in 12.5 mV steps.
Additional features include adjustable soft-start, power-good delay, DVS rate, overcurrent, and overtemperature protections (see Figure 1).

Figure 1. Internal Block Diagram

I²C Interface

The ICs feature an $1^{2} \mathrm{C}$, 2-wire serial interface consisting of a serial-data line (SDA) and serial-clock line (SCL). SDA and SCL facilitate communication between the ICs and the master at clock rates up to 3.4 MHz . The master, typically a microcontroller, generates SCL and initiates data transfer on the bus. Figure 2 shows the 2 -wire interface timing diagram. A master device communicates with the ICs by transmitting the proper address followed by the data word. Each transmit sequence is framed by a START (S) or Repeated START (Sr) condition and a STOP (P) condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse.
The SDA line operates as both an input and an open-drain output. A pullup resistor greater than 500Ω is required on the

MAX20010C/MAX20010D/ MAX20010E

Automotive Single 6A Step-Down Converters

SDA bus. The SCL line operates as an input only. A pullup resistor greater than 500Ω is required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. The SCL and SDA inputs suppress noise spikes to assure proper device operation even on a noisy bus.

Figure 2. $I^{2} C$ Timing Diagram

Bit Transfer

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals (see the START and STOP Conditions section). SDA and SCL idle high when the I2C bus is not busy.

START and STOP Conditions

A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 3).
A START (S) condition from the master signals the beginning of a transmission to the IC. The master terminates transmission, and frees the bus, by issuing a STOP (P) condition. The bus remains active if a Repeated START (Sr) condition is generated instead of a STOP condition.

Figure 3. START, STOP, and Repeated START Conditions

Early STOP Condition

The ICs recognize a STOP condition at any point during data transmission, except if the STOP condition occurs in the
same high pulse as a START condition.

Clock Stretching

In general, the clock-signal generation for the $\mathrm{I}^{2} \mathrm{C}$ bus is the responsibility of the master device. The $\mathrm{I}^{2} \mathrm{C}$ specification allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down the clock line is typically called clock stretching. The ICs do not use any form of clock stretching to hold down the clock line.

${ }^{2}{ }^{2} \mathrm{C}$ General Call Address

The ICs do not implement the $I^{2} \mathrm{C}$ specification's "general call address." If the IC sees the general call address (0b0000_0000), it does not issue an acknowledge.

Slave Address

Once the device is enabled, the ${ }^{2} \mathrm{C}$ slave address is defined as the 7 most significant bits (MSBs) followed by the R/W bit which completes the 8 -bit $I^{2} \mathrm{C}$ transaction. Set the R/W bit to 0 to configure the IC to write mode. Set the R/W bit to 1 to configure the IC to read mode. The address is the first byte of information sent to the device after the START condition. The ADDR pin (A0) can be used to change the default $I^{2} \mathrm{C}$ slave address. See Table 1 for the 7 -bit $I^{2} \mathrm{C}$ slave addresses and the 8-bit Write/Read addresses.

Acknowledge

The acknowledge bit (ACK) is a clocked 9th bit that the ICs use to handshake receipt each byte of data (Figure 4). The device pulls down SDA during the master-generated 9th clock pulse. The SDA line must remain stable and low during the high period of the acknowledge clock pulse. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master can reattempt communication.

Figure 4. Acknowledge Condition
Table 1. ${ }^{2} \mathrm{C}$ C Slave Addresses

A6	A5	A4	A3	A2 *	A1 *	A0	I'2 2 ADDR	WRITE	READ
0	1	1	1	0	0	0	0×38	0×70	0×71
0	1	1	1	0	0	1	0×39	0×72	0×73
0	1	1	1	0	1	0	$0 \times 3 A$	0×74	0×75
0	1	1	1	0	1	1	$0 \times 3 B$	0×76	0×77
0	1	1	1	1	0	0	$0 \times 3 C$	0×78	0×79
0	1	1	1	1	0	1	$0 \times 3 D$	$0 \times 7 A$	$0 \times 7 B$
0	1	1	1	1	1	0	$0 \times 3 E$	$0 \times 7 C$	$0 \times 7 D$
0	1	1	1	1	1	1	$0 \times 3 F$	$0 \times 7 E$	$0 \times 7 F$

[^0]
MAX20010C/MAX20010D/ MAX20010E

Write Data Format

A write to the device includes:

- Transmission of a START condition
- Slave address with the write bit set to 0
- 1 byte of data to the register address
- 1 byte of data to the command register
- STOP condition
(Figure 5 illustrates the proper format for one frame)

Read Data Format

A read from the device includes:

- Transmission of a START condition
- Slave address with the write bit set to 0
- 1 byte of data to the register address
- Restart condition
- Slave address with the read bit set to 1
- 1 byte of data to the command register
- STOP condition
(Figure 5 illustrates the proper format for one frame)

Writing to a Single Register

Figure 6 shows the protocol for the $\mathrm{I}^{2} \mathrm{C}$ master device to write 1 byte of data to the ICs. This protocol is the same as the SMBus specification's "write byte" protocol.
The "write byte" protocol is as follows:

1. Master sends a START command (S).
2. Master sends the 7 -bit slave address followed by awrite bit $(R / W=0)$.
3. Addressed slave asserts an acknowledge (A) by pulling SDA low.
4. Master sends an 8 -bit register pointer.
5. Slave acknowledges the register pointer.
6. Master sends a data byte.
7. Slave updates with the new data.
8. Slave acknowledges or not acknowledges the databyte. The next rising edge on SDA loads the data byteinto its target register and the data becomes active.
9. Master sends a STOP condition (P) or a RepeatedSTART condition (Sr).

Writing Multiple Bytes Using Register-Data Pairs

Figure 7 shows the protocol for the ${ }^{2} \mathrm{C}$ master device to write multiple bytes to the ICs using register-data pairs. This protocol allows the $I^{2} \mathrm{C}$ master device to address the slave only once and then send data to multiple registers in a random order. Registers can be written continuously until the master issues a STOP condition.
The "multiple byte register-data pair" protocol is as follows:

1. Master sends a START command.
2. Master sends the 7 -bit slave address followed by a write bit.
3. Addressed slave asserts an acknowledge by pulling SDA low.
4. Master sends an 8 -bit register pointer.
5. Save acknowledges the register pointer.
6. Master sends a data byte.
7. Slave acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register and the data becomes active.
8. Steps 4-7 are repeated as many times as the master requires.
9. Master sends a STOP condition. During the rising edge of the stop-related SDA edge, the data byte that was

MAX20010C/MAX20010D/ MAX20010E

Automotive Single 6A Step-Down Converters

previously written is loaded into the target register and becomes active.

Figure 5. Data Format of ${ }^{2}{ }^{2}$ C Interface

Figure 6. Write Byte Format

PG Output

The ICs feature an open-drain PGOOD output that asserts low when the output voltage exceeds the PG_OV and PG_UV thresholds. PG remains low for a fixed timeout period after the output is within the regulation window. Connect PG to a logic supply using a pullup resistor.

Soft-Start

The ICs include a programmable startup fixed soft-start rate. Soft-start time limits startup inrush current by forcing the output voltage to ramp up towards its regulation point.

MAX20010C/MAX20010D/ MAX20010E

Enable (EN)

EN high triggers soft-start and EN low starts soft-shutdown sequence. When EN is used to shut down the buck output, it should stay low for a minimum of 1 ms for the soft-shutdown sequence to complete in order to guarantee that the PG pin deassertion does not occur immediately when EN goes high. If the PG pin is unused or early deassertion of the PG pin does not cause a system issue, then there is no restriction on the EN pin timing.

Shutdown

During shutdown, the output voltage is ramped down at the $5.5 \mathrm{mV} / \mu \mathrm{s}$ slew rate. Once the controlled ramp is stopped, the output voltage is typically around 0.15 V at no load. If the IC is re-enabled before shutdown is complete, PG will deassert immediately and not wait for the output to be in the regulation window.

Spread-Spectrum Option

The ICs, featuring spread-spectrum (SS) operation, vary the internal operating frequency down by 3% relative to the internally generated operating frequency of 2.2 MHz (typ). This function does not apply to externally applied oscillation frequency.

Synchronization (SYNC)

SYNC is factory-programmable I/O (see Ordering Information for the available options). When SYNC is configured as an input, a logic-high on the FPWM bit enables SYNC to accept signal frequencies in the range of $1.8 \mathrm{MHz}<\mathrm{f}_{\text {SYNC }}<$ 2.6 MHz . When SYNC is configured as an output, it outputs the internal PWM switching frequency.

Current-Limit/Short-Circuit Protection

The current-limit feature protects the ICs against short-circuit and overload conditions at the output. After soft-start is completed, if $\mathrm{V}_{\text {OUT }}$ is less than 50% of the set value and the IC is in current limit, the IC shuts off for 4 ms (at 2.2 MHz switching frequency) and repeats soft-start. This cycle repeats until the short or overload condition is removed. See the short-circuit (PWM) waveform for an example.

Figure 7. Write Register (Data-Pair Format)
Table 2. Register Map

REG	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	REGISTER ADDRESS	R/W
POWER- ON RESET										
ID	DEV3	DEV2	DEV1	DEV0	R3	R2	R1	R0	0×00	R
-	-	-	-	-	-	-	-	-	0×00	
-	-	VMAX6	VMAX5	VMAX4	VMAX3	VMAX2	VMAX1	VMAX0	0×01	R/W
VIDMAX	-	0×00								

MAX20010C/MAX20010D/ MAX20010E

Table 2. Register Map (continued)

Reserved*	Reserved*	-	-	-	-	-	Reserved*	Reserved*	0×03	R/W	0x02
STATUS	INTERR	Reserved*	VRHOT	UV	OV	OC	VmERR	0	0×04	R	0x00
CONFIG	VSTEP	-	-	-	FPWM	SS	SO1	SOO	0×05	R/W	OTP
SLEW	-	-	-	-	SR3	SR2	SR1	SR0	0x06	R/W	OTP
VID	-	VID6	VID5	VID4	VID3	VID2	VID1	VID0	0×07	R/W	OTP
Reserved*	-	-	Reserved*	Reserved*	Reserved*	Reserved*	Reserved*	Reserved*	$0 \times 2 \mathrm{~B}$	R/W	0x00

*Note: Reserved registers and bits are not used for readback; they are reserved for internal use.
Table 3. Identification Registers (ID)

ID								
BIT NO.	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME	DEV3	DEV2	DEV1	DEV0	R3	R2	R1	R0
POR	0	0	0	0	0	0	0	0

BIT	BIT DESCRIPTION
DEV[7:4]	Device ID: MAX20010C/MAX20010D/MAX20010E $=0 \times 0$
R[3:0]	0×3

Table 4. Maximum Voltage-Setting Registers (VIDMAX)

VIDMAX								
BIT NO.	7	6	5	4	3	2	1	0
NAME	-	VMAX6	VMAX5	VMAX4	VMAX3	VMAX2	VMAX1	VMAX0
POR	OTP							
BIT	BIT DESCRIPTION							
VMAX[6:0]	Maximum Voltage Setting: If VID[] > VMAX[], a fault is set and the actual voltage will be capped by VMAX[]. See Table 9 for voltage selections.							

Table 5. Configuration Registers (CONFIG)

CONFIG								
BIT NO.	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME	VSTEP	-	-	-	FPWM	SS	SO1	SOO
POR	OTP							
BIT	BIT DESCRIPTION							
VSTEP	Voltage Step Size—Sets the voltage step size for the LSB of SETVOUT: $0=10 \mathrm{mV}$ $1=12.5 \mathrm{mV}$							
FPWM	Forced-PWM Mode: $0=$ Mode controlled by SYNC pin. When SYNC is output device is always FPWM mode. 1 = Forced-PWM Mode. Overrides SYNC skip mode setting when SYNC is an input.							
SS	Spread-Spectrum Clock Setting: $0=$ Disabled $1=+3 \%$ spread							
SO[1:0]	SYNC I/O Select: $00=$ Master: Input, rising edge starts cycle 01 = Master: Input, falling edge starts cycle $10=$ Master: Output, falling edge starts cycle 11 = Unused							

MAX20010C/MAX20010D/ MAX20010E

Automotive Single 6A Step-Down Converters

Table 6. Status Registers (STATUS)

STATUS								
BIT NO.	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME	INTERR	Reserved*	VRHOT	UV	OV	OC	VMERR	0
POR	0	0	0	0	0	0	0	0
BIT	BIT DESCRIPTION							
INTERR	Internal Hardware Error: This bit is set to 1 when ATE trimming and testing is not complete.							
Reserved	Reserved registers and bits are not used for readback; they are reserved for internal use.							
VRHOT	Thermal-Shutdown Indication: This bit indicates if thermal shutdown has occurred since the last time the STATUS register was read.							
UV	VOUT Undervoltage: This bit indicates if the output is currently under the target voltage.							
OV	VOUT Overvoltage: This bit indicates if the output is currently over the target voltage.							
OC	VOUT Overcurrent: This bit indicates if an overcurrent event has occurred since the last time the STATUS register was read.							
VMERR	VOUT MAX Error: Set to 1 if VID[] > VOUTMAX[] is in normal mode.							

Table 7. Slew-Rate Registers (SLEW)

SLEW								
BIT NO.	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME	-	-	-	-	SR3	SR2	SR1	SR0
POR	OTP							
SR[3:0]		SOFT-START SLEW RATE (mV/ $\mu \mathrm{s}$)*				DVS SLEW RATE (mV/us)*		
		22				22		
		11				22		
		5.5				22		
		11				11		
		5.5				11		
		44				44		
		22				44		
		11				44		
		5.5				44		
		5.5				5.5		
XXXX1010-XXXX1111		Reserved				Reserved		

*Note: VSTEP = ' 0 '; when VSTEP = ' 1 ', increase by a factor of 1.25.
Table 8. Output-Voltage Registers, VID

VID								
BIT NO.	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NAME	-	VID6	VID5	VID4	VID3	VID2	VID1	VID0
POR	OTP							
BIT								

MAX20010C/MAX20010D/ MAX20010E

VID[6:0] Target Voltage Setting: VOUT ramps at the programmed DVS ramp until it reaches VSET. See Table 9 for voltage selections.
Table 9. VID Output-Voltage Selections

VID[6:0]	$\begin{aligned} & \text { VOUT (V) } \\ & \text { (VSTEP = 0) } \end{aligned}$	$\begin{gathered} \text { VOUT (V) } \\ \text { (VSTEP = 1) } \end{gathered}$	VID[6:0]	$\begin{gathered} \text { VOUT (V) } \\ \text { (VSTEP = } 0 \text {) } \end{gathered}$	$\begin{gathered} \text { VOUT (V) } \\ \text { (VSTEP = } 1 \text {) } \end{gathered}$	VID[6:0]	$\begin{gathered} \text { VOUT (V) } \\ \text { (VSTEP = } 0 \text {) } \end{gathered}$	$\begin{gathered} \text { VOUT (V) } \\ \text { (VSTEP = } 1 \text {) } \end{gathered}$
0×00	OFF	OFF	0x20	0.810	1.0125	0×40	1.130	1.4125
0×01	0.500	0.6250	0×21	0.820	1.0250	0x41	1.140	1.4250
0×02	0.510	0.6375	0×22	0.830	1.0375	0×42	1.150	1.4375
0×03	0.520	0.6500	0×23	0.840	1.0500	0x43	1.160	1.4500
0×04	0.530	0.6625	0×24	0.850	1.0625	0×44	1.170	1.4625
0×05	0.540	0.6750	0×25	0.860	1.0750	0x45	1.180	1.4750
0×06	0.550	0.6875	0x26	0.870	1.0875	0x46	1.190	1.4875
0x07	0.560	0.7000	0x27	0.880	1.1000	0x47	1.200	1.5000
0×08	0.570	0.7125	0×28	0.890	1.1125	0x48	1.210	1.5125
0x09	0.580	0.7250	0x29	0.900	1.1250	0x49	1.220	1.5250
0x0A	0.590	0.7375	$0 \times 2 \mathrm{~A}$	0.910	1.1375	0x4A	1.230	1.5375
0x0B	0.600	0.7500	0x2B	0.920	1.1500	0x4B	1.240	1.5500
0x0C	0.610	0.7625	0x2C	0.930	1.1625	0x4C	1.250	1.5625
0x0D	0.620	0.7750	0x2D	0.940	1.1750	0x4D	1.260	1.5750
$0 \times 0 \mathrm{E}$	0.630	0.7875	$0 \times 2 \mathrm{E}$	0.950	1.1875	0x4E	1.270	1.5875
0x0F	0.640	0.8000	0x2F	0.960	1.2000			
0x10	0.650	0.8125	0x30	0.970	1.2125			
0x11	0.660	0.8250	0×31	0.980	1.2250			
0×12	0.670	0.8375	0×32	0.990	1.2375			
0x13	0.680	0.8500	0x33	1.000	1.2500			
0x14	0.690	0.8625	0×34	1.010	1.2625			
0x15	0.700	0.8750	0x35	1.020	1.2750			
0x16	0.710	0.8875	0×36	1.030	1.2875			
0x17	0.720	0.9000	0×37	1.040	1.3000			
0x18	0.730	0.9125	0×38	1.050	1.3125			
0x19	0.740	0.9250	0×39	1.060	1.3250			
0x1A	0.750	0.9375	0x3A	1.070	1.3375			
0x1B	0.760	0.9500	0x3B	1.080	1.3500			
0x1C	0.770	0.9625	0x3C	1.090	1.3625			
0x1D	0.780	0.9750	0x3D	1.100	1.3750			
0x1E	0.790	0.9875	0x3E	1.110	1.3875			
0x1F	0.800	1.0000	0x3F	1.120	1.4000			

PWM/Skip Modes

The ICs feature a SYNC input that puts the converter either in skip mode or forced-PWM mode of operation. See the Pin Description table for mode details. In PWM mode, the converter switches at a constant frequency with variable on-time. In skip mode, the converter's switching frequency is load-dependent until the output load reaches a certain threshold. At higher load current, the switching frequency does not change and the operating mode is similar to the PWM mode. Skip mode helps improve efficiency in light-load applications by transferring more energy to the output during each on cycle, so the converter does not switch MOSFETs on and off as often as is the case in PWM mode. Consequently, the gate

MAX20010C/MAX20010D/ MAX20010E

Automotive Single 6A Step-Down Converters
charge and switching losses are much lower in skip mode.

Overtemperature Protection

Thermal-overload protection limits the total power dissipation in the ICs. When the junction temperature exceeds $165^{\circ} \mathrm{C}$ (typ), an internal thermal sensor shuts down the internal bias regulator and the step-down controller, allowing the ICs to cool. The thermal sensor turns on the ICs again after the junction temperature cools by $15^{\circ} \mathrm{C}$.

MAX20010C/MAX20010D/ MAX20010E

Automotive Single 6A Step-Down Converters

Applications Information

Input Capacitor

The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit's switching.
The input capacitor RMS current requirement (l_{RMS}) is defined by the following equation:
$I_{\mathrm{RMS}}=I_{\mathrm{LOAD}(\mathrm{MAX})} \frac{\sqrt{V_{\mathrm{OUT}}\left(V_{\mathrm{PV}}-V_{\mathrm{OUT}}\right)}}{V_{\mathrm{PV}}}$
$I_{R M S}$ has a maximum value when the input voltage equals twice the output voltage $\left(V_{P V}=2 V_{O U T}\right)$, so $I_{R M S}(M A X)=$ ILOAD(MAX)/2.
Choose an input capacitor that exhibits less than $+10^{\circ} \mathrm{C}$ self-heating temperature rise at the RMS input current for optimal long-term reliability:
$\mathrm{ESP}_{\mathrm{IN}}=\frac{\Delta V_{\mathrm{ESR}}}{I_{\mathrm{OUT}}+\frac{\Delta I_{L}}{2}}$
where:

$$
\Delta I_{L}=\frac{\left(V_{\mathrm{PV}}-V_{\mathrm{OUT}}\right) \times V_{\mathrm{OUT}}}{{V_{\mathrm{PV}}^{-}} \times f_{\mathrm{SW}} \times L}
$$

and:
$C_{\mathrm{IN}}=\frac{{ }^{\prime} \mathrm{OUT}^{\times D(1-D)}}{\Delta V_{Q} \times f_{\mathrm{SW}}}$
and:
$D=\frac{V_{\mathrm{OUT}}}{V_{\mathrm{PV}}}$
lout is the maximum output current, D is the duty cycle.

Inductor Selection

The ICs are optimized to use a nominal $0.22 \mu \mathrm{H}$ inductor value. $0.15 \mu \mathrm{H}$ to $0.33 \mu \mathrm{H}$ inductors can also be used.
Inductors are rated for maximum saturation current. The maximum inductor current equals the maximum load current in addition to half the peak-to-peak ripple current:
$I_{\text {PEAK }}=I_{\text {LOAD }}$ (MAX) $+\frac{\Delta I_{\text {INDUCTOR }}}{2}$
The actual peak-to-peak inductor ripple current is calculated in the previous $\Delta \mathrm{I}_{\mathrm{L}}$ equation.
The saturation current should be $>$ IPEAK, or at least in a range where the inductance does not degrade significantly.

Output Capacitor

The MAX20010C is stable with $2 x 47 \mu \mathrm{~F}$ (typ) or more of X7R ceramic capacitance on the output, while the MAX20010D/ MAX20010E is stable with $3 x 47 \mu \mathrm{~F}$ (typ). Phase and gain margin must be measured with the worst-case-derated output capacitance to ensure stability. Larger capacitance values can be used to minimize $\mathrm{V}_{\text {SAG }}$ and $\mathrm{V}_{\text {SOAR }}$ during load transients.

Setting the Output Voltage Externally

An external resistive divider can be used to set the output voltage higher than the programmed VID voltage. This should only be done with MAX20010EATPA/V+. To set the output voltage, connect a resistive divider from the output (OUT) to RS+ to GND, as shown in Figure 8 V OUT should not exceed 5V. Select RFB2 (RS+ to GND resistor) $\leq 50 \mathrm{k} \Omega$. Calculate

MAX20010C/MAX20010D/ MAX20010E

Automotive Single 6A Step-Down Converters
$R_{\text {FB }}$ (OUT to RS+ resistor) with the following equation:
$R_{\mathrm{FB} 1}=R_{\mathrm{FB} 2}\left[\left(\frac{V_{\mathrm{OUT}}}{V_{\mathrm{RS}+}}\right)-1\right]$
where $\mathrm{V}_{\mathrm{RS}}+=$ programmed VID voltage. Capacitor $\mathrm{C}_{\mathrm{FB} 1}$ can help improve the phase margin when using a resistive divider. Determine $\mathrm{C}_{\mathrm{FB} 1}$ from the following equation:
$C_{\mathrm{FB} 1}=1 /\left(2 \times \pi \times R_{\mathrm{FB} 1} \times 80 k\right)$
When setting the output voltage externally, scale the inductance according to the $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{RS}}+$ ratio. MAX20010EATPA/ V+ parts are programmed with double internal slope compensation to allow for smaller inductance values. Set the inductance using the following equation:
$L=V_{\text {OUT }} / V_{\mathrm{RS}+} \times 220 \mathrm{nH} / 2$

Figure 8. Adjustable Output-Voltage Setting

MAX20010C/MAX20010D/ MAX20010E

Ordering Information

PART	PINPACKAGE	Vout (V)	VMAX[6:0]	CONFIG	VID[6:0]	SLEW	$\mathrm{I}^{2} \mathrm{C}$ ADDR $=0$
MAX20010CATPB/V+	20 TQFN-EP*	1.24	0x4B (1.24V)	0x08	0x4B (1.24V)	0x04	0×38
MAX20010CATPD/V+	20 TQFN-EP*	0.82	0x3C (1.09V)	0x0E	0x21 (0.82V)	0x09	0×38
MAX20010CATPE/V+	20 TQFN-EP*	0.80	0x29 (0.90V)	0×08	0x1F (0.80V)	0×09	$0 \times 3 \mathrm{~A}$
MAX20010CATPF/V+	20 TQFN-EP*	0.80	0x29 (0.90V)	0×08	0x1F (0.80V)	0x03	$0 \times 3 \mathrm{~A}$
MAX20010CATPJ/V+	20 TQFN-EP*	1.20	$0 \times 4 \mathrm{C}(1.25 \mathrm{~V})$	0×08	0x47 (1.20V)	0x03	0×38
MAX20010CATPL/V+	20 TQFN-EP*	1.00	0x42 (1.15V)	0×06	0x33 (1.00V)	0x03	0×38
MAX20010CATPM/V+	20 TQFN-EP*	1.00	0x3D (1.10V)	0×08	0x33 (1.00V)	0x03	0×38
MAX20010CATPQ/V+	20 TQFN-EP*	0.60	0x1F (0.80V)	0×08	0x0B (0.60V)	0x03	0×38
MAX20010CATPT/V+**	20 TQFN-EP*	1.275	0x39 (1.325V)	0x8C	0×35 (1.275V)	0x03	0×38
MAX20010CATPU/V+	20 TQFN-EP*	1.03	0x3B (1.08V)	0x0C	0x36 (1.03V)	0x00	0×38
MAX20010CATPW/V+**	20 TQFN-EP*	0.80	0x29 (0.90V)	0×04	0x1F (0.80V)	0x04	0×38
MAX20010CATPX/V+**	20 TQFN-EP*	1.00	0x42 (1.15V)	0×04	0x33 (1.00V)	0x04	0×38
MAX20010CATPY/V+**	20 TQFN-EP*	0.75	0x2E (0.95V)	0×00	$0 \times 1 \mathrm{~A}(0.75 \mathrm{~V})$	0x02	0×38
MAX20010DATPN/V+	20 TQFN-EP*	1.00	0x42 (1.15V)	0x08	0x33 (1.00V)	0x03	0×38
MAX20010DATPO/V+	20 TQFN-EP*	0.91	0x42 (1.15V)	0×08	0x2A (0.91V)	0x03	0×38
MAX20010DATPO/VY+	20 SW TQFN-EP*	0.91	0x42 (1.15V)	0×08	$0 \times 2 \mathrm{~A}(0.91 \mathrm{~V})$	0x03	0×38
MAX20010DATPP/V+	20 TQFN-EP*	0.87	0x42 (1.15V)	0×08	0x26 (0.87V)	0x03	0×38
MAX20010DATPQ/V+	20 TQFN-EP*	0.92	0x42 (1.15V)	0X08	0x2B (0.92V)	0x03	0×38
MAX20010DATPR/V+	20 TQFN-EP*	0.90	0x42 (1.15V)	0×08	0x29 (0.90V)	0x00	0×38
MAX20010DATPT/V+	20 TQFN-EP*	0.75	0x42 (1.15V)	0×08	0x1A (0.75V)	0x03	0×38
MAX20010DATPY/V+	20 TQFN-EP*	1.10	0X42 (1.15V)	0X08	0X3D (1.10V)	0X03	0×38
MAX20010EATPA/V+	20 TQFN-EP*	1.20	0X4C (1.25V)	0×08	0x47 (1.20V)	0x03	0×38

N denotes an automotive qualified part.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
**Future product-contact factory for availability.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/17	Initial release	-
1	3/18	Updated Table 7, Output Capacitor section, and Ordering Information	16, 18-19
2	4/18	Updated Package Information table and Table 7. Added MAX20010DATPR/V+ as a future product to the Ordering Information table.	2, 16, 19
3	8/18	Updated equation in the Setting the Output Voltage Externally section. Added MAX20010CATPE/V+** as a future product and removed future product designation from MAX20010DATPR/V+ in the Ordering Information table.	19
4	11/18	Updated Package Information table. Added MAX20010DATPT/V+ and MAX20010DAT -PO/VY+ to the Ordering Information table. Added MAX20010CATPU/V+ as a future product to the Ordering Information table.	2, 19
5	3/19	Removed future-product notation from MAX20010CATPE/V+ and MAX20010CATPU/V+ in the Ordering Information table	19
6	2/20	Added MAX20010E product variant to the following sections: General Description, Typical Application Circuit, Pin Configuration, Detailed Description, Figure 1: Internal Block Diagram, Table3: Identification Registers (ID) - Dev[7.4], Output Capacitor. Updated and added equations to: Setting the Output Voltage Externally section. Added MAX20010EATPA/V+ to the Ordering Information table. Updated ordering table to use 7 -bit addresses.	$\begin{gathered} 1,7,8,14 \\ 18,19 \end{gathered}$
7	9/21	Added "Enable (EN)" subsection. Updated "Shutdown" subsection. Updated Table 2. Added MAX20010CATPB/V+, MAX20010CATPT/V+, and MAX20010CATPY/V+ as future products to the Ordering Information table. Added MAX20010CATPF/V+, MAX20010DATPQ/V+, MAX20010CATPW/V+, MAX20010CATPX/V+, and MAX20010DATPY/V+ to the Ordering Information table.	14, 16, 22
8	10/21	Added future product notation to MAX20010CATPW/V+ and MAX20010CATPX/V+	22

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC

[^0]: *See the Ordering Information table for the 7 -bit default settings for ADDR=0.

