Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and I ${ }^{2}$ C Interface

General Description

The MAX20067/MAX20067B are complete TFT bias solutions for automotive applications. They include a currentmode boost converter and two push-pull charge-pump drivers.

The ICs also include a gate-shading push-pull level shifter that can be used to improve display uniformity (when needed), and a DAC and VCOM buffer. All blocks on the ICs can be used in stand-alone mode or through the $I^{2} \mathrm{C}$ interface.
Comprehensive control functions are included using the built-in $I^{2} \mathrm{C}$ interface, as well as diagnostics and monitoring.
The ICs are intended to operate with 2.7 V to 5.5 V supplies.
The MAX20067/MAX20067B are available in a 32-pin TQFN package and operate in the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range.

Applications

- Infotainment Displays
- Central Information Displays
- Instrument Clusters

Benefits and Features

- Versatile TFT Display Power Section
- Integrated Synchronous Boost Converter with Output Voltages Up to 18 V and High-power (MAX20067) or Lower-power (MAX20067B) Options
- Integrated Charge-Pump Drivers for the VGON (+32 V , max) and VGOFF (-24 V , min) Outputs
- Low EMI Operation
- Programmable Switching Frequencies of 440 kHz or 2.2MHz
- Programmable Spread Spectrum
- Full Sequencing Flexibility Through $I^{2} \mathrm{C}$, Along with Preset Sequences Using SEQ Pin
- Extended Diagnostics Using I ${ }^{2} \mathrm{C}$ Interface
- Undervoltage/Overvoltage on HVINP, VGON, and VGOFF
- Overcurrent on AVDD
- Temperature Warning
- Built-In Gate-Shading Circuit Controlled by CTL Input
- 8-Bit DAC-Controlled VCOM Buffer
- Robust
- $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Operating Temperature Range
- Internal Temperature Shutdown
- AEC-Q100 Qualified
- Compact 32-Pin ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) TQFN Package

Ordering Information appears at end of datasheet.

MAX20067/MAX20067B

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

TABLE OF CONTENTS

General Description 1
Applications 1
Benefits and Features 1
Simplified Block Diagram 2
Absolute Maximum Ratings 7
Package Information 7
32-Pin TQFN 7
Electrical Characteristics 7
Typical Operating Characteristics 13
Pin Configuration 17
MAX20067 17
Pin Description 17
Functional Diagrams 20
Typical Application Circuit 20
Detailed Description 21
TFT Power Section 21
Source-Driver Power Supplies 21
Gate-Driver Power Supplies 21
Operation of the Positive Charge Pump 21
Operation of the Negative Charge Pump 22
Fault Protection on the TFT Section 22
Output Control 22
Power-Up/Power-Down Sequencing and Timing 22
Gate-Shading Level Shifter 23
Table 1 23
VCOM Buffer 23
Table 2 24
FLTB Output 24
Stand-Alone Mode 24
Table 3 24
Table 4 24
I2C Serial Interface 25
12C Protocol 25
Table 5 25
Individual Output Control Through I2C 25
Autosequencing Mode 25
Figure 1. Sample Sequence 26
Register Map 27
MAX20067/MAX20067B \quad Automotive 3-Channel Display Bias IC with VCOM
Buffer, Level Shifter, and ${ }^{2} \mathrm{C}$ Interface

TABLE OF CONTENTS (CONTINUED)

Register Map 27
Register Details 27
Applications Information 34
Boost Converter 34
Inductor Selection 34
Capacitor Selection 34
Output-Voltage Selection 35
Boost Converter Operation at low INA and high Output Power 35
Charge-Pump Regulators 35
Selecting the Number of Charge-Pump Stages 35
Flying Capacitors 35
Charge-Pump Output Capacitor 35
Power Dissipation 36
PCB Layout Example 36
Layout Example 37
Ordering Information 38
Revision History 39

MAX20067/MAX20067B
 Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $\mathrm{I}^{2} \mathrm{C}$ Interface

LIST OF FIGURES

Figure 1. Layout Example37
MAX20067/MAX20067B \quad Automotive 3-Channel Display Bias IC with VCOM
Buffer, Level Shifter, and I ${ }^{2} \mathrm{C}$ Interface

LIST OF TABLES

Table 1. Gate-Shading Operating Modes . 23
Table 2. VCOM DAC Values . 24
Table 3. Output Sequencing . 24
Table 4. FLTB Output Duty Cycle . 24
Table 5. I²C Slave Addresses . 25

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $\mathrm{I}^{2} \mathrm{C}$ Interface

Absolute Maximum Ratings

INA, SDA, SCL, ENP, FLTB, CTL to GND -0.3 V to +6 V
DEL, REF, FBP, FBGH, FBGL, SEQ, MODE, ADD to GND 0.3 V to $\mathrm{INA}+0.3 \mathrm{~V}$

LXP, BST to GND.. - 0.3 V to 26 V
BST to LXP.. 0.3 V to +6 V
HVINP, VCOMP to GND - 0.3 V to +26 V
VCINH, VCOM to GND............................ -0.3 V to $\mathrm{V}_{\mathrm{COMP}}+0.3 \mathrm{~V}$
VCINH to VCOM... 1 V
AVDD, PGVDD to HVINP......................... 0.3 V to HVINP + 0.3 V
VGON, SRC, DRN to GND.................................... - 0.3 V to +34 V
DRN to GATES... 34 V to +34 V
GATES to GND ...-0.3V to SRC + 0.3V
VGOFF to GND ... -26V to +0.3V

DRVP, DRVN to PGND-0.3V to HVINP + 0.3V
GND to PGND...-0.3V to +0.3V
GND to DGND ..-0.3V to +0.3V
LXP Continuous Current...2.4A
Continuous Power Dissipation (Multilayer Board) ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)...
W to 2.758 W
Package Thermal Resistance ... $1.7^{\circ} \mathrm{C} / \mathrm{W}$
ESDHB... 2 kV to +2 kV
ESDMM...-200V to +200V
Operating Temperature.. $40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Junction Temperature ... $40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range .. $+300^{\circ} \mathrm{C}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations see www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

32-Pin TQFN

Package Code	T3255+4C
Outline Number	$\underline{21-0140}$
Land Pattern Number	$\underline{90-0012}$
Thermal Resistance, Single-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	47
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	1.7
Thermal Resistance, Four-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	29
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	1.7

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated. com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\text {INA }}=3.6 \mathrm{~V}\right.$, Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INA POWER INPUT	$V_{\text {INA }}$		2.7	5.5	V	
INA Supply Voltage Range	UVLO $_{\text {R }}$		2.45	2.55	2.65	V
INA Undervoltage- Lockout Threshold, Rising						

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {INA }}=3.6 \mathrm{~V}\right.$, Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INA UndervoltageLockout Threshold, Falling	UVLOF			2.45		V
Supply Current	IINA	ENP = 1 or ENP bit = 1, no switching		1.8	3	mA
Shutdown Current	ISD	ENP $=0$ and ENP bit $=0$, total current INA + HVINP		7	15	$\mu \mathrm{A}$
OSCILLATOR						
Boost Converter Switching Frequency	fswo	SWFREQ bit $=0$	1.98	2.2	2.42	MHz
Boost Converter Switching Frequency, Low Setting	fsw1	SWFREQ bit = 1	390	440	490	kHz
Frequency Dither		SSOFF bit = 1	-4		+4	\%
REFERENCE						
REF Output Voltage	$\mathrm{V}_{\text {REF }}$		1.238	1.25	1.262	V
REF Load Regulation		$\mathrm{I}_{\text {REF }}$ from $0 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$		10	20	mV
REF Line Regulation		$2.7 \mathrm{~V}<\mathrm{V}_{\text {INA }}<5.5 \mathrm{~V}$, no load			5	mV
BOOST CONVERTER						
AVDD Output Voltage Range	$\mathrm{V}_{\text {AVDD }}$		$\mathrm{V}_{\text {INA }}+1$		18	V
LXP Current Limit		MAX20067B, 75\% duty-cycle	0.75	1	1.25	A
		MAX20067, 85\% duty cycle	2.1	2.5	2.9	
Low-Side Switch OnResistance	RLXP			0.2	0.4	Ω
LXP Leakage Current	ILXP	$\mathrm{V}_{\mathrm{LXP}}=18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			5	$\mu \mathrm{A}$
Synchronous Rectifier On-Resistance	$\mathrm{R}_{\text {SYNC }}$			0.25	0.5	Ω
Synchronous Rectifier Zero-Crossing Threshold	ISYNCZ	2.2 MHz		140		mA
Maximum Duty Cycle	DC MAX		90	94	98	\%
Current-Limit Ramp Time at Startup	$t_{\text {RAMP }}$			12.5		ms
FBP Regulation Voltage	$\mathrm{V}_{\text {FPB }}$		1.225	1.25	1.275	V
FBP Load Regulation		$1 \mathrm{~mA}<\mathrm{I}_{\text {AVDD }}<200 \mathrm{~mA}$		-1		\%
FBP Line Regulation		$\mathrm{V}_{\text {INA }}=2.7 \mathrm{~V}$ to 5.5 V	-0.4		+0.4	\%
FBP Undervoltage-Fault Threshold	$V_{\text {FBPUV }}$		75	80	85	\%
FBP Overvoltage-Fault Threshold	$\mathrm{V}_{\text {FBPOV }}$		110	115	120	\%

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {INA }}=3.6 \mathrm{~V}\right.$, Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FBP Input Bias Current	$\mathrm{I}_{\text {FBP }}$				200	nA
HVINP-AVDD Switch On-Resistance	R_{HA}			0.5	1	Ω
AVDD Discharge Resistance	$\mathrm{R}_{\text {AVDD }}$		1	1.5	2	k Ω
HVINP-AVDD Switch Current Limit	ILIMHA	After soft-start	240			mA
		During soft-start	120			

POSITIVE CHARGE-PUMP REGULATOR

NEGATIVE CHARGE-PUMP REGULATOR

VGOFF Output Voltage Range			-24		-4	V
DRVN Current Limit	ILIMN		15			mA
Negative Charge-Pump Switching Frequency			440			kHz
FBGL Regulation Voltage	$\mathrm{V}_{\text {FBGL }}$	$\mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {FBGL }}$	0.98	1	1.02	V
FBGL UndervoltageFault Threshold	V ${ }_{\text {FBGLUV }}$	Rising	400	450	500	mV

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {INA }}=3.6 \mathrm{~V}\right.$, Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FBGL Overvoltage-Fault Threshold	$V_{\text {FBGLOV }}$	Falling	20	50	100	mV
DRVN On-Resistance High	RONH_DRVN				60	Ω
DRVN On-Resistance Low					30	Ω
VGOFF Discharge Resistance			8	12	16	k Ω
GATE-SHADING CIRCUIT						
SRC Input Voltage Range	$\mathrm{V}_{\text {SRC }}$				32	V
SRC-to-GATES Switch On-Resistance	RSRC_GATES			10	20	Ω
DRN-to-GATES Switch On-Resistance	RDRN_GATES			10	20	Ω
DEL Pullup Current			4	5	6	$\mu \mathrm{A}$
DEL Enable Threshold				1.25		V
CTL-to-GATES Delay		$\mathrm{C}_{\text {GATES }}=1 \mathrm{nF}$		150		ns
MODE Switch OnResistance				1250		Ω
MODE Voltage Threshold		MODE rising	2			V
MODE Pullup Current			80	100	120	$\mu \mathrm{A}$
MODE Current-Source Stop Threshold				1.7		V
VCOM BUFFER						
VCOMP Voltage Range			5		18	V
VCOMP Quiescent Supply Current		$\mathrm{I}_{\mathrm{VCOMP}}=0 \mathrm{~mA}, \mathrm{~V}_{\text {COMP }}=12 \mathrm{~V}$		1.8		mA
VCINH Input Impedance				500		$\mathrm{k} \Omega$
VCINH/VCOMP Division Ratio				0.5		V/V
VCOM Output Current Limit			130			mA
VCOM Offset Voltage			-8		+8	mV
VCOM Output Voltage Range			1.5		$\begin{gathered} \hline \mathrm{V}_{\mathrm{COMP}}- \\ 1.5 \mathrm{~V} \end{gathered}$	V
VCOM DAC Step Size				19.5		mV
VCOM DAC Voltage Range				$\begin{aligned} & \mathrm{V}_{\mathrm{COMP}} / \\ & 2 \pm 2.5 \mathrm{~V} \end{aligned}$		V

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {INA }}=3.6 \mathrm{~V}\right.$, Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
VCOM UndervoltageDetection Threshold		VCINH - VCOM, falling	-0.55	-0.35	-0.15	V
VCOM OvervoltageDetection Threshold		VCINH - VCOM, rising	0.04	0.25	0.41	V
VCOM Fault Detection Filter Time		tfault[1:0] = 01		60		ms
VCOM Discharge Resistance			6	13	20	k Ω
TFT FAULT PROTECTION						
Fault Timeout		tfault[1:0] = 01		60		ms
Fault Retry Time				2.4		s
FLTB Output Frequency		Stand-alone mode only	0.88	1	1.12	kHz
FLTB Output Duty Cycle, VGON or VGOFF Fault				75		\%
FLTB Output Duty Cycle, HVINP Fault				50		\%
FLTB Output Duty Cycle, AVDD Fault				25		\%
AVDD UndervoltageFault Threshold		Relative measurement between HVINP and AVDD	70	75	80	\%
FBP Short-Circuit Fault Threshold			30	40	50	\%
FBGH Short-Circuit Fault Threshold			30	40	50	\%
FBGL Short-Circuit Fault Threshold			0.8	0.85	0.9	V
Short-Circuit and Overload Fault Delay				10		$\mu \mathrm{s}$
THERMAL PROTECTION						
Thermal Shutdown	TSHDN			165		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	TSHDN_HYS			15		${ }^{\circ} \mathrm{C}$
LOGIC INPUT AND OUTPUTS						
FLTB, DEL Low Output Voltage	V OL	$\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$			0.4	V
FLTB, DEL, SDA Leakage Current	IILEAK		-1		+1	$\mu \mathrm{A}$
SDA Output Voltage Low	V OLSDA				0.8	V
ENP Pulldown Resistor Value	RENPPD		50	75		k Ω

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {INA }}=3.6 \mathrm{~V}\right.$, Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ENP Glitch Filter Time	tenp			10		$\mu \mathrm{s}$
ENP, CTL, SCL, SDA, ADD Input Voltage Low	VIL				0.8	V
ENP, CTL, SCL, SDA, ADD Input Voltage High	V_{IH}		2			V
I2C INTERFACE						
Clock Frequency	$\mathrm{f}_{\text {SCL }}$				400	kHz
Setup Time (Repeated) START	tsu:STA		260			ns
Hold Time (Repeated) START	$t_{\text {thD }}$ STA		260			ns
SCL Low Time	tow		350			ns
SCL High Time	$\mathrm{t}_{\mathrm{HIGH}}$		260			ns
Data Setup Time	$\mathrm{t}_{\text {SU:DAT }}$		50			ns
Data Hold Time	$\mathrm{t}_{\mathrm{HD}: \text { DAT }}$		0			ns
Setup Time for STOP Condition	tsu:sto		260			ns
Spike Suppression				50		ns

Note 2: Note 1: Limits are 100% tested at $T_{A}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.

Typical Operating Characteristics

$\left(\left(\mathrm{V}_{\text {INA }}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=2.2 \mathrm{MHz}, \mathrm{C}_{\mathrm{VCOM}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\right.$ unless otherwise noted. $)$)

Typical Operating Characteristics (continued)

$\left(\left(\mathrm{V}_{\text {INA }}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=2.2 \mathrm{MHz}, \mathrm{C}_{\mathrm{VCOM}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\right.$ unless otherwise noted. $)$)

Typical Operating Characteristics (continued)

$\left(\left(\mathrm{V}_{\text {INA }}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=2.2 \mathrm{MHz}, \mathrm{C}_{\mathrm{VCOM}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\right.$ unless otherwise noted. $)$)

Typical Operating Characteristics (continued)

$\left(\left(\mathrm{V}_{\text {INA }}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=2.2 \mathrm{MHz}, \mathrm{C}_{\mathrm{VCOM}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\right.$ unless otherwise noted. $\left.)\right)$

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Pin Configuration

MAX20067

Pin Description

PIN	NAME	FUNCTION	REF SUPPLY
1	FBGH	Positive Charge-Pump Feedback Connection. FBGH is regulated to 1.25V. Connect a resistor-divider from VGON to GND with its midpoint connected to FBGH.	
2	FBGL	Negative Charge-Pump Feedback Connection. FBGL is regulated to 0.25V. Connect a resistor-divider from REF to VGOFF with its midpoint connected to FBGL.	
3	GND	Ground Connection	
4	VGOFF	Output of Negative Charge-Pump Block.	
5	DRVN	Negative Charge-Pump Push-Pull Drive Output	
6	VGON	Output of Positive Charge-Pump Block	
7	DRVP	Positive Charge-Pump Push-Pull Drive Output	
8	PGVDD	Supply voltage for positive charge-pump. PGVDD is connected to HVINP by means of an internal switch when the positive charge-pump is enabled. Bypass PGVDD with a ceramic capacitor of at least 1 μ F to GND.	

Pin Description (continued)

PIN	NAME	FUNCTION	$\begin{gathered} \text { REF } \\ \text { SUPPLY } \end{gathered}$
9	BST	Bootstrap Capacitor Connection for Synchronous Rectifier Driver. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between BST and LXP.	HVINP
10	AVDD	Switched Output of Boost Converter. Connect a bypass capacitor of at least $4.7 \mu \mathrm{~F}$ from AVDD to PGND.	
11	HVINP	Boost Output and Input to Positive and Negative Charge Pumps. Bypass HVINP with the boost-converter output capacitor placed close to the pin.	
12	LXP	Switching Node of Boost Converter. Connect the boost inductor between LXP and INA.	
13	PGND	Ground Connection for Boost Switching Device and VCOM Buffer. Connect to GND using a low-impedance trace.	
14	SRC	Source of Internal High-Side Switch in Gate-Shading Circuit. SRC is usually connected to VGON. Bypass SRC with a $0.1 \mu \mathrm{~F}$ capacitor placed close to the pin.	
15	GATES	Switched Output of Gate-Shading Circuit	
16	DRN	Lower Input of Gate-Shading Circuit. Connect to an external source or GND through a discharge resistor.	
17	VCOMP	Supply Voltage for VCOM Buffer. Normally connected to AVDD. Bypass $\mathrm{V}_{\text {COMP }}$ with a $0.1 \mu \mathrm{~F}$ ceramic capacitor placed close to the pin.	
18	VCOM	Output of VCOM Amplifier. Bypass VCOM to GND with a $1 \mu \mathrm{~F}$ ceramic capacitor.	
19	VCINH	Noninverting Input of VCOM Amplifier. In stand-alone mode, drive VCINH to set the VCOM output voltage. VCINH is prebiased to 50% of $\mathrm{V}_{\text {COMP }}$ with an internal resistor-divider comprising two $1 \mathrm{M} \Omega$ resistors.	
20	INA	Supply Connection for Display Bias Circuitry. Bypass INA with a local $0.1 \mu \mathrm{~F}$ capacitor.	
21	MODE	Mode Configuration Pin for Gate-Shading Level Shifter. MODE is used to adjust the timing of the gate-shading output. MODE is high impedance when connected to INA, and internally pulled down during UVLO or in shutdown.	
22	CTL	Control Input for Gate-Shading Circuit. When CTL is high, the switch between GATES and SRC is on and the switch between GATES and DRN is off. When CTL is low, the switch between GATES and DRN is on and the switch between GATES and SRC is off. CTL is inhibited by $V_{C C}$ UVLO and when DEL is less than 1.25 V .	
23	DEL	Gate-Shading Circuit Delay Input. Connect a capacitor from DEL to GND to set the turn-on delay.	
24	SEQ	Logic-Level Sequencing Input Pin. The voltage level on SEQ determines whether the IC is serially controlled, or one of the predetermined sequences is used. Connect SEQ to INA or a resistive divider between INA and GND to set one of the preset stand-alone sequences (see Table 3). For serial control, connect SEQ to GND.	
25	ENP	Active-High Enable Input for Boost Converter. ENP also enables the VGON and VGOFF regulators in the set sequence. ENP has an internal pulldown resistor. When serial control is used, connect ENP low.	
26	DGND	Digital Ground. Connect directly to the exposed pad of the package.	
27	ADD	1^{2} C Address-Selection Pin. Connect to GND for a base address of 0×20, or to INA for a base address of 0×28.	
28	SDA	Bidirectional ${ }^{2} \mathrm{C}$ C Data Pin	

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Pin Description (continued)

PIN	NAME	FUNCTION	REF SUPPLY
29	SCL	Serial-Clock Input	Open-Drain, Active-Low Fault Output. Connect a pullup resistor from FLTB to a logic supply $\leq 5 \mathrm{~V}$. In stand-alone mode, the duty cycle of the FLTB pin indicates an error condition, if present (see Table 4). When the serial interface is used, FLTB is either a 0 (indicating data to be read from the internal registers) or a 1. It does not output a PWM signal.
30	FLTB		
31	FBP	Boost Feedback Connection. FBP is regulated to 1.25V. Connect a resistor-divider from HVINP to GND with its midpoint connected to FBP.	
32	REF	Internal 1.25V Reference Output. Connect a 0.22 μ F capacitor from REF to GND.	
-	EP	Exposed Pad. Connect EP to GND.	

Functional Diagrams

Typical Application Circuit

MAX20067/MAX20067B

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Detailed Description

The MAX20067/MAX20067B are highly integrated power-supply ICs for automotive TFT-LCD applications. The ICs integrate one boost converter, two gate-driver supplies, a high-voltage "gate-shading" level shifter, and a high-current VCOM buffer.
The main power-supply section, comprising the boost converter and gate-driver supplies, operates from a 2.7 V to 5.5 V supply. The boost converter operates at 440 kHz or 2.2 MHz and has built-in spread spectrum that can be disabled using the serial interface for reducing EMI.
The boost converter provides an output voltage adjustable up to 18 V , with up to 200 mA output current and has two internal MOSFET switching elements.

The ICs provide gate-driver supplies using positive and negative charge-pump regulators, with a current capability of 10 mA for the positive charge pump (using a doubler charge pump) and 3 mA for the negative charge pump (assuming a 2 -stage charge pump). Output voltage is adjustable with $\mathrm{a}+32 \mathrm{~V}$ (max) output on the positive charge pump and -24 V on the negative charge pump.
The startup and shutdown sequences for all power domains, controlled using one of the preset modes, are selected using the SEQ pin. Sequencing can also be controlled through the serial interface when the SEQ pin is grounded.

TFT Power Section

Source-Driver Power Supplies

The source-driver power supply consists of a boost converter that generates +18 V (max) and can deliver up to +200 mA (+100mA for MAX20067B). The source-driver power supply's regulation voltage (HVINP) is set by a resistor-divider on FBP. The source driver uses constant-frequency peak-current-mode control, with internal fixed-slope compensation. Internal compensation stabilizes the control loop. At low output power, the converter enters skip mode.

The TFT boost converter has an internal error amplifier with a g_{m} of $13 \mu S$ that has FBP and REF $=1.25 \mathrm{~V}$ as inputs. There is an internal compensation network at the output of the error amplifier as follows:

$$
\mathrm{C}_{\mathrm{C}}=140 \mathrm{pF}, \mathrm{R}_{\mathrm{C}}=500 \mathrm{k} \Omega
$$

For the current loop, there is internal current sensing using a transresistance of $R_{T}=0.21 \mathrm{~V} / \mathrm{A}$. The current-sense voltage $\left(\mathrm{V}_{\mathrm{CS}}=1 _\right.$inductor $\left.\times \mathrm{R}_{\mathrm{T}}\right)$ is added to the slope compensation. The slope-compensation signal has a slope of 1250 mV per microsecond. The resulting $\mathrm{V}_{S U M}=\mathrm{V}_{\mathrm{CS}}+\mathrm{V}_{\text {SLOPE }}$ is compared to $\mathrm{V}_{\text {COMP }}$ (output of the error amplifier) at the input of the PWM comparator to regulate the LXP duty cycle.

Gate-Driver Power Supplies

The positive gate-driver charge pump (VGON) generates +32 V (max) and the negative gate-driver charge pump (VGOFF) generates $-24 \mathrm{~V}(\mathrm{~min})$. The gate-driver supplies have a current capability of 10 mA for the positive charge pump (using a doubler charge pump) and 3 mA for the negative charge pump (assuming a 2 -stage charge pump). The VGON and VGOFF regulation voltages are both set using the external resistor networks, as shown in the Typical Application Circuit. Both charge-pump regulators use a 440 kHz switching frequency. The charge pumps regulate the output voltages by controlling the current that flows into the flying capacitors.

Operation of the Positive Charge Pump

The positive charge-pump regulator is typically used to generate the positive supply rail for the TFT-LCD gate-driver ICs.
The output voltage is set with an external resistive voltage-divider from its output to GND, with the midpoint connected to FBGH. The number of charge-pump stages and the setting of the feedback-divider determine the output voltage of the positive charge-pump regulator. The charge pump push-pull output consists of a high-side p-channel MOSFET (P1) and a low-side n-channel MOSFET (N1) to control the power transfer.
The positive charge pump uses a simple skipping control scheme. The feedback signal (FBGH) is compared with a 1.25 V internal reference. The result of this comparison is sampled on every clock cycle. If the feedback signal is below 1.25 V ,

MAX20067/MAX20067B

 Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interfacea DRVP cycle is initiated. In the first half period, the rising edge of the clock turns on N1 and turns off P1, allowing the flying capacitors to charge, while during the second half period, the falling edge of the clock turns off N1 allowing charge transfer to the output. During both phases, N1 and P1 act as current-limited switches with a current limit of at least 40 mA .

Alternatively, if the feedback signal is above 1.25 V at the clock rising edge, the regulator ignores the clock period and N 1 and P 1 remain off.
The charge-pump regulator also includes a discharge switch from VGON to ground, turned off to discharge the output capacitors during the sequential turn-off of the output voltages, as programmed by the SEQ pin or through $I^{2} \mathrm{C}$. The PGVDD node is internally connected through a switch to the HVINP voltage. See Table 3 for stand-alone sequencing options.

Operation of the Negative Charge Pump

The negative charge-pump regulator is typically used to generate the negative supply rail for the TFT-LCD gate-driver ICs. The output voltage is set with an external resistive voltage-divider from its output to REF, with the midpoint connected to FBGL. The number of charge-pump stages and the setting of the feedback-divider determine the output of the negative charge-pump regulator. The charge-pump controller includes a high-side p-channel MOSFET (P1) and a low-side nchannel MOSFET (N1) to control the power transfer.
The feedback signal (FBGL) is compared with a 0.25 V internal reference obtained by partitioning the main 1.25 V reference. The result of this comparison is sampled on every clock cycle. If (REF - FBGL) is less than $1.25 \mathrm{~V}-0.25 \mathrm{~V}$ or 1 V , a DRVN cycle is initiated. In the first half period, the rising edge of the clock turns on P1 and turns off N1, allowing the flying capacitors to charge, while during the second half period, the falling edge of the clock turns on N1 and turns off P1 allowing charge transfer to the output. During both phases, N1 and P1 act as current-limited switches with a current limit of at least 15 mA .
Alternatively, if (REF - FBGL) is less than 1 V at the clock rising edge, the regulator ignores the clock period and N 1 and P1 remain off.
For sequencing of the output voltages at turn-off, a discharge switch is connected from VGOFF to ground. The desired sequence is programmable using the SEQ pin or through I^{2} C. See Table 3 for the stand-alone sequencing options.

Fault Protection on the TFT Section

The ICs have robust fault and overload protection. If any of the source-driver or gate-driver supplies fall below 80\% (typ) or above 115% of the programmed regulation voltage for more than 60 ms (typ, default), all the outputs turn off and a fault condition is set. If a short condition occurs on any of the source-driver supplies for more than $10 \mu \mathrm{~s}$, all the outputs turn off and a fault condition is set. A short condition is detected when the output voltage falls below 40% of the intended regulation voltage. The output with the fault turns off immediately, while the other outputs follow the turn-off sequence programmed by the SEQ pin or through I^{2} C. The fault condition is cleared when the ENP pin or INA supply is cycled or after the retry timer (2.4 s typ, default) times out, if enabled. If needed, the retry time can be adjusted or this function disabled using the serial interface. In the case of a thermal fault, the ICs turn off immediately and remain off until the chip temperature drops by $15^{\circ} \mathrm{C}$ (typ).

Output Control

The sequencing of the source-driver and gate-driver outputs (AVDD, VGON, and VGOFF) is determined by the setting of the SEQ pin or through $I^{2} \mathrm{C}$. All outputs are brought up with soft-start control to limit the inrush current. Table 3 lists the sequencing options using the SEQ pin.
The outputs are also turned off in sequence, with the boost converter the last block to be disabled. Active pulldowns are provided on all outputs to facilitate a controlled discharge. The pulldowns remain active for 512 ms after the boost has been disabled, at which point the ICs enter shutdown mode, if applicable.

Power-Up/Power-Down Sequencing and Timing

The ICs allow for flexible power-up/power-down sequencing and timing of the source-driver and gate-driver power supplies (AVDD, VGON, and VGOFF). Toggling the ENP pin from low to high initiates an adjustable preset power-up sequence. Alternatively, power-up sequencing can be controlled through $I^{2} \mathrm{C}$. Toggling the ENP pin from high to low
initiates the power-down sequence. The ENP pin has an internal deglitching filter of $10 \mu \mathrm{~s}$ (typ). Note: A glitch in the ENP signal with a period less than 10μ s is ignored by the internal enable circuitry.

Gate-Shading Level Shifter

The gate-shading level shifter is enabled when the soft-start of all regulators is completed and the DEL pin exceeds its enable threshold. A capacitor on the DEL pin can be used to adjust the startup-delay time together with the internal $5 \mu \mathrm{~A}$ current source. The delay can be calculated using the following equation:

$$
\text { Delay }=\frac{\left(1.25 \mathrm{~V} \times \mathrm{C}_{\mathrm{DEL}}\right)}{5 \mu \mathrm{~A}}
$$

When the ICs are disabled, GATES is discharged to GND. After the ICs are enabled, the GATES switches are off and GATES is high impedance until the complete power sequence is finished (without a fault occurring) and DEL exceeds 1.25 V . When DEL exceeds 1.25 V , the level shifter is activated and its state controlled by the CTL and MODE inputs according to Table 1. An external resistor and capacitor are used to produce the desired waveform where the rise of the output signal is fast, but the fall is an exponential decay controlled by the external values of the resistor and capacitor. In addition, a capacitor on the MODE pin can be used to delay the fall of the GATES output.
Connect MODE to INA when the $V_{G G S}$ delay is not needed. Connect a capacitor from MODE to GND to set the delay according to the following equation:

$$
C_{\mathrm{MODE}}=\frac{\left(100 \mu \mathrm{~A} \times t_{\mathrm{DMODE}}\right)}{1.75 \mathrm{~V}}
$$

where $t_{\text {DMODE }}$ is the desired delay if the level shifter is not used to connect CTL to GND.

Table 1

Table 1. Gate-Shading Operating Modes

CTL	MODE	GATES OUTPUT	CMODE DISCHARGE
Low	High	GATES shorted to DRN using internal device	-
High	High	GATES shorted to SRC using internal device	-
Low	Low	GATES shorted to DRN using internal device	Off
High	Low	GATES shorted to SRC using internal device	On

VCOM Buffer

The VCOM buffer is enabled when AVDD crosses its power-good threshold. The VCOM positive supply is $\mathrm{V}_{\text {COMP }}$, which is normally externally connected to the AVDD output, while its negative supply is ground. The output voltage is set by default to half of $\mathrm{V}_{\text {COMP }}$ through two $1000 \mathrm{k} \Omega$ internal resistors. The VCOM buffer can be controlled either by driving the VCINH pin or using the internal DAC that is written to through the serial interface. When driving the VCINH pin, the source impedance or the resistance of the external resistor-divider should be much lower than $500 \mathrm{k} \Omega$. In DAC mode, an 8-bit value is written through $I^{2} \mathrm{C}$, which sets the VCOM output voltage in a nominal range of $\pm 2.5 \mathrm{~V}$ around AVDD/ 2. Table 2 shows the correspondence between the DAC value written and the VCOM output voltage. The VCOM output can source or sink a current up to a peak of 130 mA . The LCD backplane consists of a distributed series capacitance and resistance, a load that can be easily driven by the buffer. In a short-circuit condition, the power dissipation of the VCOM buffer can lead to complete thermal shutdown of the ICs.
The VCOM buffer should be used with an external $1 \mu \mathrm{~F}$ ceramic capacitor connected from its output to GND.
A VCOM buffer fault is detected if the voltage difference between VCINH and the VCOM output pin is greater than 250 mV . The VCOM fault detection is filtered internally and a VCOM buffer fault is latched. To clear a fault, write a 0 to the corresponding fault bit. In stand-alone mode, toggle the ENP pin or power down the device and then power it on again.

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Table 2
Table 2. VCOM DAC Values

DAC VALUE	NOMINAL VCOM OUTPUT VOLTAGE WITH V AVDD $^{\prime}=\mathbf{1 2 V}$
$0 \times F F$	8.5 V
$0 \times F E$	8.5 V
\ldots	\ldots
0×80	6.02 V
$0 \times 7 \mathrm{~F}$	6 V
$0 \times 7 \mathrm{E}$	5.98 V
\ldots	\ldots
0×01	3.52 V
0×00	3.5 V

FLTB Output

The FLTB output pin is an active-low, open-drain output that can be used to signal various device faults (for operation in stand-alone mode, see the Stand-Alone Mode section). When the $\mathrm{I}^{2} \mathrm{C}$ interface is used, the FLTB output can flag any or all of the following conditions:

- Overtemperature fault
- Overcurrent on AVDD
- Undervoltage on HVINP, VGON, or VGOFF
- Overvoltage on HVINP, VGON, or VGOFF
- VCOM overvoltage or undervoltage

Some of the above conditions can be masked from causing FLTB to go low by using the corresponding mask bit in the Fault Mask 1 (0x08) and Fault Mask 2 (0x09) registers.

Stand-Alone Mode

The ICs can be used either in stand-alone mode (when there is no local microcontroller), or in $\mathrm{I}^{2} \mathrm{C}$ mode. In stand-alone mode, the SEQ pin sets the sequence according to Table 3.
The ENP pin (active high) is used to turn on or off the complete device. In stand-alone mode, the open-drain FLTB output is high when there is no detected fault. When a fault is detected, the FLTB pin outputs a signal with a duty cycle that indicates what type of fault has been detected. This is summarized in Table 4.

Table 3
Table 3. Output Sequencing

NOMINAL SEQ PIN VOLTAGE	POWER-ON SEQUENCING			POWER-OFF SEQUENCING			
	1st	2nd	3rd	1st	2nd	3rd	
GND	$1^{2} \mathrm{C}$ CONTROL						
INA/2	AVDD	VGOFF	VGON	VGON	VGOFF	AVDD	
INA	AVDD	VGON	VGOFF	VGOFF	VGON	AVDD	

Table 4

Table 4. FLTB Output Duty Cycle

FLTB DUTY CYCLE	ERROR CONDITION
Continuously high	No error
75%	VGON or VGOFF fault

Table 4. FLTB Output Duty Cycle (continued)

50%	HVINP fault
25%	AVDD fault
1.5%	Thermal shutdown

I2C Serial Interface

The ICs contain an $I^{2} \mathrm{C}$ serial interface and act as slave devices. The basic unit of data transfer is 8 bits. To select ${ }^{2} \mathrm{C}$ mode, connect the SEQ pin to GND. The state of the SEQ pin is sampled when the INA voltage exceeds approximately 2 V and the status is latched.
Control of the power-up sequence through $I^{2} \mathrm{C}$ can be performed in two ways, manual or automatic. In manual mode, the $1^{2} \mathrm{C}$ host enables the outputs individually using the bits in the Regulator Control register (0x02). If a fault is detected in manual mode, the faulty output is disabled after the corresponding deglitch time and no other action is performed. Retry is disabled in manual mode.
The bits in Fault registers $0 \times 0 \mathrm{~A}$ and $0 \times 0 \mathrm{~B}$ can be cleared by writing a 0 to the corresponding position in the register. If the values of the other bits are retained, a 1 should be written to them. (e.g., if the vgon_ov bit is cleared in register $0 \times 0 \mathrm{~A}$, 0×77 should be written to the register). In this manner, only bit 3 is cleared, and the other bits are left unchanged.
In automatic mode, the sequence is preset using the autoseq_row1-autoseq_row3 and textd_dly 1 , textd_dly 2 bits, and executed using the autoseq_ctrl bit. See the Automatic Sequencing Mode section for further details.

I2C Protocol

The $\mathrm{I}^{2} \mathrm{C}$ address is chosen by connecting the ADD pin to either GND or INA (see Table 5). A master device communicates with the IC by transmitting the correct Slave ID followed by the register address and data word. Each transmit sequence is framed by a START (S) or Repeated START (Sr) condition and a STOP (P) condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse.
The SDA line operates as both an input and an open-drain output. A pullup resistor greater than 500Ω is required on the SDA bus, or the resistor has to be selected as a function of bus capacitance, such that the rise time on the bus is not greater than 120 ns per the $I^{2} \mathrm{C}$ bus specification. The SCL line operates as an input only. A pullup resistor greater than 500Ω is required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. In general, for the SCL line resistor selection, the same recommendations as the SDA line apply. Series resistors in line with SDA and SCL are optional. The SCL and SDA inputs suppress noise spikes to ensure proper device operation even on a noisy bus.

Table 5

Table 5. I^{2} C Slave Addresses

ADD PIN CONNECTION	DEVICE ADDRESS						WRITE ADDRESS	READ ADDRESS	
	A6	A5	A4	A3	A2	A1		AD	
GND	0	1	0	0	0	0	0	0×40	0×41
INA	0	1	0	1	0	0	0	0×50	0×51

Individual Output Control Through I2C

Using the bits in the Regulator Control register (0x02), all outputs can be controlled individually by the local host microcontroller. When using this mode of operation, a fault on any output is signaled by the FLTB output pin (if not masked) and the fault bits. The output with the fault remains active until the microcontroller intervenes.
When using the individual control bits, the boost converter must always be enabled first and disabled last in the sequence.

Autosequencing Mode

In autosequencing mode, a complete sequence is configured using the autoseq_row1-3[2:0] and textd_dly1-2 bits and

MAX20067/MAX20067B
 Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $\mathrm{I}^{2} \mathrm{C}$ Interface

then executed by setting the autoseq_ctrl bit.
To use autosequencing, set the en_autoseq bit in the Configurations register (0×01) to 1 and then configure the desired sequence using the autoseq_row1-autoseq_row3 bits in the Auto Sequencing ctrl1 (0x04) and Auto Sequencing ctrl2 ($0 x 05$) registers. The 3 bits of autoseq_row1 correspond to the AVDD output and each bit represents one of three time slots. To enable AVDD during the first time slot, set autoseq_row1 to 100. To enable AVDD during the second time slot, set autoseq_row1 to 010, etc. In an analogous fashion, autoseq_row2 sets the VGON time slot and autoseq_row3 sets the VGOFF time slot.

The delays between each of the time slots are configured using the textd_dly1 and textd_dly2 settings.
When the complete configuration is set, the sequence is executed automatically by setting autoseq_ctrl in the Regulator Control register ($0 x 02$) to 1 . The corresponding power-off sequence can be performed by setting autoseq_ctrl to 0 . If a fault occurs in automatic mode, the faulty output is turned off and the other outputs are turned off in the set order. If retry is enabled, a retry is attempted after the appropriate delay.

Note: If the manual control bits have been used to enable one or more of the outputs, automatic sequencing behaves differently: it starts immediately when the en_autoseq bit is set.

Figure 1. Sample Sequence

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Register Map

Register Map

ADDRESS	NAME	MSB							LSB
bank 0									
0×00	Device Id[7:0]	rev_id[3:0]				dev_id[3:0]			
0×01	Configurations[7:0]	$\begin{gathered} \text { fault_latc } \\ \text { h_dis } \end{gathered}$	$\begin{aligned} & \text { en_autos } \\ & \text { eq } \end{aligned}$	tretry[1:0]		tfault[1:0]		dis_ss	swfrq
0×02	Regulator control[7:0]	-	autoseq ctrl	$\begin{gathered} \text { dis_vco } \\ \text { m } \end{gathered}$	dis_gs	en_vgoff	en_vgon	en_avdd	en_bst
0×03	Regulator power status[7:0]	-	-	vcom_on	gs_on	vgoff_on	vgon_on	avdd_on	bst_on
0x04	Auto sequencing ctr11[7:0]	-	-	autoseq_row2[2:0]			autoseq_row1[2:0]		
0×05	Auto sequencing ctr12[7:0]	-	textd_dly2[1:0]		textd_dly1[1:0]		autoseq_row3[2:0]		
0×06	VCOM voltage[7:0]	vcom_dac[7:0]							
0×07	UNUSED - do not write to this register[7:0]	-	-	-	-	_	-	-	-
0×08	Fault mask 1[7:0]	-	$\begin{gathered} \text { vgoff_uv } \\ \text { _mask } \end{gathered}$	vgoff_ov _mask	$\begin{gathered} \text { vgon_uv } \\ \text { _mask } \end{gathered}$	$\begin{gathered} \text { vgon_ov } \\ \text { _mask } \\ \hline \end{gathered}$	avdd_ovl d_mask	hvinp_uv _mask	hvinp_ov _mask
0x09	Fault mask 2[7:0]	-	-	-	$\begin{gathered} \text { vcom_uv } \\ \text { _mask } \end{gathered}$	vcom_ov _mask	-	-	-
0x0A	Fault register 1[7:0]	-	vgoff_uv	vgoff_ov	vgon_uv	vgon_ov	$\begin{gathered} \text { avdd_ovl } \\ \text { d } \end{gathered}$	hvinp_uv	hvinp_ov
0x0B	Fault register 2[7:0]	-	-	-	vcom_uv	vcom_ov	-	th_shdn	hw_rst

Register Details

Device Id (0×00)

Register to identify the device type and the revision number

BIT	7	6	4	3	2	1	0
Field	rev_id[3:0]			dev_id[3:0]			
Reset	0×0			0x9			
Access Type	Read Only			Read Only			

BITFIELD	BITS	DESCRIPTION
rev_id	$7: 4$	Revision ID. $0=$ revision 1, etc.
dev_id	$3: 0$	Device ID. Reads 0x9.

Configurations (0×01)

Miscellaneous configurations needed for part operations

BIT	7	6	5	4	3	2	1	0
Field	$\begin{aligned} & \text { fault_latch_ } \\ & \text { dis } \end{aligned}$	en_autoseq	tretry[1:0]		tfault[1:0]		dis_ss	swfrq
Reset	0x0	0×0	0x2		0x1		0×0	0x0
Access Type	Write, Read	Write, Read	Write, Read		Write, Read		Write, Read	Write, Read
BITFIELD	BITS	DESCRIPTION			DECODE			
$\begin{aligned} & \text { fault_latch_di } \\ & \text { s } \end{aligned}$	7	Fault register control. When set to 0 , the fault register bits are latched.			0x0: Fault register bits are latched fault flags 0×1 : Fault register bits are fault status bits (no latching)			
en_autoseq	6	When set to 1, this bit enables the automatic sequencing feature.			0×0 : Automatic sequencing is disabled 0×1 : Automatic sequencing is enabled			
tretry	5:4	If retry is enabled (set to any value other than 0×0), then this is the time that elapses before a new power-on is attempted after turn-off due to a regulator fault.			0×0 : Retry is disabled 0×1 : Retry to power on regulator after 0.95s 0×2 : Retry to power on regulator after 1.9 s 0×3 : Retry to power on regulator after 3.8 s			
tfault	3:2	Fault-deglitch duration. This is the time that a regulator fault must be continuously present before the fault is considered valid.			0×0 : 30 ms 0x1: 60ms $0 \times 2: 120 \mathrm{~ms}$ 0×3 : 250 ms			
dis_ss	1	Boost spread-spectrum-disable control bit.			0×0 : Boost spread spectrum enabled 0×1 : Boost spread spectrum disabled			
swfrq	0	Boost converter switching-frequency selection.			$0 \times 0: 2.2 \mathrm{MHz}$ boost switching frequency $0 x 1$: 440 kHz boost switching frequency			

Regulator control (0x02)

Direct control of regulators enable. This register can be used on I2C variant when "en_autoseq $=0$ " to control the manual sequencing of regulators, i.e. regulators sequencing is completely controlled by host software. Note that some controls are implemented in this registers. As an example the enable of any regulator is not allowed unless "en_bst" has been enabled and ready (bst_on = 1).

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	autoseq_ctrl	dis_vcom	dis_gs	en_vgoff	en_vgon	en_avdd	en_bst
Reset	-	0×0						
Access Type	-	Write, Read						
BITFIELD	BITS	DESCRIPTION					DECODE	
		Controls the automatic sequencer. If the automatic sequencer is enabled, setting this bit to 1 starts the power-on sequence as programmed. Deasserting this bit to 0 starts the power-down sequence. Note that the sequence programming cannot be altered while the sequence is ongoing. Once the current sequence is completed, sequence programming is again enabled. If the en_autoseq bit is set to 0, this bit has no effect.	0x0: If regulators are off, keep them as they are. If regulators are on, start the power off sequence and keep them off 0x1: If regulators are off start the power on sequence and keep them on. Else keep them as they are.					
autoseq_ctrl	6							

BITFIELD	BITS	DESCRIPTION	DECODE
dis_vcom	5	VCOM buffer disable. By default, the VCOM buffer is enabled when the AVDD crosses its power-good threshold.	0x0: VCOM buffer is enabled $0 \times 1:$ VCOM buffer has been disabled
dis_gs	4	Gate-shading disable. By default, the gate- shading block is enabled when soft-start for all regulators is completed and when the DEL pin exceeds its enable threshold.	0x0: Gate shading is enabled $0 \times 1:$ Gate shading has been disabled
en_vgoff	3	Negative charge-pump enable.	0x0: Negative charge pump is disabled $0 \times 1:$ Negative charge pump has been enabled
en_vgon	2	Positive charge-pump enable.	0x0: Positive charge pump is disabled $0 \times 1:$ Positive charge pump has been enabled
en_avdd	1	Control bit for the switch between HVINP and AVDD. Note that any attempt to set this bit to 1 fails if the field "bst_ok" is 0.	$0 \times 0:$ Switch beween HVINP and AVDD is open $0 \times 1:$ Switch beween HVINP and AVDD is closed
en_bst	0	Boost converter enable.	$0 \times 0:$ Buck is disabled $0 \times 1: ~ B u c k ~ i s ~ e n a b l e d ~$

Requlator power status (0×03)

Status of the regulators. Each bit set to 1 means that related regulator is powered on (i.e. it has been enabled, the transient has completed and it's active ready)

Auto sequencing ctrl1 (0×04)

Programming for the control of the automatic sequncing

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	-	-	autoseq_row2[2:0]	0utoseq_row1[2:0]			
Reset	-	-	0×0	0×0			
Access Type	-	-	Write, Read	Write, Read			

BITFIELD	BITS	DESCRIPTION
autoseq_row2	$5: 3$	Autosequencing matrix row 2, corresponding to VGON. A 1 in this bit corresponds to start the regulator in slot 1, 2, or 3 depending on the position of the 1. If more than a 1 is present in the field, only the first one is considered valid.
autoseq_row1	Autosequencing matrix row 1, corresponding to AVDD. A 1 in this bit corresponds to start the regulator in slot 1, 2, or 3 depending on the position of the 1. If more than a 1 is present in the field, only the first one is considered valid.	

Auto sequencing ctrl2 (0x05)

Programming for the control of the automatic sequncing

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	-	textd_dly2[1:0]	textd_dly1[1:0]	$\mathbf{0}$			
Reset	-	0×0	0×0	autoseq_row3[2:0]			
Access Type	-	Write, Read	Write, Read	0×0			

BITFIELD	BITS	DESCRIPTION	DECODE
textd_dly2	6:5	Delay extension as a percentage of the time that elapses between the power-on command for regulators in slot 2 and the assertion of the feedback signal that notifies they completed ramp up. If we name Tok such time the delay between slot 2 and slot 3 will be Tok x (1 + textd_dly2).	0×0 : No delay after power OK of preceeding regulators 0×1 : Additional 10% delay after power OK of preceeding regulators 0x2: Additional 20\% delay after power OK of preceeding regulators 0x3: Additional 30\% delay after power OK of preceeding regulators
textd_dly1	4:3	Delay extension as a percentage of the time that elapses between the power-on command for regulators in slot 1 and the assertion of the feedback signal that notifies they completed ramp up. If we name Tok such time the delay between slot 1 and slot 2 will be Tok x ($1+$ textd_dly1).	0×0 : No delay after power OK of preceeding regulators 0×1 : Additional 10% delay after power OK of preceeding regulators 0x2: Additional 20\% delay after power OK of preceeding regulators 0x3: Additional 30\% delay after power OK of preceeding regulators
autoseq_row 3	2:0	Autosequencing matrix row 3, corresponding to VGOFF. A 1 in this bit corresponds to start the regulator in slot 1,2 , or 3 depending on the position of the 1 . If more than a 1 is present in the field, only the first one is considered valid.	

VCOM voltage (0×06)

This byte controls the setting of the DAC controlling the VCOM output voltage

BIT	7	6	5	4	3	2	1	0
Field	vcom_dac[7:0]							
Reset	0x7F							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
vcom_dac	$7: 0$	This byte controls the DAC that sets the VCOM output voltage. The output step is 20mV/LSB. The mid-point is 0x7F = AVDD/2.

Fault mask 1 (0x08)

Fault mask register. Each bit in this register is able to mask the fault of the related bit. A 1 in a position enables the contribution of the fault flag to the FLTB assertion.

Fault mask 2 (0×09)

Fault mask register. Each bit in this register is able to mask the fault of the related bit. A 1 in a position enables the contribution of the fault flag to the FLTB assertion.

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-	vcom_uv_m ask	vcom_ov_m ask	-	-	-
Reset	-	-	-	0×0	0×0	-	-	-
Access Type	-	-	-	Write, Read	Write, Read	-	-	-

BITFIELD	BITS	DESCRIPTION
vcom_uv_mask	4	Mask for VCOM undervoltage fault. If this bit is set to 1, an undervoltage fault on VCOM does not cause FLTB to go low.
vcom_ov_mask	3	Mask for VCOM overvoltage fault. If this bit is set to 1, an overvoltage fault on VCOM does not cause FLTB to go low.

Fault register $1(0 \times 0 A)$

Fault register 1. Each bit of this register can be a status bit (reflecting current status of the fault) or a flag bit (latched version of a status bit).

BIT	7	6	5	4	3	2	1	0
Field	-	vgoff_uv	vgoff_ov	vgon_uv	vgon_ov	avdd_ovld	hvinp_uv	hvinp_ov
Reset	-	0×0	0x0	0x0	0×0	0x0	0x0	0x0
Access Type	-	Write 0 to Clear, Read						
BITFIELD	BITS	DESCRIPTION			DECODE			
vgoff_uv	6	VGOFF undervoltage fault. Depending on programing of "fault_latch_dis," this is a status bit or a clear-on-read flag bit.			0×0 : No fault is present or has happened $0 x 1$: If "fault_latch_dis" $=0$ then a fault has happened or is still present. In this case the bit is CoR but reasserts if fault is still present. If "fault_latch_dis" = 1 then a fault is currently present else this bit is 0 .			
vgoff_ov	5	VGOFF overvoltage fault. Depending on programing of "fault_latch_dis," this is a status bit or a clear-on-read flag bit.			0×0 : No fault is present or has happened 0×1 : If "fault_latch_dis" $=0$ then a fault has happened or is still present. In this case the bit is CoR, but reasserts if fault is still present. If "fault_latch_dis" = 1 then a fault is currently present, else this bit is 0 .			
vgon_uv	4	VGON undervoltage fault. Depending on programing of "fault_latch_dis," this is a status bit or a clear-on-read flag bit.			0×0 : No fault is present or has happened $0 x 1$: If "fault_latch_dis" $=0$ then a fault has happened or is still present. In this case the bit is CoR, but reasserts if fault is still present. If "fault_latch_dis" = 1 then a fault is currently present, else this bit is 0 .			
vgon_ov	3	VGON overvoltage fault. Depending on programing of "fault_latch_dis," this is a status bit or a clear-on-read flag bit.			0×0 : No fault is present or has happened $0 x 1$: If "fault_latch_dis" $=0$ then a fault has happened or is still present. In this case the bit is CoR, but reasserts if fault is still present. If "fault_latch_dis" = 1 then a fault is currently present, else this bit is 0 .			
avdd_ovld	2	AVDD overcurrent fault. Depending on programing of "fault_latch_dis," this is a status bit or a clear-on-read flag bit.			0×0 : No fault is present or has happened 0×1 : If "fault_latch_dis" $=0$ then a fault has happened or is still present. In this case the bit is CoR, but reasserts if fault is still present. If "fault_latch_dis" = 1 then a fault is currently present, else this bit is 0 .			
hvinp_uv	1	HVINP undervoltage fault. Depending on programing of "fault_latch_dis," this is a status bit or a clear-on-read flag bit.			0×0 : No fault is present or has happened $0 x 1$: If "fault_latch_dis" = 0 then a fault has happened or is still present. In this case the bit is CoR, but reasserts if fault is still present. If "fault_latch_dis" = 1 then a fault is currently present, else this bit is 0 .			

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

BITFIELD	BITS	DESCRIPTION	DECODE
	0	HVINP overvoltage fault. Depending on programing of "fault_latch_dis," this is a status bit or a clear-on-read flag bit.	0x0: No fault is present or has happened Rvinp_ov

Fault register $2(0 \times 0 B)$

Fault register 2. Each bit of this register is a flag bit (latched fault).

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-	vcom_uv	vcom_ov	-	th_shdn	hw_rst
Reset	-	-	-	0×0	0×0	-	0×0	0×1
Access Type	-	-	-	Write 0 to Clear, Read	Write 0 to Clear, Read	-	Write 0 to Clear, Read	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
vcom_uv	4	VCOM buffer undervoltage fault. Depending on programing of "fault_latch_dis," this is a status bit or a clear-on-read flag bit.	0×0 : No fault is present or has happened 0×1 : If "fault_latch_dis" $=0$ then a fault has happened or is still present. In this case the bit is CoR, but reasserts if fault is still present. If "fault_latch_dis" = 1 then a fault is currently present, else this bit is 0 .
vcom_ov	3	VCOM buffer overvoltage fault. Depending on programing of "fault_latch_dis," this is a status bit or a clear-on-read flag bit.	0×0 : No fault is present or has happened 0×1 : If "fault_latch_dis" $=0$ then a fault has happened or is still present. In this case the bit is CoR, but reasserts if fault is still present. If "fault_latch_dis" $=1$ then a fault is currently present, else this bit is 0 .
th_shdn	1	Thermal-shutdown event was detected. If the event is still on, the flag reasserts upon CoR.	0×0 : no thermal shutdown since last read 0×1 : Device is in thermal shutdown
hw_rst	0	Hardware reset event was detected	0×0 : no POR since last read 0×1 : this is the first read from the device after a POR

MAX20067/MAX20067B

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Applications Information

Boost Converter

Inductor Selection

The value of the boost inductor is determined as follows:
$L=\frac{\left(V_{\text {INA }} \times D\right)}{\left(\operatorname{LIR} \times I_{\text {INA }} \times f_{S W}\right)}$
where $\mathrm{V}_{\text {INA }}$ is the boost input voltage, D is the duty cycle, LIR is the current ripple factor in the inductor (choose a value between 0.5 and 1), l INA is the boost converter input current, and f_{SW} is either 2.2 MHz or 440 kHz .
Calculate the duty-cycle using:
$D=\frac{\left(1-\eta \times V_{\text {INA }}\right)}{V_{\text {OUT }}}$
where η is the converter efficiency (assume 0.85) and $\mathrm{V}_{\text {OUT }}$ is the boost output voltage.
I_{INA}, the average input current, can be estimated as follows:
$I_{\text {INA }}=\frac{\left(v_{\text {OUT }} \times I_{\text {OUT }}\right)}{\left(n \times v_{\text {INA }}\right)}$
where lout is the boost output current.

Capacitor Selection

The input and output filter capacitors should be a low-ESR type (e.g., tantalum, ceramic, or low-ESR electrolytic) and should have RMS current ratings greater than:
$I_{\text {RMS }}=\frac{\left(\mathrm{LIR} \times I_{\text {INA }}\right)}{\sqrt{12}}$
for the input capacitor, and:
$I_{\text {RMS }}=I_{\text {OUT }} \times \sqrt{\frac{\left(D+\frac{\text { LIR }^{2}}{12}\right)}{(1-D)}}$
for the output capacitor. The output voltage contains a ripple component whose peak-to-peak value depends on the value of the ESR and capacitance of the output capacitor and is approximately the sum of two contributions:
$\Delta \mathrm{V}_{\text {RIPPLE }}=\Delta \mathrm{V}_{\mathrm{ESR}}+\Delta \mathrm{V}_{\text {CAP }}$
where:
$\Delta \mathrm{V}_{\mathrm{ESR}}=I_{\mathrm{INA}} \times\left(1+\frac{\mathrm{LIR}}{2}\right) \times R_{\mathrm{ESR}}$
and
$\Delta V_{\text {CAP }}=\frac{\left(I_{O U T} \times D\right)}{\left(c_{\text {OUT }} \times f_{S W}\right)}$
where $\mathrm{R}_{\mathrm{ESR}}$ is the ESR of the chosen output capacitor.

Output-Voltage Selection

The output voltage of the boost converter can be adjusted using a resistive voltage-divider formed by $R_{\text {TOP }}$ and $R_{\text {BOTTOM }}$. Connect RTOP between HVINP and FBP, and connect RBOTTOM between FBP and GND. Select RBOTTOM in the $10 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$ range. Calculate $\mathrm{R}_{\mathrm{TOP}}$ with the following equation:

$$
R_{\mathrm{TOP}}=R_{\mathrm{BOTTOM}} \times\left(\left(\frac{v_{\mathrm{OUT}}}{1.25}\right)-1\right)
$$

Place the resistors close to the device and connect $\mathrm{R}_{\text {BOTTOM }}$ to the analog ground plane.

Boost Converter Operation at low INA and high Output Power

At high boost output power and low input voltages, the input current becomes high and and the boost converter's efficiency is lower. Under these conditions, it may be preferable to use the 440 kHz low-frequency setting. A further boost in efficiency at low input voltages can be obtained by adding a Schottky diode from LXP to HVINP. See all the relevant curve in the Typical Operating Characteristics section

Charge-Pump Regulators

Selecting the Number of Charge-Pump Stages

For highest efficiency, always choose the lowest number of charge-pump stages that meet the output voltage requirement. The number of positive charge-pump stages is given by:
$\mathrm{nPOS}=\frac{\mathrm{VGON}+V_{\text {DROPOUT }}-V_{\text {AVDD }}}{V_{\text {SUP }}-2 \times V_{D}}$
where nPOS is the number of positive charge-pump stages, VGON is the output of the positive charge-pump regulator, $\mathrm{V}_{\text {SUP }}$ is the supply voltage of the charge-pump regulators (HVINP), V_{D} is the forward voltage drop of the charge-pump diodes, and $V_{\text {DROPOUT }}$ is the dropout margin for the regulator. Use $V_{\text {DROPOUT }}=600 \mathrm{mV}$.
The number of negative charge-pump stages is given by:
nNEG $=\frac{- \text { VGOFF }+V_{\text {DROPOUT }}}{V_{\text {SUP }}-2 \times V_{D}}$
where nNEG is the number of negative charge-pump stages and VGOFF is the output of the negative charge-pump regulator.

Flying Capacitors

Increasing the flying capacitor (connected to DRVN and DRVP) value lowers the effective source impedance and increases the output current capability. Increasing the capacitance indefinitely, however, has a negligible effect on outputcurrent capability because the internal switch resistance and the diode impedance place a lower limit on the source impedance. A $0.1 \mu \mathrm{~F}$ ceramic capacitor works well in most applications. The flying capacitor's voltage rating must exceed the following:
VCX $>n \times V_{\text {HVINP }}$
where n is the stage number in which the flying capacitor appears.

Charge-Pump Output Capacitor

Increasing the output capacitance or decreasing the ESR reduces the output ripple voltage and the peak-to-peak transient voltage. With ceramic capacitors, the output-voltage ripple is dominated by the capacitance value. Use the following equation to approximate the required capacitor value:
COUT_CP $>\frac{\text { LOAD_CP }^{2 x f}{ }^{\text {SW }} \times V_{\text {RIPPLE_CP }}}{}$
where COUT_CP $^{\prime}$ is the output capacitor of the charge pump, I IOAD_CP is the load current of the charge pump, $V_{\text {RIPPLE_CP }} \overline{\text { is }}$ the desired peak-to-peak value of the output ripple, and $f_{S W}^{-}$is the switching frequency, which is 440 kHz .

MAX20067/MAX20067B

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Power Dissipation

The total internal power dissipation comprises five terms:

1. Boost converter power dissipation
2. Positive charge-pump dissipation
3. Negative charge-pump dissipation
4. Gate-shading power dissipation
5. VCOM buffer power dissipation

Items 2-4 are negligible, while the other terms can be estimated using:
$P_{\text {BOOST }}=I_{\text {INA }}^{2} \times R_{L} \times D+I_{\text {INA }} \times R_{H} \times(1-D)+0.5 \times I_{\text {INA }} \times V_{\text {HVINP }} \times t_{R F} \times f_{S W}$
where R_{L} is the low-side LXP switch resistance, R_{H} is the high-side $L X$ switch resistance, and $t_{R F}$ is the LXP rise/fall time that can be approximated by 5 ns :
$P_{\mathrm{VCOM}}=\left(V_{\mathrm{AVDD}}-V_{\mathrm{VCOM}}\right)^{*} /_{\text {VCOM }}$
where $\mathrm{I}_{\mathrm{VCOM}}$ is the RMS VCOM buffer output current.

PCB Layout Example

Figure 2 shows an example for the layout of the power components around the MAX20067/MAX20067B. This layout minimizes the area of the LXP node and the area of the switching current loop. Follow these guidelines for the rest of the layout:

1. Separate power and analog grounds on the board and connect them together at a single point.
2. Connect all feedback resistor-dividers to the analog or "quiet" ground, along with the REF and INA capacitors. Feedback resistors should be placed close to their associated pins to avoid noise pickup.
3. Place decoupling capacitors as close as possible to their respective pins.
4. Keep high-current paths as short and wide as possible.
5. Route high-speed switching nodes (i.e., LXP, DRVN, and DRVP) away from sensitive analog nodes (i.e., FBP, FBGH, FBGL, and REF).

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $\mathrm{I}^{2} \mathrm{C}$ Interface

Layout Example

Figure 1. Layout Example

MAX20067/MAX20067B Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

 Automotive 3-Channel Display Bias IC with VCOM}

 Automotive 3-Channel Display Bias IC with VCOM}
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX20067GTJ/V+	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	32 TQFN	T3255 +4 C
MAX20067BGTJ/V+	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	32 TQFN	T3255 +4 C

N denotes an automotive qualified part.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and $I^{2} \mathrm{C}$ Interface

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$7 / 17$	Initial release	-
1	$9 / 20$	Added MAX20067B variant, adjusted VGON, SRC and DRN absolute maximum ratings and operating voltage ranges.	$1,3,4,5,6,16$
2	$1 / 21$	Changed maximum value of VGOFF Output Voltage Range to -4V, adjusted VGON, SRC and DRN absolute maximum ratings and operating voltage ranges.	$1,3,4,5,6,16$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LC75836WH-E CD4056BE LC75829PW-H LC75852W-E LC79430KNE-E LC79431KNE-E FAN7317BMX LC75839PW-H LC75884WE LC75814VS-TLM-E BU9795AFV-E2 BU9799KV-E2 PCF8566T/1.118 TPS65132A0YFFR BU9795AKV-E2 34801000 BU97510CKVME2 BU97520AKV-ME2 ICL7136CM44Z BL55070 BL55066 ICL7129ACPL+ MAX131CMHD MAX138CMH+D MAX1491CAI+ MAX1518BETJ+ MAX1606EUA+ MAX138CQH+TD MAX16929CGUI/V+ MAX8570EUT+T MAX138CPL+ AY0438-I/L AY0438/L AY0438/P HV66PG-G HV881K7-G TC7106CKW TC7106CPL TC7116CKW TC7116CPL TC7126CLW TC7126CPL TC7129CKW $\underline{T C 7129 C L W}$ PCF8576CT/1.518 PCF2112CT/1,118 PCF8566T/1,118 PCF8577CT/3,118 LC75806PT-H LC75832WH-E

