General Description

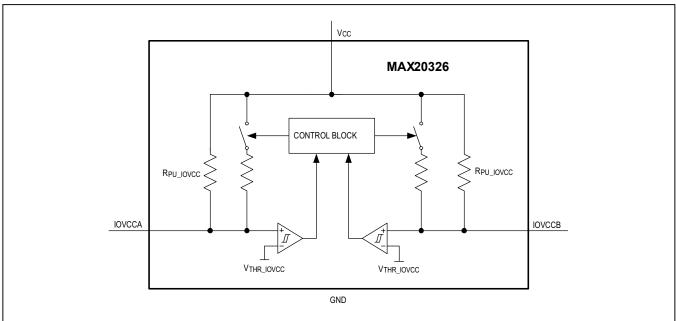
The MAX20326 is a dual-channel, precision, open-drain, communication-line accelerator. It provides the acceleration from a low-to-high transition necessary to allow faster data transfer in a highly capacitive, multidrop node system.

The MAX20326 is optimized for the I²C bus, as well as 1-Wire[®] bus, where a high-speed, open-drain operation is often required with a highly capacitive load.

This device is available in a 4-pin 0.5mm pitch 1.25mm x 1.25mm flip-chip QFN package and operates over the -40°C to +85°C extended temperature range.

Applications

- I²C
- MDIO
- 1-Wire Bus


Benefits and Features

- Reliable Communication
 - Wide Operating Input Voltage: +1.4V to +5.5V
 - Precision Accelerator Trigger Threshold: 0.5V ±50mV
 - · Fast Charge Up to 1000pF Load
 - · Low EMI: Controlled Acceleration Slope
- Space Saving
 - 4-Pin (0.5mm Pitch 1.25mm x 1.25mm Flip-Chip QFN)
 - · Integrated Precision Pullup

Ordering Information appears at end of data sheet.

1-Wire is a registered trademark of Maxim Integrated Products, Inc.

Functional Diagram

Absolute Maximum Ratings

(All voltages referenced to GND.)	Operating Temperature Range40°C to +85°C
V _{CC} 0.5V to +6V	Junction Temperature+150°C
IOVCCA, IOVCCB0.5V to V _{CC} + 0.5V	Storage Temperature Range65°C to +150°C
Continuous Current Into Any Terminal±100mA	Soldering Temperature (reflow)+260°C
Continuous Power Dissipation (T _A = +70°C)	
FC QFN (derate 5.15mW/°C above +70°C)412mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

4 FC QFN

PACKAGE CODE	F41A1F+1	
Outline Number	21-100188	
Land Pattern Number	90-100054	
Thermal Resistance, Four-Layer Board:		
Junction to Ambient (θ _{JA})	194°C/W	
Junction to Case (θ _{JC})	84°C/W	

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

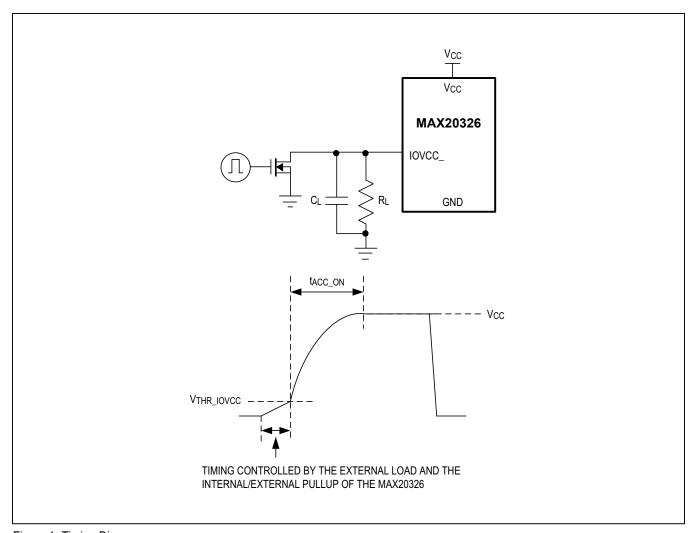
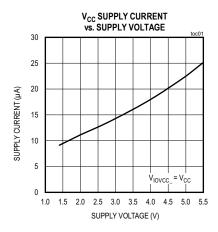
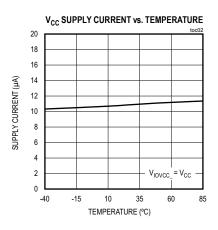
 $(V_{CC}$ = 1.4V to 5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 1.8V, T_A = +25°C) (Notes 1, 2)

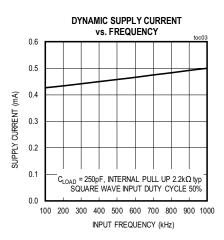
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
SUPPLY OPERATION							
Operating Voltage V _{CC}			1.4		5.5	V	
Supply Current		V _{IOVCCA} = V _{IOVCCB} = V _{CC} , V _{CC} ≤ 1.8V		11	18	μΑ	
Зирріу Сипепі	IQ_VCC	$V_{IOVCCA} = V_{IOVCCB} = V_{CC}, V_{CC} \le 5.5V$		45			
Supply Shutdown Threshold	V _{TH_VCC}	V _{CC} rising		0.7	1.1	V	
Supply Shutdown Threshold Hysteresis	V _{TH_HY_VCC}			40		mV	
I/O LOGIC LEVELS	•						
Resistive Static Pullup	R _{PU_IOVCC}		1.98	2.2	2.42	kΩ	
IOVCC_Accelerator Rising Trigger Threshold	V _{THR_IOVCC}		0.45	0.5	0.55	V	
IOVCC_Accelerator Falling Threshold Hysteresis	V _{THH} _IOVCC			19		mV	
Minimum IOVCC_Low Pulse Duration	tLOW_REARM		125			ns	
ACCELERATOR							
Accelerator Dulce Durg Con	lse Duration t _{ACC_ON}	V _{CC} ≥ 1.6V	120		200		
Accelerator Pulse Duration		V _{CC} ≥ 1.4V	120		250	ns	
Accelerator Static Source Impedance (Note 3)	R _{ACC_STAT}	R_{LOAD} = 25 Ω , accelerator driven with internal clock waveform		22		Ω	
CAPACITANCE							
IOVCC_ Capacitance C _{IOVCC}				13		pF	
ESD PROTECTION							
Human Body Model		All pins		±2		kV	

Note 1: All devices are 100% production tested at T_A = +25°C. Specifications over the operating temperature range are guaranteed

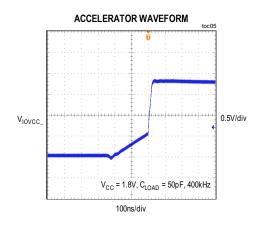
Note 2: After V_{CC} reaches V_{TH_VCC}, at least 3ms is needed in order to guarantee all min/max values.

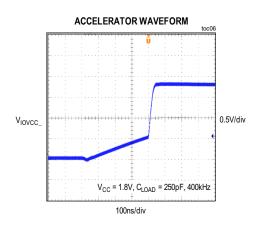
Note 3: The impedance exhibited by the accelerator when driving a capacitive load varies and transiently differs from the static one.

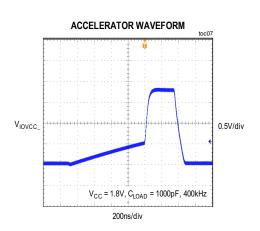




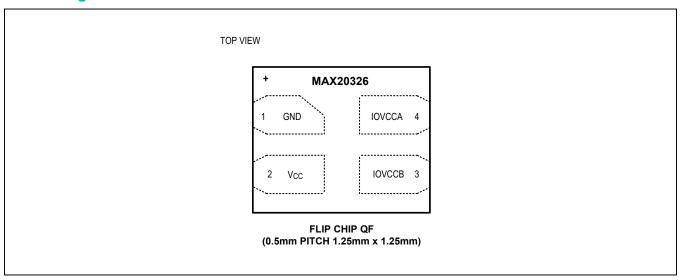

Figure 1. Timing Diagram

Typical Operating Characteristics


(V_{CC} = 1.8V, T_A = +25°C, unless otherwise noted.)





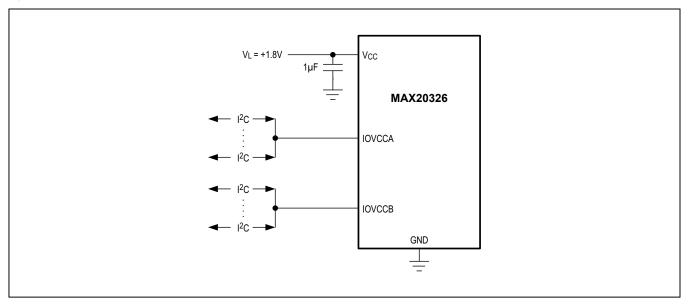


Pin Configuration

Pin Description

PIN	NAME	FUNCTION	
1	GND	Ground	
2	V _{CC}	V_{CC} Supply Input. Bypass V_{CC} with a ceramic capacitor 0.1 μ F or greater as close as possible to the device.	
3	IOVCCB	Input/Output Channel B. Reference to V _{CC} .	
4	IOVCCA	Input/Output Channel A. Reference to V _{CC} .	

www.maximintegrated.com Maxim Integrated | 6


Detailed Description

The MAX20326 is a precision input/output accelerator. The MAX20326 provides the precision pullup resistance to the IOVCC_ line. When the IOVCC_ transitions from logic-low to logic-high, the slope-adjusted accelerator kicks in to optimize the turn-on time to cope with various load capacitance. The device is optimized for an open-drain and high-speed operation, such as I²C bus, MDIO bus, or 1-wire bus. The device features a precision ±10% accurate internal pullup on each IOVCC_ line.

High-Speed Operation

The MAX20326 assists the system with meeting the requirements of high-speed, open-drain operation. The maximum data rate is at least 1MHz for open-drain operation, with the total bus capacitance up to 1000pF. The maximum operating frequency is limited by the load capacitance, the internal/external pullup used on the IOVCC_line, accelerator pulse duration, and the minimum IOVCC low-pulse duration.

Typical Application Circuit

Ordering Information

PART	INTERNAL PULLUP			PIN-PACKAGE	
MAX20326EFS+T	2.2kΩ	AA	-40°C TO +85°C	4 FC QFN	

⁺ Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BICMOS

T = Tape and reel.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED	
0	12/17	Initial release	_	

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - Specialised category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

CY7C910-51LMB MC33689DPEWR2 MC33975ATEKR2 MEC1632-AUE NVT4555UKZ RKSAS4 HMC677G32 LPC47N207-JV FTP-637DSL633R SM712GX04LF04-BA MC33689DPEW PCA9704PWJ MCW1001A-I/SS HOA6241-001 SC74HC4066ADTR2G AS3935-BQFT NCN5120MNTWG NCN5150DR2G NCN8025MTTBG C100N50Z4A DG407AK/883B SRT2-ATT01 TDA8035HN/C1/S1J LTC1694CS5#TRMPBF TLE9221SXXUMA2 DS90UB947TRGCRQ1 NCS2300MUTAG HMC677LP5E HMC677LP5ETR LTC1756EGN#PBF LTC1955EUH#PBF LT3669EUFD-2#PBF MXL1543BCAI MAX3170CAI+ XL1192D TLE9221SX CP82C59AZ KTU1109EFAA-TR CH368L LTC1694CS5#TRPBF LTC1694IS5#TRM LTS 25-NP 73S8024RN-20IMF 73S8024RN-IL/F 78P2352-IGT/F DS2406+ DS2413P+ DS2413P+T&R DS28E17Q+ DS8113-RNG+