General Description

The MAX20327 ultra-small, low-on-resistance (RON) double-pole/double-throw (DPDT) analog switches feature Beyond-the-Rails ${ }^{\text {TM }}$ capability that allows signals from -5.5 V to +12 V to pass without distortion, even when the power supply is below the signal range. The low onresistance (0.2Ω) also makes the devices ideal for lowdistortion switching applications, such as audio or video.
The MAX20327 is fully specified to operate from a single +1.6 V to +5.5 V power supply. Because of the low supply current requirement, V_{CC} can be provided by a GPIO. When power is not applied, the switches go to a high-impedance mode and all analog signal ports can withstand signals from -5.5 V to +5.5 V . The switches are controlled with a single control bit, CB.
The MAX20327 is available in a $1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, 0.4 mm pitch, 9 -bump wafer-level package (WLP) and operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

- Cell phone
- Tablet
- Portable Audio/Video Equipment
- Portable Navigation Devices

Benefits and Features

- Distortion-Free Beyond-the-Rails Signaling
- Negative Voltage Audio and Video Signal Capable
- -5.5 V to +12 V Analog Signal Range Independent of V_{CC}
- On-Resistance 0.2Ω (Typ)
- +1.6 V to +5.5 V Single-Supply Range
- Total Harmonic Distortion Plus Noise 0.001\% (Typ)
- On-Resistance Flatness 0.001Ω (Typ)
- Low Supply Current $30 \mu \mathrm{~A}$ (Typ) at 1.6 V
- Can be Powered by GPIO
- High-Impedance Mode When Vcc Not Applied
- ESD Protection on COM
- $\pm 15 \mathrm{kV}$ Human Body Model
- $\pm 8 \mathrm{kV}$ IEC 61000-4-2 Air Gap
- $\pm 6 k V$ IEC 61000-4-2 Contact
- Design Flexibility
- Break-Before-Make Operation
- 9-Bump WLP (1.6mm x 1.6 mm)
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature Range

Ordering Information appears at end of data sheet.

12V Capable, Low-RoN, Beyond-the-Rails ${ }^{\text {TM }}$ DPDT Analog Switch

\author{

Absolute Maximum Ratings
 | |
| :---: |
| | |
| | |
| | |
| | |
| | |

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right.$, derate $11.91 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$.)	
Operating Temperature Range.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	+ $150^{\circ} \mathrm{C}$
Storage Temperature Range	$5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

WLP

PACKAGE CODE	W91P1+1
Outline Number	$\underline{21-100195}$
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$83.98^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	N / A

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+1.6 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Power-Supply Range	V_{CC}		1.6		5.5	V
Power-Supply Rejection Ratio	PSRR	$\mathrm{R}_{\text {COM }}=32 \Omega, \mathrm{f}=20 \mathrm{kHz}$		80		dB
Supply Current	Icc	$\mathrm{V}_{\mathrm{CC}}=+1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V}$ or V_{CC}		30	50	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=+4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V}$ or V_{CC}		55	90	
ANALOG SWITCH (NC_ to COM_, NO_ to COM_)						
Analog Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{NC}_{-},} \mathrm{V}_{\mathrm{NO}_{-}} \\ \mathrm{V}_{\mathrm{COM}} \\ \hline \end{gathered}$		-5.5		+12	V
On-Resistance	RON	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \text { (Note 2) } \end{aligned}$		0.20	0.35	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \text { (Note 2) } \\ & \hline \end{aligned}$		0.25	0.5	
On-Resistance Match Between Channels	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \text { between same } \\ & \mathrm{NC} \text { _ and } \mathrm{NO}_{\text {_ }} \text { channel } \end{aligned}$		0.002	0.03	Ω
On-Resistance Flatness	$\mathrm{R}_{\text {FLAT }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}=-5.5 \mathrm{~V} \text { to }+12 \mathrm{~V}(\text { Note 3, Note 4) } \end{aligned}$		0.001	0.05	Ω
NC_ or NO_ Off-Leakage Current	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}}(\mathrm{OFF})^{\prime} \\ & \mathrm{I}_{\mathrm{NC}}{ }^{\prime} \text { _(OFF) } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$, switch open, V_{NO} or V_{NC} $=-5.5 \mathrm{~V},+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=-5.5 \mathrm{~V},+12 \mathrm{~V}$ unconnected	-250		+250	nA
COM Off-Leakage Current	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{COM}}=-5.5 \mathrm{~V}, \\ & +12 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=-5.5 \mathrm{~V},+12 \mathrm{~V}, \\ & \text { unconnected } \end{aligned}$	-1		+1	$\mu \mathrm{A}$
COM On-Leakage Current	ICOM_(ON)	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$, switch closed, $\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}_{-}}=-5.5 \mathrm{~V},+12 \mathrm{~V}$, unconnected	-250		+250	nA
TIMING CHARACTERISTICS						
Turn-On Time	ton	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_ }}=0 \mathrm{~V},+\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Figure 2)			300	$\mu \mathrm{s}$
Turn-Off Time	tofF	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC__ }}=0 \mathrm{~V},+\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Figure 1)		5	30	$\mu \mathrm{s}$
Break-Before-Make Time	${ }^{\text {t BBM }}$	$R_{L}=50 \Omega$, time for both NC/NO switches are open during transition (Figure 2)	0		300	$\mu \mathrm{s}$
AUDIO PERFORMANCE						
Total Harmonic Distortion Plus Noise	THD + N	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & R_{\mathrm{S}}=R_{\mathrm{L}}=600 \Omega, D C \text { bias }=0 \end{aligned}$		0.001		\%
Off-Isolation	VISO	$\begin{aligned} & R_{S}=R_{L}=50 \Omega ; V_{C O M}=0.5 V_{P-P} \\ & f=100 \mathrm{kHz}, V_{C C}=0 \mathrm{~V}, \overline{D C} \text { bias }=0.25 \mathrm{~V}, \end{aligned}$ Figure 3		-60		dB
Crosstalk	V_{CT}	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}=100 \mathrm{kHz} \text { (} \text { (igure 3) } \end{aligned}$		-100		dB
-3dB Bandwidth	BW	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega$		100		MHz

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+1.6 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
NC_Off-Capacitance	$\mathrm{C}_{\text {NC_ }}$ (OFF)	$\mathrm{V}_{\mathrm{NC}_{-}} \mathrm{N}_{\text {NO_}}=0.5 \mathrm{~V}_{\text {P-P }}, \mathrm{f}=1 \mathrm{MHz}$		4		pF
NO_Off-Capacitance	$\mathrm{C}_{\mathrm{NO} \text { _(OFF) }}$	$\mathrm{V}_{\mathrm{NC}_{-}} \mathrm{N}_{\text {NO_}}=0.5 \mathrm{~V}_{\text {P-P },} \mathrm{f}=1 \mathrm{MHz}$		4		pF
COM_On-Capacitance	$\mathrm{C}_{\text {COM_(ON) }}$	$\mathrm{V}_{\mathrm{NC}_{-}} \mathrm{N}_{\text {NO_}}=0.5 \mathrm{~V}_{\text {P-P }}, \mathrm{f}=1 \mathrm{MHz}$		6		pF
DIGITAL I/O (CB)						
Input Logic High Voltage	$\mathrm{V}_{\text {IH }}$		1.4			V
Input Logic Low Voltage	V_{IL}				0.4	V
Input Leakage Current	IN	$\mathrm{V}_{\mathrm{CB}}=0$ or V_{CC}	-100		+100	nA
THERMAL PROTECTION						
Thermal Shutdown	TSHDN			150		${ }^{\circ} \mathrm{C}$
Thermal Hysteresis	THYST			20		${ }^{\circ} \mathrm{C}$
ESD PROTECTION						
COM_		HBM		± 15		kV
		IEC61000-4-2 Air-Gap Discharge		± 8		
		IEC61000-4-2 Contact Discharge		± 6		
All other pins		HBM		± 2		kV

Note 1: All specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Specifications are over $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and are guaranteed by design.
Note 2: The same limits apply for $\mathrm{V}_{\mathrm{COM}_{-}}=-5.5 \mathrm{~V}$ to +5.5 V with NC _ channels and 0 V to 12 V with NO _ channels. These are guaranteed by design.
Note 3: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog signal ranges.
Note 4: Guaranteed by design; not production tested.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval
 NC2 AND COM2 ARE OPEN.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH. OFF-ISOLATION $=20100 \frac{V_{\text {OUT }}}{V_{\text {IN }}}$ 3dB BANDWIDTH IS MEASURED BETWEEN COM_ AND "ON" NO_ OR NC_ TERMINAL ON EACH SWITCH. 3dB BANDWIDTH $=2010 \frac{V_{\text {OUT }}}{V_{I N}}$ CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL. CROSSTALK $=2010 \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

Figure 3. 3dB Bandwidth, Off-Isolation, and Crosstalk

Typical Operating Characteristics (continued)

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Typical Operating Characteristics (continued)

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Bump Configuration

Bump Descriptions

PIN	NAME	
A1	NC1	Normally Closed Terminal for Switch 1
A2	CB	Digital Control Input. Drive CB low to connect COM_ to NC_. Drive CB high to connect COM_ to NO_.
A3	NC2	Normally Closed Terminal for Switch 2
B1	COM1	Common Terminal for Switch 1
B2	GND	Ground
B3	COM2	Common Terminal for Switch 2
C1	NO1	Normally Open Terminal for Switch 1
C2	VCC	Positive Supply Voltage Input. Bypass V CC $^{\prime}$ to GND with a 0.1 μ F capacitor as close to the device as possible.
C3	NO2	Normally Open Terminal for Switch 2

12V Capable, Low-RoN, Beyond-the-Rails ${ }^{\text {TM }}$ DPDT Analog Switch

Detailed Description

The MAX20327 is an ultra-small, low on-resistance, high ESD-protected DPDT switch that operates from a +1.6 V to +5.5 V supply, and is designed to pass analog signals, such as AC-biased or DC-biased audio and video signals. These switches feature the low on-resistance (RON) necessary for high-performance switching applications. The Beyond-the-Rails signal capability of the MAX20327 allows signals below ground and above V_{CC} to pass without distortion.

Analog Signal Levels

The MAX20327 is bidirectional, allowing NO_, NC_, and COM_ to be configured as either inputs or outputs. The topology of the switches allows the signal to drop below ground without the need of an external negative voltage supply.

Digital Control Input

The MAX20327 provides a single-bit control logic input, CB. CB controls the switch position, as shown in the Typical Application Circuits.

Figure 4. Human Body ESD Test Model

Applications Information

Extended ESD Protection

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges up to $\pm 2 \mathrm{kV}$ (HBM) encountered during handling and assembly. COM1 and COM2 are further protected against ESD up to $\pm 15 \mathrm{kV}$ (HBM), $\pm 8 \mathrm{kV}$ (Air-Gap Discharge), and $\pm 6 \mathrm{kV}$ (Contact Discharge) without damage. NO_ and NC_ are protected against ESD up to $\pm 2 \mathrm{kV}$ (HBM) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the devices continue to function without latchup.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test methodology and test results.

Human Body Model

Figure 4 shows the Human Body Model. Figure 5 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

Figure 5. Human Body Current Waveform

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The major difference between tests done using the HBM and IEC $61000-4-2$ is higher peak current in IEC 61000-4-2,

Figure 6. IEC 61000-4-2 ESD Test Model
because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the HBM. Figure 6 shows the IEC 61000-4-2 model and Figure 7 shows the current waveform for the $\pm 8 \mathrm{kV}$, IEC 61000-4-2, Level 4, ESD Contact-Discharge Method.

Figure 7. IEC 61000-4-2 ESD Generator Current Waveform

Typical Application Circuits

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE	[TOP MARKING]	PACKAGE OUTLINE DRAWING
MAX20327EWL +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	9 WLP	ALA	$21-100195$

+ Denotes a lead (Pb)-free/RoHS-compliant package.
T Denotes tape-and-reel.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$6 / 18$	Initial release	-

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

