Evaluates: MAX20446C

General Description

The MAX20446C evaluation kit (EV kit) demonstrates the MAX20446C, an integrated 6-channel high-brightness LED driver with boost controller for automotive displays.
The EV kit operates from a DC supply voltage between 4.5 V and 36 V , and the switching frequency can be either set at 2.2 MHz or at 400 kHz . The EV kit operates in stand-alone mode. Spread-spectrum mode is enabled by default for EMI improvement. The EV kit demonstrates phase-shifted pulse-width modulation (PWM) dimming. Dimming can be performed externally using a PWM signal applied to the DIM PCB pad. The hybrid dimming feature can also be enabled through a resistor connected between the SET pin and GND to reduce EMI. The EV kit also demonstrates short-LED, open-LED, boost output undervoltage and overvoltage, and overtemperature-fault protection.
For operation at switching frequencies other than 2.2 MHz or 400 kHz , the external components should be chosen according to the calculations in the MAX20446C IC data sheet.

Features

- Demonstrates Robustness of MAX20446C
- Wide 4.5 V to 36 V Input Operating Range (Up to 52 V Load Dump)
- Powers HB LEDs (up to six strings) for Medium-to-Large-Sized LCD Displays in Automotive and Display Backlight Applications
- 400 kHz to 2.2 MHz Resistor-Programmable Switching Frequency with Spread-Spectrum Option
- Phase-Shift Dimming
- Demonstrates Cycle-by-Cycle Current Limit and Thermal-Shutdown Features
- Demonstrates Wide Dimming Ratio
- Proven PCB and Thermal Design
- Fully Assembled and Tested

Quick Start

Required Equipment

- MAX20446C EV kit
- 5 V to 36 V , 4A DC power supply
- Two digital voltmeters (DVMs)
- Six series-connected HB LED strings (6 LEDs each) rated to no less than 120 mA
- Current probe to measure the HB LED current

Procedure

The EV kit is fully assembled and tested. Follow these steps to verify board operation.

Caution: Do not turn on the power supply until all connections are completed.

1) Verify that Jumper J17 is closed and that Jumper J22 is open (2.2 MHz switching frequency selected).
2) Verify that Jumper J1 is closed (DS1 green LED connected).
3) Verify that Jumper J20 is closed (FAULT signaling enabled through DS2 red LED).
4) Verify that a shunt is installed across pins 1-2 on Jumper J2 (device enabled).
5) Verify that Jumpers JMP1-JMP3, JMP6-JMP7, and JMP9 have shunts installed across pins 1-2 (bleed resistors connected, all current sinks enabled).
6) Verify that a shunt is installed across pins 2-3 on Jumper J29 (LED short detection threshold set to 8V).
7) Verify that a shunt is installed across pins 2-3 on Jumper J30 (LED current range set to $85 \mathrm{~mA}-120 \mathrm{~mA}$ and hybrid dimming function disabled).
8) Verify that Jumper J8 is closed (LED current set to 100 mA).
9) Connect the positive terminal of the power supply to the IN PCB pad. Connect the negative terminal of the power supply to a PGND PCB pad.
10) Connect a DVM across OUT1 and GND PCB pads.

Ordering Information appears at end of data sheet.

11) Connect the six LED strings from $V_{\text {OUT }}$ to the OUT1, OUT2, OUT3, OUT4, OUT5, and OUT6 PCB pads.
12) Clip the current probe across the channel 1 HB LED+ wire to measure the LED current.
13) Turn on the power supply and set it to 12 V . The green LED (DS1) and the LED strings should be on at this point.
14) Measure the voltage from each of the OUT_PCB pads to PGND and verify the lowest voltage is approximately 1 V .
15) Measure the LED current using the current probe and verify all channels.

Detailed Description of Hardware

The MAX20446C EV kit demonstrates the MAX20446C HB LED driver with an integrated step-up DC-DC preregulator followed by six linear current sinks to drive up to six strings of LEDs. The pre-regulator switches at 2.2 MHz (or at 400 kHz) and operates as a current-mode controlled regulator, providing up to 720 mA for the linear current sinks as well as overvoltage protection. The cycle-bycycle current limit is set by resistor R27, while resistors R4 and R5 set the over-voltage protection level to 29 V . The preregulator power section consists of inductor L2, power-sense resistor R27, Q4 MOSFET, and switching diode D1. The EV kit circuit operates from a 4.5 V DC supply voltage up to the HB LED forward string voltage. The circuit handles load-dump conditions up to 50 V .
The EV kit circuit demonstrates ultra-low shutdown current when the EN pin of the device is pulled to GND by shorting the EN PCB pad to GND. Each of the six linear current sinks (OUT1-OUT6) is capable of operating up to 48 V , sinking up to 120 mA per channel.
The six channels' linear current sinks are configured by selecting the current range through the SET pin (resistor values from $3.48 \mathrm{k} \Omega$ to $27.4 \mathrm{k} \Omega$ between SET and GND \rightarrow Lower: $45 \mathrm{~mA}-80 \mathrm{~mA} /$ resistor values from $36.5 \mathrm{k} \Omega$ to $75 \mathrm{k} \Omega$
between SET and GND or SET connected to $\mathrm{V}_{\mathrm{CC}} \rightarrow$ Higher: $85-120 \mathrm{~mA}$) and by setting the LED strings' current in steps of 5 mA through a resistor connected between ISET pin and GND.
Jumpers JMP1-JMP3, JMP6-JMP7, and JMP9 can be used to disable outputs selectively when the HB LED string is not connected.
The EV kit features PCB pads to facilitate connecting HB LED strings for evaluation. The VOUT PCB pads provide connections for connecting each HB LED string's anode to the DC-DC pre-regulator output. The OUT1-OUT6 PCB pads provide connections for connecting each HB LED string's cathode to the respective current sink. Capacitors C11, C14, C18, C23, C24, and C25 are included on the design to prevent oscillations and provide stability when using long, untwisted HB LED connecting cables during lab evaluation. These capacitors are not required if the connection between the LED driver and the HB LEDs is low-inductance.
A DIM PCB pad is provided for using a digital PWM signal to control the brightness of the HB LEDs. Test points are also provided for easy access to the device's V_{CC} regulator output as well as the COMP pin and the switching node of the pre-regulator (LX).

Power LED Enable (J1)

A green LED (DS1) is used to indicate that the EV kit is powered on. The LED can be disconnected from the power supply, allowing precise current-consumption evaluation. See Table 1 for shunt positions.

Table 1. DS1 Enable (J1)

SHUNT POSITION	DS1 POWER LED
Closed *	Connected
Open	Disconnected

*Default position.

Enable (EN)

The EV kit features an enable input that can be used to enable/disable the device and place it in shutdown mode. To enable the EV kit whenever power is applied to IN, place the Jumper across pins 1-2 on Jumper J2. To enable the EV kit using an external enable signal, place the Jumper across pins 2-3 on J2 and apply a logic signal on the EN PCB input pad on the EV kit. A $1 \mathrm{M} \Omega$ pulldown resistor on the EV kit pulls the EN input to GND in the event that J2 is left open or the EN signal is high impedance. Refer to the Enable section in the MAX20446C IC data sheet for additional information. See Table 2 for J2 Jumper settings.

Switching Frequency

Jumpers J 17 and J22 are used to set the switching frequency of the MAX20446C to either 2.2 MHz or 400 kHz . When J 17 is closed and J 22 is open, the switching frequency is set to 2.2 MHz . When J 17 is open and J 22 is closed, the switching frequency is nominally 400 kHz .
The EV kit is optimized for 2.2 MHz switching operation by default. When selecting a switching frequency of 400 kHz , L2 should be changed to $22 \mu \mathrm{H}$ to maintain acceptable
efficiency. Other component value adjustments may be needed.
Refer to the Oscillator Frequency/External Synchronization and Spread-Spectrum Switching sections in the MAX20446C IC data sheet for more information. See Table 3 for J17 and J22 Jumper settings.

HB LED Current

The EV kit features Jumpers J3-J6, J8, J10, J12, and J14 to configure the device's current sinks on all four channels. The low/high LED current range is selected through Jumpers J30, J7, J9, J11, J13, J15-J16, and J26-J28. See Table 4 for proper Jumper settings to configure the current-sink limits.
The OUT_current value is directly related to the value of the resistor on the IREF pin. $\mathrm{R}_{\text {IREF }}=49.9 \mathrm{k} \Omega$ (default value on the EV kit) allows the user to obtain a maximum full-scale value of 120 mA . This value can be increased to 130 mA by replacing R 44 resistor with $\mathrm{R}_{\mathrm{IREF}}=45.3 \mathrm{k} \Omega$; as a result, all the OUT_current values shown in Table 4 will need to be proportionally scaled up.

Table 2. Enable (J2)

SHUNT POSITION	EN PIN	EV KIT OPERATION
$1-2^{*}$	Connected to IN	Enabled when IN is powered
$2-3$	Connected to EN PCB pad	Enabled/disabled by signal on EN PCB pad

*Default position.

Table 3. Switching Frequency (J17 and J22)

SHUNT POSITION		RT PIN	EV KIT OPERATION
J17	J22		
Closed* *	Open *	RT connected to GND using a $13.3 \mathrm{k} \Omega$ resistor	2.2 MHz switching frequency
Open	Closed	RT connected to GND using a $76.8 \mathrm{k} \Omega$ resistor	400 kHz switching frequency

[^0]Table 4. LED Current (J3-J6, J8, J10, J12, and J14)

SET CONFIGURATION	ISET RESISTOR VALUE	JUMPER	SHUNT POSITION	OUT_CURRENT
J 30 shunted in 1-2 position and one among J9/J11/J13/J27/ J 28 closed $\rightarrow 45-80 \mathrm{~mA}$ current range	3.48k	J14	Closed	45 mA
	7.15k	J12	Closed	50 mA
	12k	J10	Closed	55 mA
	18.7k	J8	Closed	60 mA
	27.4k	J6	Closed	65 mA
	39k	J5	Closed	70 mA
	59k	J4	Closed	75 mA
	84.5k	J3	Closed	80 mA
J 30 shunted in 1-2 position and one among J7/J15/J16/J26 closed or J30 shunted in 2-3 position* $\rightarrow 85-120 \mathrm{~mA}$ current range	3.48k	J14	Closed	85 mA
	7.15k	J12	Closed	90 mA
	12k	J10	Closed	95 mA
	18.7k*	J8	Closed	100 mA
	27.4k	J6	Closed	105 mA
	39k	J5	Closed	110 mA
	59k	J4	Closed	115 mA
	84.5k	J3	Closed	120 mA

*Default position.

Channel 1-Channel 6 Current-Sink Disabling

The EV kit features Jumpers JMP1-JMP3, JMP6-JMP7, and JMP9 which are used to put each OUT_ current sink in one of three operating states:

- Normal operation, i.e., OUT_ is connected to the corresponding ring on the board edge and LEDs are connected from there to the preregulator output VOUT
- OUT_connected through a $12 \mathrm{k} \Omega$ resistor to GND, thus disabled
- OUT_ shorted to GND, used to test fault detection

To disable a channel, install a Jumper in the channel's respective Jumper across pins 1-3, connecting the OUT_ to GND through a $12 \mathrm{k} \Omega$ resistor. The dimming algorithm in the IC requires that higher numbered OUT_ current sinks be disabled first. For example, if only two strings are needed, OUT1-OUT2 should be used, with OUT3 to OUT6 disabled. See Table 5 for Jumper settings. The $100 \mathrm{k} \Omega$ bleed resistors are installed to prevent the OUT_ leakage current from dimly turning on large LED strings even when the DIM signal is low.

HB LED Digital Dimming Control

The EV kit features a DIM PCB input pad for connecting an external digital PWM signal. Apply a digital PWM signal with a 0.8 V logic-low level (or less) and 2.1 V logic-high
level (or greater). The DIM signal frequency should be at least 100 Hz . If the DIM frequency is changed during operation, then the MAX20446C must be powered off and on again to register the change. To adjust the HB LED brightness, vary the signal duty cycle from 0% to 100% and maintain a minimum pulse width of 500 ns . Apply the digital PWM signal to the DIM PCB pad. The DIM input of the IC is pulled up internally with a $5 \mu \mathrm{~A}$ (typ.) current source.
For additional information on the device's digital dimming feature, refer to the Dimming section in the MAX20446C IC data sheet.

Hybrid Dimming Operation

The hybrid dimming feature can be enabled by connecting a resistor from SET to GND. The resistor value, selectable through the same Jumpers used to set the low/high LED current range, will set the hybrid dimming threshold value and the device determines whether to dim the LED current by reducing or chopping it, depending on this threshold.
For additional information on the device's hybrid dimming feature, refer to the Hybrid Dimming section in the MAX20446C IC data sheet.
See Table 6 for proper Jumper settings to enable the hybrid dimming function and to configure the hybrid dimming threshold.

Table 5. Selecting OUT_ Channels Operating State (JMP1-JMP3, JMP6-JMP7, and JMP9)

OUT_	JUMPER	SHUNT POSITION	CHANNEL OPERATION
OUT1	JMP9	1-2*	Channel 1 operational; connect an HB LED string** between $\mathrm{V}_{\text {OUT }}$ and OUT1. Bleed resistor connected.
		1-3	Channel 1 not used. OUT1 current sink disabled.
		1-4	Channel 1 shorted to GND to simulate a fault.
OUT2	JMP7	1-2*	Channel 2 operational; connect an HB LED string** between $\mathrm{V}_{\text {OUT }}$ and OUT2. Bleed resistor connected.
		1-3	Channel 2 not used. OUT2 current sink disabled.
		1-4	Channel 2 shorted to GND to simulate a fault.
OUT3	JMP6	1-2*	Channel 3 operational; connect an HB LED string** between $V_{\text {OUT }}$ and OUT3. Bleed resistor connected.
		1-3	Channel 3 not used. OUT3 current sink disabled.
		1-4	Channel 3 shorted to GND to simulate a fault.
OUT4	JMP3	1-2*	Channel 4 operational; connect an HB LED string** between $\mathrm{V}_{\text {OUT }}$ and OUT4. Bleed resistor connected.
		1-3	Channel 4 not used. OUT4 current sink disabled.
		1-4	Channel 4 shorted to GND to simulate a fault.
OUT5	JMP2	1-2*	Channel 5 operational; connect an HB LED string** between $\mathrm{V}_{\text {OUT }}$ and OUT5. Bleed resistor connected.
		1-3	Channel 5 not used. OUT5 current sink disabled.
		1-4	Channel 5 shorted to GND to simulate a fault.
OUT6	JMP1	1-2*	Channel 6 operational; connect an HB LED string** between $\mathrm{V}_{\text {OUT }}$ and OUT6. Bleed resistor connected.
		1-3	Channel 6 not used. OUT6 current sink disabled.
		1-4	Channel 6 shorted to GND to simulate a fault.

*Default position.
**The series-connected HB LED string must be rated to no less than 120 mA .
Table 6. LED Current (J30, J7, J9, J11, J13, J15-J16, and J26-J28)

SET RESISTOR VALUE	JUMPER		SHUNT POSITION	HYBRID DIMMING THRESHOLD
3.48k	J30 shunted in 1-2 position	J13	Closed	Hybrid dimming disabled
8.2k		J28	Closed	50\% of peak LED current
14k		J27	Closed	25\% of peak LED current
21.5k		J11	Closed	12.5\% of peak LED current
27.4k		J9	Closed	6.25\% of peak LED current
36.5k		J26	Closed	50\% of peak LED current
47k		J16	Closed	25\% of peak LED current
59k		J7	Closed	12.5\% of peak LED current
75k		J15	Closed	6.25\% of peak LED current
SET shorted to VCC*	J30 shunted in 2-3 position			Hybrid dimming disabled

[^1]
Fault-Indicator Output (FLT)

The EV kit features the device's open-drain $\overline{F L T}$ output. The FLT signal is pulled up to V_{CC} by resistor R48. FLT goes low when an open-LED or shorted-LED string is detected, during thermal warning/shutdown, or during boost undervoltage/overvoltage events. Keep Jumper J20 closed to allow DS2 red LED enabling in case FLT goes low. Refer to the Fault Protection section in the MAX20446C IC data sheet for additional information on the $\overline{F L T}$ signal.

Shorted-LED Detection and Protection

In stand-alone mode, the short-LED threshold is programmed through the RSDT input. R40 and R41 form a resistor-divider from $V_{C C}$ to RSDT to SGND. A shorted LED is detected when the following condition is satisfied:

$$
\mathrm{V}_{\mathrm{OUT}}^{-} \gg 4 \times \mathrm{V}_{\mathrm{RSDT}}
$$

When the short-LED threshold is reached, the affected current sink is disabled to reduce excess power dissipation and the $\overline{\text { FLT }}$ indicator asserts low. The short-LED detection feature is regulated through Jumper J29. See Table 7 for Jumper settings.

Overvoltage Detection and Protection

The resistors (R4 and R5) connected to BSTMON are configured for a VOUT_OVP of 29 V . This sets the maximum converter output $\left.\overline{(} \mathrm{V}_{\text {OUT }}\right)$ voltage at 29 V . During an open-LED string condition, the converter output ramps up to the output overvoltage threshold. Capacitor C3 can be added to provide noise filtering to the overvoltage signal. To reconfigure the circuit for a different voltage, replace resistor R4 with a different value using the following equation:
R4 = [(VOUT_OVP/1.23) - 1]*R5
where R5 is $10 \mathrm{k} \Omega$, V OUT_OVP is the overvoltage-protection threshold desired, and R4 is the new resistor value for obtaining the desired overvoltage protection. MOSFET Q1 is an optional over-voltage protection resistor-divider disconnect switch for ultra-low shutdown current.
Refer to the Open-LED Management and Overvoltage Protection section in the MAX20446C IC data sheet for additional information.

Table 7. Short-LED Detection (J29)

SHUNT POSITION	RSDT PIN	EV KIT OPERATION
$1-2^{*}$	Connected to V_{CC}	Short-LED detection disabled
$1-3$	Connected to R40/R41 resistor divider	Short-LED detection regulated via resistor divider

*Default position.

Ordering Information

PART	TYPE
MAX20446CEVKIT\#	EV KIT

\#Denotes RoHS compliance.

MAX20446C EV Kit Bill of Materials

ITEM	REF_DES	DNIIDNP	QTY	MFG PART\#	MANUFACTURER	VALUE	DESCRIPTION	COMmENTS
1	C2, C6, C16	-	3	UMK107BJ105KA; C1608×5R1H105K080AB; CL10A105KB8NNN; GRM188R61H105KAAL	TAIYO YUDEN;TDK;SAMSUNG;MURATA	1 UF	CAP; SMT (0603); 1UF; 10\%; 50V; X5R; CERAMIC	
2	C4	-	1	C1608X7S2A104K080AB	TDK	0.1UF	CAP; SMT (0603); 0.1UF; 10\%; 100V; X7S; CERAMIC	
3	C5, C26	-	2	C1210C475K5RAC; GRM32ER71H475KA88; CNC6P1X7R1H475K250AE	KEMET;MURATA;TDK	4.7UF	CAP; SMT (1210); 4.7UF; 10\%; 50V; X7R; CERAMIC	
4	C9, C10	-	2	EEE-TG1H470UP	PANASONIC	47UF	CAP; SMT (CASE_F); 47UF; 20\%; 50V; ALUMINUM-ELECTROLYTIC	
5	C11, C12, C14, C18, C23-C25	-	7	GRM1885C1H102JA01; C1608C0G1H102J080AA; GCM1885C1H102JA16	MURATA;TDK;MURATA	1000PF	CAP; SMT (0603); 1000PF; 5\%; 50V; COG; CERAMIC	
6	C13	-	1	C0603C473K5RAC; GRM188R71H473KA61 GCM188R71H473KA55 CGA3E2X7R1H473K080AA	KEMET;MURATA;MURATA;TDK	0.047UF	CAP; SMT (0603); 0.047UF; 10\%; 50V; X7R; CERAMIC	
7	C17	-	1	CGA3E2C0G1H100D080AA	TDK	10PF	CAP; SMT (0603); 10PF; +/-0.50PF; 50V; COG: CERAMIC: AUTO	
8	C20	-	1	GRM188R71A225KE15; CL108225KP8NNN; C1608x7R1A225K080AC; C0603C225K8RAC	MURATA;SAMSUNG;TDK;KEMET	2.2UF	CAP; SMT (0603); $2.2 \mathrm{UF} ; 10 \%$; 10V; X7R; CERAMIC	
9	C21	-	1	GRM1885C1H222JA01	MURATA	2200PF	CAP; SMT (0603); 2200PF; 5\%; 50V; COG; CERAMIC	
10	C22	-	1	C0603C683J5RAC; C0603X683J5RAC	KEMET;KEMET	0.068 UF	CAP; SMT (0603); 0.068UF; 5\%; 50V; X7R; CERAMIC	
11	C27	-	1	06035C101JAT	AVX	100PF	CAP; SMT (0603); 100PF; 5\%; 50V; x7R; CERAMIC	
12	C28	-	1	06035C220JAT	AVX	22PF	CAP; SMT (0603); 22PF; 5\%; 50V; X7R; CERAMIC	
13	C30	-	1	GRM188R71C103KA01; ECJ-1VB1C10;CL10B103KO8NNN: GCJ188R71C103KA01	MURATA;PANASONIC;SAMSUNG;MURATA	0.01UF	CAP; SMT (0603); 0.01UF; 10%; 16V; X7R; CERAMIC	
14	C226	-	1	C2012X7R1H225K125AC	TDK	2.2UF	CAP; SMT (0805); $2.2 \mathrm{LUF} ; 10 \%$; 50V; X7R; CERAMIC	
15	COMP, LX, TP1, TP2, VCC	-	5		N/A	5011	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	
16	D1	-	1	NRVBS260T3G	ON SEMICONDUCTOR	NRVBS260T3G	DIODE; SCH; SURFACE MOUNT SCHOTTKY POWER RECTIFIER; SMB; PIV=60V; IF=2A	
17	D2, D3	-	2	BZG03C18	VISHAY SEMICONDUCTORS	18 V	DIODE; ZNR ; SMT (DO-214AC); VZ=18V; $\mathrm{IZM}=0.025 \mathrm{~A}$	
18	D4	-	1	B1608-13-F	DIODES INCORPORATED	B1608-13-F	DIODE; SCH; SMB (DO-214AA); PIV=60V; IF=1A	
19	D5	-	1	CMPD914E	CENTRAL SEMICONDUCTOR	CMPD914E	DIODE; SWT; SMT (SOT23-3); PlV=150V; IF=0.1A	
20	DIM, EN, FLT, GND, GND1, GND2, IN, OUT1-OUT6, PGND, PGND1, PGND2, RSDT, SYNC, VOUT, VOUT1-VOUT3	-	22	9020 BUSS	WEICO WIRE	MAXIMPAD	EVK KIT PARTS; MAXIM PAD; WIRE; NATURAL; SOLID; WEICO WIRE; SOFT DRAWN BUS TYPE-S; 20AWG	
21	DS1	-	1	LGL29K-F2J1-24-Z	OSRAM	LGL29K-F2J1-24-Z	DIODE; LED; SMARTLED; GREEN; SMT; PIV=1.7V: $\mathrm{IF}=0.02 \mathrm{~A}$	
22	DS2	-	1	LS L29K-G1J2-1-Z	OSRAM	LS L29K-G1J2-1-Z	DIODE; LED; SMART; RED; SMT (0603); PIV $=1.8 \mathrm{~V} ; / \mathrm{IF}=0.02 \mathrm{~A} ;-40 \mathrm{DEGC}$ TO +100 DEGC	
23	J1, J3-J17, J20, J22, J26-J28	-	21	PBC02SAAN	SULLINS ELECTRONICS CORP.	PBC02SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 2PINS	
24	J2, J29, J30	-	3	PECO3SAAN	SULLINS	PECO3SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3PINS	
25	J25	-	1	HTSW-112-11-G-S-RA	SAmtec	HTSW-1 12-11-G-S-RA	CONNECTOR; MALE; THROUGH HOLE; SQUARE POST HEADER; RIGHT ANGLE; 12PINS ;	
26	JMP1-JMP3, JMP6, JMP7, JMP9	-	6	PECO4SAAN	SULLINS ELECTRONICS CORP.	PECO4SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 4PINS	
27	L1	-	1	XAL4020-601ME	COILCRAFT	0.60 UH	INDUCTOR; SMT; CORE MATERIAL= COMPOSITE; 0.60UH; TOL=+/-20\%; 11.7A	
28	L2	-	1	MSS1246T-472ML	COILCRAFT	4.7UH	INDUCTOR; SMT; FERRITE CORE; 4.7UH; TOL=+/-20\%; 9.70A	
29	MH1-MH4	-	4		KEYSTONE	9032	MACHINE FABRICATED; ROUND-THRU HOLE SPACER; NO THREAD; M3.5; 5/8in; NYLON	
30	Q1	-	1	NDS351AN	FAIRCHILD SEMICONDUCTOR	NDS351AN	TRAN: N-CHANNEL LOGIC LEVEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR; NCH; SUPERSOT-3; PD-(0.5W); $\mathrm{L}(1.4 \mathrm{~A})$; V -(30V)	
31	Q2	-	1	MмВT3906-7-F	diodes incorporated	MMBT 3906 -7-F	TRAN; 40V PNP SMALL SIGNAL TRANSISTOR; PNP; SOT-23; PD-(0.31W); I-(-0.2A); V-(-40V)	
32	Q3	-	1	SUM55P06-19L-E3	VISHAY SILICONIX	SUM55P06-19L-E3	TRAN; P-CHANNEL 60 V D-S ENHANCEMENT MODE MOSFET; PCH; TO-263-3; PD-(3.75W); -(-55A); V-(-60V)	
33	Q4	-	1	NTMFS5C673NLT1G	ON SEMICONDUCTOR	NTMFS5C673NLT1G	TRAN; NCH; MOSFET; SO-8FL; PD-(46W); - -(50A); V-(60V)	
34	Q5	-	1	SI1317DL-T1-GE3	VISHAY SILICONIX	SI1317DL-T1-GE3	TRAN; P-CHANNEL 20 V (D-S) MOSFET; PCH; SOT-323; PD-(0.5W); $\mathrm{I}-(-1.4 \mathrm{~A})$; $\mathrm{V}-(-20 \mathrm{~V})$	
35	R2	-	1	CRCW06033K00FK	VISHAY DALE	3K	RES; SMT (0603); 3K; 1\%; +/-100PPM/DEGC; 0.1000 W	

MAX20446C EV Kit Bill of Materials (continued)

ITEM	REF_DES	DNIIDNP	QTY	MFG PART\#	MANUFACTURER	VALUE	DESCRIPTION	COMMENTS
36	R3, R7	-	2	CRCW08050000zS;RC2012.J000	DIGI-KEY		RES; SMT (0805); 0; JUMPER; JUMPER; 0.1250W	
37	R4	-	1	CRCW0805226KFK	VISHAY DALE	226 K	RES; SMT (0805); 226K; 1\%; +/-100PPMIDEGC; 0.1250 W	
38	R5	-	1	TNPW080510K0BE:ERA-6YEB103V	VISHAY DALE:PANASONIC	10K	RES; SMT (0805); $10 \mathrm{~K} ; 0.10 \% ;+$-25PPM/DEGK; 0.1250 W	
39	R6	-	1	301-10K-RC	XICON	10K	RES; SMT (0603); 10K; 5\%; +1-200PPMIDEGC; 0.0630W	
40	R8	-	1	CRCW12060000ZS;ERJ-8GEYOR00	VISHAY DALE;PANASONIC		RES; SMT (1206); 0; JUMPER; JUMPER; 0.2500W	
41	R9	-	1	CRCW06031M00FK; MCR03EZPFX1004	VISHAY DALE;ROHM	1 M	RES; SMT (0603); 1M; 1\%; +/-100PPMIDEGC; 0.1000 W	
42	R10, R17, R23, R34, R37, R43	-	6	CRCW0603100KFK:RC0603FR-07100KL: RC0603FR-13100KL;ERJ-3EKF1003; AC0603FR-07100KL	VISHAY DALE;YAGEO;YAGEO;PANASONIC	100 K	RES; SMT (0603); 100K; 1\%; +/-100PPM/DEGC; 0.1000 W	
43	R11	-	1	CRCW060318KOFK	VISHAY DALE	18K	RES; SMT (0603); 18K; 1\%; +1-100PPMIDEGC; 0.1000	
44	R12, R19, R22, R29, R36, R38, R45	-	7	CRCW060312KOFK	VISHAY DALE	12K	RES; SMT (0603); 12K; 1\%; +1-100PPMIDEGC; 0.1000W	
45	R13	-	1	RC0603FR-0784K5L	YAGEO PHYCOMP	84.5K	RES; SMT (0603); 84.5K; 1\%; +/-100PPM/DEGC; 0.1000W	
46	R14	-	1	ERJ-8CWFR050	PANASONIC	0.05	RES; SMT (1206); 0.05; 1\%; +/-75PPMIDEGC; 1 W	
47	R15, R49	-	2	CRCW06031K00FK;ERJ-3EKF1001; CR0603AFX-1001ELF	VISHAY; PANASONIC;BOURNS	1K	RES; SMT (0603); 1K; 1\%; +l-100PPMIDEGC; 0.1000 W	
48	R16, R53	-	2	ERJ-3EKF5902	PANASONIC	59K	RES; SMT (0603); 59K; 1%; +1-100PPMIDEGC; 0.1000 W	
49	R18, R21	-	2	CRCW060327K4FK:ERJ-3EKF2742	VISHAY DALE;PANASONIC	27.4K	RES; SMT (0603); 27.4K; 1\%; +/-100PPM/DEGC; 0.1000	
50	R20	-	1	ERJ-3EKF1872;CRCW060318K7FK	PANASONIC:VISHAY	18.7 K	RES; SMT (0603); 18.7K; 1\%; +/-100PPM/DEGC; 0.1000	
51	R24	-	1	CRCW06033K74FK	VISHAY DALE	3.74K	RES; SMT (0603); 3.74K; 1\%; +l-100PPM/DEGC; 0.1000	
52	R25	-	1	ERJ-3EKF7502	PANASONIC	75K	RES; SMT (0603); 75K; 1\%; +/-100PPMIDEGC; 0.1000W	
53	R26	-	1	CRCW060310R0FK; MCR03EZPFX10R0;ERJ-3EKF10R0	VISHAY DALE;ROHM	10	RES; SMT (0603); $10 ; 1 \%$; +/-100PPM/DEGC; 0.1000 W	
54	R27	-	1	WSL1206R0400F	VISHAY DALE	0.04	RES; SMT (1206); 0.04; 1\%; +/-75PPM/DEGC; 0.2500 W	
55	R28	-	1	ERJ-3EKF7151	PANASONIC	7.15 K	RES; SMT (0603); 7.15K; 1\%; +/-100PPMIDEGC; 0.1000	
56	R30, R54	-	2	ERJ-3EKF3481	PANASONIC	3.48 K	RES; SMT (0603); 3.48K; 1\%; +/-100PPM/DEGC; 0.1000	
57	R32	-	1	CRCW060339KOFK	VISHAY DALE	39K	RES; SMT (0603); 39K; 1\%; +/-100PPM/DEGC; 0.1000W	
58	R35	-	1	CRCW06038K06FK;ERJ-3EKF8061	VISHAY DALE;PANASONIC	8.06 K	RES; SMT (0603); 8.06K; 1\%; +/-100PPM/DEGC; 0.1000	
59	R39	-	1	CRCW060376K8FK	VISHAY DALE	76.8K	RES; SMT (0603); 76.8K; 1\%; +/-100PPM/DEGC; 0.1000W	
60	R40	-	1	CRCW06033012FK	VISHAY DALE	30.1 K	RES; SMT (0603); 30.1 $\mathrm{K} ; 1$ 1\%; +/-100PPM/DEGC; 0.1000 W	
61	R41	-	1	MCR03EZPFX2002:ERJ-3EKF2002; CR0603-FX-2002ELF:CRCW060320K0FK	ROHM:PANASONIC;BOURNS;VIISHAY DALE	20K	RES; SMT (0603); 20K; 1\%; +1-100PPMIDEGC; 0.1000 W	
62	R42, R48, R55	-	3	CHPHT0603K1002FGT	VISHAY SFERNICE	10k	RES; SMT (0603); 10K; 1%; +/-100PPMIDEGC; 0.0125W	
63	R44	-	1	CRCW060349K9FK;ERJ-3EKF4992	VISHAY DALE;PANASONIC	49.9K	RES; SMT (0603); 49.9K; 1\%; +/-100PPM/DEGC; 0.1000W	
64	R50	-	1	CRCW060347KOFK	VISHAY DALE	47K	RES; SMT (0603); 47K; 1%; +1-100PPM/DEGC; 0.1000W	
65	R51	-	1	RN73C1J10RBTG; 1614350-2	TE CONNECTIVITY;TE CONNECTVITY	10	RES; SMT (0603); $10 ; 0.10 \%$; +/-10PPM/DEGC; 0.0630 W	
66	R52	-	1	CRCW060313K3FK:ERJ-3EKF1332	VISHAY DALE;PANASONIC	13.3K	RES; SMT (0603); 13.3K; 1\%; +/-100PPMIDEGC; 0.1000	
67	R56	-	1	ERJ-3EKF3652;CRCW060336K5FK	PANASONIC;VISHAY	36.5K	RES; SMT (0603); $36.5 \mathrm{~K} ; 1 \%$; +/-100PPM/DEGC; 0.1000 W	
68	R57	-	1	CRCW060321K5FK	VISHAY DALE	21.5K	RES; SMT (0603); $21.5 \mathrm{~K} ; 1 \%$; +/-100PPM/DEGK; 0.1000W	
69	R58	-	1	ERJ-3EKF1402;CRCW060314K0FK	PANASONIC:VISHAY	14 K	RES; SMT (0603); 14K; 1\%; +/-100PPM/DEGC; 0.1000W	
70	R59	-	1	CRCW06038K20FK	VISHAY DALE	8.2 K	RES; SMT (0603); 8.2K; 1\%; +/-100PPM/DEGC; 0.1000W	
71	U1	-	1	MAX20446CATGAN +	MAXIM	MAX20446CATGAV +	EVKIT PART - IC; DRV; AUTOMOTIVE 6-CHANNEL BACKLIGHT DRIVER WITH BOOST/SEPIC CONTROLLER AND HYBRID DIMMING; PACKAGE OUTLINE DRAWING: 21-0139; LAND PATTERN NUMBER: 90-0022; PACKAGE CODE: T2444+4C; TQFN24-EP	
72	PCB	-	1	MAX20446C	MAXIM	PCB	PCB:MAX20446C	
73	C1, C19, C3	DNP	0	N/A	N/A	OPEN	CAPACITOR; SMT (0603); OPEN; FORMFACTOR	
74	C7, C8	DNP	0	C1210C475K5RAC; GRM32ER71H475KA88; CNC6P1X7R1H475K250AE	KEMET:MURATA:TDK	4.7UF	CAP; SMT (1210); 4.7UF; 10\%; 50V; X7R; CERAMIC	
75	C15	DNP	0	UMK107BJ105KA; C1608xR110KOBAB; CL10A105KB8NNN; GRM188R61H105KA CL10A105KB8NNN: GRM188R61H105KAAL	TAIYO YUDEN:TDK;SAMSUNG;MURATA	1 UF	CAP; SMT (0603); 1UF; 10\%; 50V; X5R; CERAMIC	
76	R1, R33, R31	DNP	0	N/A	N/A	OPEN	RESISTOR; 0603; OPEN; FORMFACTOR	
77	C29, C31	DNP	0	N/A	N/A	OPEN	EVKIT USE ONLY:DUAL PACKAGE OUTLINE 0603 AND 0805 NON-POLAR CAPACITOR	
TOTAL			156					

MAX20446C EV Kit Schematics

MAX20446C EV Kit Schematics (continued)

MAX20446C EV Kit PCB Layout Diagrams

MAX20446C EV Kit Component Placement Guide—Top Silkscreen

MAX20446C EV Kit PCB Layout—Internal Layer 2

MAX20446C EV Kit PCB Layout—Top Layer

MAX20446C EV Kit PCB Layout Diagrams (continued)

MAX20446C EV Kit PCB Layout—Internal Layer 3

MAX20446C EV Kit PCB Layout—Bottom Layer

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$2 / 21$	Initial release	-

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MIC2870YFT EV TDGL014 ISL97682IRTZEVALZ EA6358NH TPS92315EVM-516 STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX20090BEVKIT\# PIM498 AP8800EV1 ZXLD1370/1EV4 TLC59116EVM-390 1216.1013 TPS61176EVM-566 TPS92001EVM-628 $\underline{1270} \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002}$ $\underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500} \underline{1293.1100} \underline{1282.1400} \underline{1282.1100} \underline{1293.1200} \underline{1282.1200} \underline{1293.1000}$ $\underline{1282.6000} \underline{1296.2012}$ MIKROE-2520 $\frac{1721}{1762}$ PIR-GEVB TPS61161EVM-243 TLC6C5712EVM TLC59116FEVM-571 STEVALILL056V1 ADM00767 STEVAL-ILL080V1

[^0]: *Default position.

[^1]: *Default position.

