Four- to Seven-Input Automotive Power-System Monitor Family

General Description

The MAX20480 is a complete ASIL-compliant SoC powersystem monitor with up to seven voltage monitor inputs. Each input has programmable OV/UV thresholds of between 2.5% and 10% with \pm 1% accuracy. Two of the inputs have a separate remote ground-sense input and support DVS through the integrated I²C interface.

The MAX20480 contains a programmable flexible power sequence recorder (FPSR). This recorder stores power-up and power-down timestamps separately, and supports on/ off and sleep/standby power sequences. The MAX20480 also contains a programmable challenge/response watch-dog, which is accessible through the I²C interface, along with a configurable $\overrightarrow{\text{RESET}}$ output.

The MAX20480 improves reliability while significantly reducing system size and component count, compared to separate ICs or discrete components. The MAX20480 meets ASIL-D reliability when used with a supervisory controller. The device is designed to operate over the ambient temperature range of -40°C to +125°C.

Applications

- ADAS
- Autonomous Driving Processing Systems
- Remote Sensor Modules
- Power System Supervision and MCU/SoC Monitoring

Benefits and Features

- Small Solution
 - 2.35V to 5.50V Operating Supply Voltage
 - Only One External Component Required
 - 150µA Operating Current
 - 8µA Power-Down Mode
- High Precision
 - Selectable 102.5% to 110% OV Monitors
 - Selectable 97.5% to 90% UV Monitors
 - ±1% Accuracy
 - 0.5% Step Size
 - ASIL-D Compliance
- Highly Integrated
 - Five Fixed-Voltage Monitoring Inputs
 - Two Differential DVS Tracking-Voltage Monitoring Inputs with Remote-Ground Sense
 - Power-Sequencing Recording
 - Simple or Challenge/Response Windowed Watchdog
 - · Fault Recording
 - CRC on I²C Interface
 - Programmable I²C Address
 - OTP Configuration with Error-Correcting Code and Reload Functionality
 - Programmable RESET Pin
- 16-Pin Side-Wettable TQFN with Exposed Pad (3mm x 3mm)
- AEC-Q100 Qualified
- 40°C to +125°C Operating Temperature

Ordering Information appears at end of data sheet.

Four- to Seven-Input Automotive Power-System Monitor Family

Simplified Block Diagram

Four- to Seven-Input Automotive Power-System Monitor Family

Absolute Maximum Ratings

V _{DD} to GND0.3V to +6V	ADDR to GND0.3V to V _{DD} + 0.3V
EN0, EN1 to GND0.3V to +6V	Continuous Power Dissipation (T _A = +70°C)
IN1-IN5 to GND0.3V to +6V	16-TQFN (derate 20.8mW/°C > 70°C)1666.7mW
INP6-INP7 to GND0.3V to +6V	Operating Temperature40°C to +125°C
INM to GND0.3V to 0.3V	Junction Temperature+150°C
RESET to GND0.3V to +6V	Storage Temperature Range65°C to +150°C
SDA, SCL to GND0.3V to +6V	Lead Temperature Range+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

16-TQFN-EP

Package Code	T1633Y+5
Outline Number	<u>21-100150</u>
Land Pattern Number	<u>90-100064</u>
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction-to-Ambient (0 _{JA})	44.5°C/W
Junction-to-Case Thermal Resistance (θ_{JC})	5.9°C/W

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/</u> <u>thermal-tutorial</u>.

Electrical Characteristics

(V_{DD} = 3.3V, T_A = T_J = -40°C to +125°C, unless otherwise noted, Typical values are at T_A = 25°C under normal conditions unless otherwise noted.,)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Denge)/	Fully operational	2.35		5.5	V
Supply Voltage Range	V _{DD}	RESET output guaranteed low	1.2			v
Supply Current	h	EN0 = high, no change of state on EN1 and not in sequence monitoring mode		150	210	
Supply Current	IVDD	EN0 = low and power-down sequence complete. All IN_ comparators turned off.		8	16	μΑ
UVLO	Manag	V _{DD} Voltage Rising	1.85	2.05	2.25	V
UVLO	V _{UVLO}	V _{DD} Voltage Falling	1.75	1.95	2.15	v
Internal Oscillator	fosc		1.15	1.28	1.40	MHz
IN1-IN4						
Input Current	I _{IN_}	V _{IN} _ ≤ 3.3V		1	1.5	μA
Set-Point Range			0.5		3.6875	V
Set-Point Resolution		12.5mV/step		8		Bits

Four- to Seven-Input Automotive Power-System Monitor Family

Electrical Characteristics (continued)

 $(V_{DD} = 3.3V, T_A = T_J = -40^{\circ}C$ to +125°C, unless otherwise noted, Typical values are at $T_A = 25^{\circ}C$ under normal conditions unless otherwise noted.,)

PARAMETER	SYMBOL CONDITIONS		MIN	TYP	MAX	UNITS
OV/UV Threshold Range			2.5		10	%
OV/UV Threshold Resolution		0.5%/step		4		Bits
OV/UV Threshold		(IN1 through IN4) ≥ 1.0V. Factory- trimmed thresholds.	-1		1	%
Accuracy		(IN1 through IN4) < 1.0V. Factory- trimmed thresholds.	-10		10	mV
		(IN1 through IN4) voltage falling	0.23	0.25	0.27	
OFF Threshold	V _{OFF}	(IN1 through IN4) voltage rising	0.28	0.3	0.32	V
UV Comparator Filter Time	t _{UV}	2% below threshold		5		μs
OV Comparator Filter Time	t _{OV}	2% above threshold		5		μs
IN5						
Input Current	I _{IN5}	V _{IN5} ≤ 5V		1.5	2.3	μA
Set-Point Range			0.5		5.5	V
Set-Point Resolution		20mV/step		8		Bits
OV/UV Threshold Resolution		0.5%/step		4		Bits
OV/UV Threshold		IN5 \geq 1.0V. Factory-trimmed thresholds.	-1		1	%
Accuracy		IN5 < 1.0V. Factory-trimmed thresholds.	-10		10	mV
OFF Threshold	V _{OFF}	IN5 voltage falling	0.23	0.25	0.27	v
OIT THESHOL	VOFF	IN5 voltage rising	0.28	0.3	0.32	v
UV Comparator Filter Time	t _{UV}	2% below threshold		5		μs
OV Comparator Filter Time	tov	2% above threshold		5		μs
OV/UV Threshold Range			2.5		10	%
IN6P-IN7P, INM						
INM Range	V _{INM}		-0.1		0.1	V
Input Current	I _{IN_}	V _{IN} _≤ 1.8V		1.4	2.2	μA
Set-Point Range		Relative to INM	0.5		1.775	V
Set-Point Resolution		5mV/step		8		Bits
Sot Doint Accuracy		(IN6P, IN7P) ≥ 1.0V	-1		1	%
Set-Point Accuracy		(IN6P, IN7P) < 1.0V	-10		10	mV

Four- to Seven-Input Automotive Power-System Monitor Family

Electrical Characteristics (continued)

 $(V_{DD} = 3.3V, T_A = T_J = -40^{\circ}C$ to +125°C, unless otherwise noted, Typical values are at $T_A = 25^{\circ}C$ under normal conditions unless otherwise noted.,)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
	N	(IN6P, IN7P) voltage falling, relative to INM	0.23	0.25	0.27	v
OFF Threshold	V _{OFF}	(IN6P, IN7P) voltage rising, relative to INM	0.28	0.3	0.32	
UV Comparator Filter Time	t _{UV}	2% below threshold		5		μs
OV Comparator Filter Time	t _{OV}	2% above threshold		5		μs
ADDR, EN0, EN1 INPUTS	6					
Input High Level	VIH	Input Voltage Rising	1.3			V
Input Low Level	VIL	Input Voltage Falling			0.4	V
Hysteresis				0.1		V
EN0, EN1 Pulldown Resistance	R _{PD}	V _{EN0} = V _{EN1} = 3.3V	1.1	2	3	MΩ
EN0, EN1 Spike Suppression				60		ns
ADDR Input Leakage	I _{ADDR-LKG}	$V_{ADDR} = V_{DD} = 3.3V$			1	μA
DIGITAL OUTPUT (RESE	T)					
Digital Output Low Level	V _{RL}	V _{DD} = 2.35V, I _{SINK} = 2mA			0.2	V
Digital Output Leakage	I _{R-LKG}	RESET = 5.0V			1	μA
		RHLD[1:0] = 00		6		μs
Active Timesut Deried	thold	RHLD[1:0] = 01	7.2	8	8.8	
Active Timeout Period		RHLD[1:0] = 10	14.4	16	17.6	ms
		RHLD[1:0] = 11	28.8	32	35.2	
I ² C INTERFACE						•
Input High Level	VIH	Input Voltage Rising	1.3			V
Input Low Level	VIL	Input Voltage Falling			0.4	V
Output Low	V _{OL}	I _{SINK} = 4mA			0.3	V
Input Leakage	I _{LKG}	$V_{SCL} = V_{SDA} = 3.3V$			1	μA
Clock Frequency	f _{SCL}				1.1	MHz
Setup Time (Repeated) START	^t SU:STA		260			ns
Hold Time (Repeated) START	^t HD:STA		260			ns
SCL Low Time	t _{LOW}		350			ns
SCL High Time	tHIGH		260			ns
Data Setup Time	t _{SU:DAT}		150			ns
Data Hold Time	t _{HD:DAT}		30			ns
Setup Time for STOP Condition	tsu:sto		260			ns

Four- to Seven-Input Automotive Power-System Monitor Family

Electrical Characteristics (continued)

 $(V_{DD} = 3.3V, T_A = T_J = -40^{\circ}C$ to +125°C, unless otherwise noted, Typical values are at $T_A = 25^{\circ}C$ under normal conditions unless otherwise noted.,)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Spike Suppression				50		ns

Note 1: All units are 100% production tested at +25°C. All temperature limits are guaranteed by design.

Four- to Seven-Input Automotive Power-System Monitor Family

Typical Operating Characteristics

 $(V_{DD} = 3.3V, T_A = +25^{\circ}C)$

Four- to Seven-Input Automotive Power-System Monitor Family

Typical Operating Characteristics (continued)

 $(V_{DD} = 3.3V, T_A = +25^{\circ}C)$

Pin Configurations

MAX20480A

Four- to Seven-Input Automotive Power-System Monitor Family

MAX20480B

MAX20480C

Four- to Seven-Input Automotive Power-System Monitor Family

MAX20480D

Pin Description

	Р	IN			FUNCTION
MAX20480A	MAX20480B	MAX20480C	MAX20480D	NAME	FUNCTION
1	1	1	1	IN1	Input Voltage Monitor 1.
2	2	2	2	IN2	Input Voltage Monitor 2.
3	3	3	3	IN3	Input Voltage Monitor 3.
4	4	4	4	IN4	Input Voltage Monitor 4.
5	5	5	5	EN0	Enable Input 0. Raise/lower the EN0 input to indicate a transition from OFF \rightarrow ON/ON \rightarrow OFF, respectively, in the system.
6	6	6	6	GND	Ground. Connect all grounds together at the EP.
7	7	7	7	EN1	Enable Input 1. Raise/lower the EN1 input to indicate a transition from SLEEP \rightarrow ON/ON \rightarrow SLEEP, respectively, in the system.
8	8	8	8	V _{DD}	Input Supply Voltage. Connect a 0.1μ F capacitor between V _{DD} and GND and place close to the IC.
9	-	-	-	GND	Ground. Connect all grounds together at the EP.
-	9	9	9	IN5	Input Voltage Monitor 5.
10	10	-	-	GND	Ground. Connect all grounds together at the EP.
-	-	10	10	IN6P	Differential Input Voltage Monitor 6.
11	11	-	-	GND	Ground. Connect all grounds together at the EP.
-	-	11	11	INM	Common negative input for voltage monitors IN6P and IN7P.
12	12	12	-	GND	Ground. Connect all grounds together at the EP.

Four- to Seven-Input Automotive Power-System Monitor Family

Pin Description (continued)

	P	IN		NAME	FUNCTION
MAX20480A	MAX20480B	MAX20480C	MAX20480D	NAME	FUNCTION
13	13	13	13	RESET	RESET Output. Open-drain output that signals a status change. Can be mapped to any combination of input monitors to indicate they are within nominal operating range.Connect to logic supply with a pullup resistor.
-	-	-	12	IN7P	Differential Input Voltage Monitor 7.
14	14	14	14	ADDR	I^2C Address Select. Connect to GND or $V_{DD},$ with or without a 100k Ω pullup resistor, to set the I^2C address. See Table 1.
15	15	15	15	SDA	I ² C Data I/O.
16	16	16	16	SCL	I ² C Clock Input.
-	-	-	-	EP	Exposed Pad. Connect to ground. Does not serve as a substitute for a proper GND pin connection.

Four- to Seven-Input Automotive Power-System Monitor Family

Functional Diagram

Four- to Seven-Input Automotive Power-System Monitor Family

Detailed Description

The MAX20480 is a complete ASIL-D compliant SoC power-system monitor. It has three main subsystems with which to monitor a given application system: a 7-channel voltage monitor, a flexible power sequence recorder (FPSR), and a challenge/response windowed watchdog. It also includes an I²C interface to communicate with a supervisory controller for monitoring and diagnosis of fault conditions. To meet ASIL-D reliability specifications, there are numerous checks and redundancies in the system to maintain a high performance level, as well as configuration and diagnostics available over the I²C interface for a supervisory controller to adjust and monitor.

I²C Interface

The MAX20480 features an I^2 C, 2-wire serial interface consisting of a serial-data line (SDA) and a serial-clock line (SCL). SDA and SCL facilitate communication between the MAX20480 and the master at clock rates up to 1.1MHz. The master, typically a microcontroller, generates SCL and initiates data transfer on the bus. <u>Figure 1</u> shows the two-wire interface timing diagram.

Figure 1. I²C Timing Diagram

A master device communicates to the MAX20480 by transmitting the proper address followed by the data word. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse.

The MAX20480 SDA line operates as both an input and an open-drain output. A pullup resistor greater than 500Ω is required on the SDA bus. The MAX20480 SCL line operates as an input only. A pullup resistor greater than 500Ω is required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. The SCL and SDA inputs suppress noise spikes to assure proper device operation, even on a noisy bus.

Bit Transfer

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals (see the <u>STOP and START Conditions</u> section). SDA and SCL idle high when the I²C bus is not busy.

STOP and START Conditions

A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 2). A START (S) condition from the master signals the beginning of a transmission to the MAX20480. The master terminates transmission

and frees the bus by issuing a STOP (P) condition. The bus remains active if a REPEATED START (Sr) condition is generated instead of a STOP condition.

Early STOP Condition

The MAX20480 recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition.

Clock Stretching

In general, the clock signal generation for the I²C bus is the responsibility of the master device. The I²C specification allows slow slave devices to alter the clock signal by holding down the clock line, a process that is typically called clock stretching. The MAX20480 does not use any form of clock stretching to hold down the clock line.

Figure 2. START, STOP, and REPEATED START Conditions

I²C General Call Address

The MAX20480 does not implement the I²C specification's general call address. If the MAX20480 sees the general call address (0b0000_0000), it will not issue an acknowledge.

Packet Error Checking (PEC)

In order to increase fault coverage on the I^2C interface, an optional PEC byte is supported. This follows the SMBus 3.0 implementation, which has a CRC-8 polynomial of $x^8 + x^2 + x + 1$. If the PEC byte is enabled and a supervisor system attempts to read more than 2 bytes (one data and one PEC) from the IC in a single communication packet, the IC will return 0xFF for the remaining bytes read. If a master device transmits a byte and an incorrect PEC, the IC replies with a NACK and discards the attempted write.

Slave Address

The I²C address is factory programmable from 0b0000000 to 0b1111011. The address is defined as the 7 most significant bits (MSbs) followed by the R/W bit. Set the R/W bit to 1 to configure the device to read mode. Set the R/W bit to 0 to configure the device to write mode. The address is the first byte of information sent to the device after the START condition.

Once the device is enabled, the I²C slave address is set by the ADDR pin and internal OTP settings. The address is defined as the 7 MSbs followed by the R/W bit. Connect the ADDR pin to GND or VSUP, with or without a 100k Ω resistor in series, to set the last 2 bits of the I²C address. The first 4 bits of the I²C address are factory-configurable (noted by * in <u>Table 1</u>).

ADDR PIN A6* A5* A4* A3* A2 A1 A0 ADDRESS Short to GND 0 1 1 1 0 0 0 0x38 100kΩ Pulldown to GND 0 1 1 1 0 0 1 0x39 100kΩ Pullup to VDD 0 1 1 1 0 1 0 0x3A 0 1 Short to VDD 1 1 0 1 1 0x3B

Table 1. I²C Slave Addresses

Four- to Seven-Input Automotive Power-System Monitor Family

Acknowledge

The acknowledge bit (ACK) is a clocked ninth bit that the device uses to handshake receipt of each byte of data (Figure <u>3</u>). The device pulls down SDA during the master-generated ninth clock pulse. The SDA line must remain stable and low during the high period of the acknowledge clock pulse. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master can reattempt communication. Transmitting an incorrect PEC byte to the MAX20480 (when PEC is enabled) will also result in a NACK from the IC.

Figure 3. Acknowledge Condition

Write-Data Format

A write to the device includes transmission of a START condition, the slave address with the R/W bit set to 0, 1 byte of data to register address, 1 to 8 bytes of data to write to registers, and a STOP condition. <u>Figure 4</u> illustrates the proper format for one frame. If multiple bytes are transmitted, they are written to sequential registers starting at the register address transmitted. If the register address for the write reaches the end of the valid address space, the target register pointer will stay at the last valid register. If the write starts out-of-bounds, then all the bytes written will be discarded and the IC will return a NACK for each byte transmitted.

Read-Data Format

A read from the device includes the following:

- Transmission of a START condition
- Slave address with the R/W bit set to 0
- 1 byte of data to register address
- Restart condition
- Slave address with R/W bit set to 1
- 1 to 8 bytes written by the IC
- STOP condition

Figure 4 illustrates the proper format for one frame. The master device must acknowledge each byte received, and provide a NACK at the last byte read.

Four- to Seven-Input Automotive Power-System Monitor Family

Figure 4. Data Format of I²C Interface

Voltage Monitor

The MAX20480 IC has up to seven voltage-monitor channels available for system power rails. Five of the monitors have single-ended inputs. For these channels, a nominal voltage is set first and OV/UV thresholds (as a percentage of that nominal voltage setting) are set second. The remaining two monitors have differential inputs and share a remote ground-sense pin (INM). Unlike the other monitors with a nominal voltage + %OV/UV configuration, the two differential inputs have completely independent OV and UV comparators; each comparator can be configured with a separate reference voltage.

Monitor channels IN1 through IN5 have the single-ended configuration, with OV/UV thresholds independently configurable from $\pm 2.5\%$ to $\pm 10\%$ in 0.5% steps. IN1 through IN4 have a nominal voltage set-point range of 0.50V to 3.6875V, while IN5 has an extended range of 0.50V to 5.50V. IN6P and IN7P have the differential configuration. Their OV and UV set points can range from 0.50V to 1.775V; these measurements are with respect to the voltage difference between the INxP supply and INM remote ground-sense pins. Every monitor channel also has an OFF comparator that asserts when the monitor input voltage falls below 0.25V (typ).

Modern SoCs and processors can require a large amount of supply current, which may cause small offsets in ground voltages (even when using multiple large ground planes). To account for this when using the differential channels, route the INM pin separately from ground and connect to a point near where the IN6P and IN7P lines are connected. If this feature is not necessary, the INM pin can be grounded directly at the IC.

The comparators on the voltage monitors are designed to respond quickly for applications that require rapid response to voltage fluctuations. If a slower response is desired, an RC filter can be added between the IC pin and the monitored voltage rail. If an RC filter is implemented, the value of the resistor should be kept low to avoid artificial voltage shift at the IC's pins. Because each IN_ pin draws a few microamperes of current, the filter resistor value should be $1k\Omega$ or less.

DVS Operation

Because IN6P and IN7P have independent OV and UV monitors, it is possible to utilize the channels to monitor SoC power rails that implement dynamic voltage scaling (DVS) in response to processing demand. Prior to a DVS event, one of the OV/UV comparator voltage targets can be moved in the direction of the ramp, and then the other can be moved once the ramp has finished. This allows the system to maintain continuous voltage monitoring despite the change in supply voltage.

The other inputs (IN1 through IN5) can also have their target voltage altered, but are not meant to be adjusted while

Four- to Seven-Input Automotive Power-System Monitor Family

active and are therefore not well-suited to DVS operations. The recommended procedure for changing the target voltage on one of the single-ended channels (IN1 through IN5) while the system is operational is as follows:

- 1. Disable the channel.
- 2. Turn off the RESET mapping, if active.
- 3. Change the target voltage and OV/UV thresholds as desired.
- 4. Re-enable the channel.
- 5. Read the OV/UV/OFF registers once to clear any spurious faults.
- 6. Re-enable the RESET mapping.

DVS Command Sequence (Low to High):

- 1. Set VINO (OV set point) to high OV threshold.
- 2. Send DVS command to power supply.
- 3. Delay as needed to allow supply to reach the target.
- 4. Set VINU (UV set point) to the high UV threshold.

DVS Command Sequence (High to Low):

- 1. Set VINU (UV set point) to the low UV threshold.
- 2. Send DVS command to power supply.
- 3. Delay as needed to allow supply to reach the target.
- 4. Set VINO (OV set point) to the low OV threshold.

I²C DVS Timing Example (Low to High)

Figure 5. I²C DVS Timing Example (Low-to-High Transition)

Flexible Power Sequence Recorder

The flexible power sequence recorder allows a supervisory controller to validate the power-up and power-down sequencing of all supplies monitored by the IC. The FPSR has an adjustable clock rate (from 25µs/tick to 3200µs/tick) and records 8-bit timestamps (6.375ms to 816ms maximum window length). The FPSR is triggered by level changes on the EN pins. It always responds to EN0 transitions, and can be configured to also respond to EN1 transitions.

Power-up and power-down sequence timestamps are recorded separately. Power-up sequences are triggered by low-tohigh pin transitions, and power-down sequences are triggered by high-to-low transitions. The FPSR has additional bits to communicate when it is running, signal which EN pin triggered the sequencer, and choose whether to assert RESET when done recording a sequence. A power-up timestamp is recorded for an enabled channel when the associated voltage rises above the programmed UV threshold. A power-down timestamp is recorded for an enabled channel when the associated voltage falls below the OFF threshold (0.25V falling, typ.).

Once a sequence is captured, it is retained until a flag bit is manually cleared. If another sequence (of the same type, up or down) is triggered before the flag is cleared, it is not recorded, and a separate flag bit is set to indicate this anomaly. To preserve the OTP-reload functionality (see <u>Applications Information</u>), the FPSR still runs normally even if the associated UVAL or DVAL bit is set, even though new timestamps may not be recorded. The sequencer will run until either the

maximum time is reached, or all enabled voltage monitors have detected that the associated power rails have powered up or down (depending on which type of sequence is being recorded).

Windowed Watchdog and Reset Control

The IC also contains a challenge/response windowed watchdog for external SoC monitoring. The closed and open windows are independently adjustable, as well as the main watchdog clock (which can range from 200µs/tick to 12.8ms/ tick). Because the watchdog is meant to supervise a processor system, it features an extended first-update window. When the IC RESET pin de-asserts, the watchdog window is immediately opened and extended to provide extra time for an SoC to finish any boot sequences before being required to update the watchdog. The specific length of the extended first-update window is also configurable.

The watchdog is refreshed through the I²C interface. When configured as a challenge/response watchdog, there is a keyvalue register that must be read and used to compute the appropriate response. The IC contains a linear-feedback shift register with a polynomial of $x^8 + x^6 + x^5 + x^4 + 1$ (shift bits upwards toward MSb and insert calculated bit as new LSb). The watchdog can also be configured as a simple windowed watchdog. In this case, any value written to the WDKEY register will refresh the watchdog. For additional resilience, there is an option to lock all of the watchdog-related registers except for the key register and the lock bit itself.

The watchdog has several status bits to communicate current status and past faults. Separate flags are provided to indicate an update-too-early fault, a wrong-key fault, and a no-update-received fault. These fields are cleared when read. There is also a signal to indicate when the watchdog window is open to receive updates. The watchdog itself may be configured to assert RESET on every violation, or wait until it encounters two consecutive violations before triggering a fault. The watchdog is inactive while the RESET pin is asserted low (for any fault condition).

Sample C Code For Challenge/Response

```
// feedback polynomial: x^8 + x^6 + x^5 + x^4 + 1
```

```
unsigned char lfsr(unsigned char iKey)
{
unsigned char lfsr = iKey;
unsigned char bit = ((lfsr >> 7) ^ (lfsr >> 5) ^
(lfsr >> 4) ^ (lfsr >> 3)) & 1;
lfsr = (lfsr << 1)| bit;
return lfsr;
}</pre>
```

Watchdog Window Settings

A regular watchdog window consists of two parts: an initial (closed) window during which updates are not allowed, and a second (open) window during which updates are accepted. For a given watchdog clock rate t_{WDCLK} (set according to the WDCDIV register), the two window lengths are as follows:

 $t_{CLO} = t_{WDCLK} \times 8 \times WDCFG1.CLO[3:0]$

 $t_{OPN} = t_{WDCLK} \times 8 \times WDCFG1.OPN[3:0]$

If a refresh is sent to the IC during the closed window, the IC asserts a fault and re-starts the watchdog once RESET de-asserts. When the IC receives a valid refresh, it immediately transitions to a new closed window; it will not finish the existing open window. The first cycle encountered once the watchdog starts (either on power-on reset or once RESET de-asserts) is different from the typical closed/open cycle. It has no closed window, and is longer than a normal cycle. This is to allow for an SoC or MCU to run through a boot sequence that may take longer than the usual watchdog cycle. The length of the first update window is an odd multiple of the sum of the normal closed and open windows:

 $t_{1\text{UD}} = (t_{\text{OPN}} + t_{\text{CLO}}) \times (1 + 2 \times \text{WDCFG2.1UD[2:0]})$

Four- to Seven-Input Automotive Power-System Monitor Family

RESET Output

The device features an open-drain interrupt/reset output that asserts low when any mapped fault conditions occur. RESET remains asserted for a fixed timeout period after all triggering fault conditions are removed. The fixed timeout period can be set to 6µs, 8ms, 16ms, or 32ms. The RESET pin works as an open-drain output. To obtain a logic signal, place a pullup resistor between the RESET pin and system I/O voltage (10k Ω to 100k Ω recommended for reduced current consumption). The selection of which fault sources are mapped to the pin is fully programmable.

Enable Inputs (EN0/EN1)

The primary purpose of the EN0 and EN1 inputs is to indicate that a power-up or power-down sequence is about to occur. EN0 is normally used to indicate a transition between OFF and ON states, while EN1 is for a transition between ON and SLEEP states. This refers to system states, not device states. The device uses EN0 to manage its own power state to maintain the lowest quiescent current possible. With VMPD set to 1 and EN0 low, the device turns off all comparators to reduce quiescent current. With EN1 low, the OFF comparators on input channels that are enabled are left enabled so that the device can continue to monitor active inputs.

Comparator Power States

The voltage-monitor comparators can be individually turned on or off based on the current state of EN0 and the device settings/state. <u>Table 2</u> details the conditions for the on/off state of the voltage monitor comparators.

Figure 6. state diagram

Four- to Seven-Input Automotive Power-System Monitor Family

Table 2. Comparator Power States

COMPARATORS	COMMENTS
ov[x]/uv[x]	OV/UV comparators for each channel will be powered on/off as needed to maintain the lowest possible quiescent current: OV[x]/UV[x] Enabled: VM[x] == 1 && ((VMPD == 0 && STATOFF[x] == 0) (VMPD == 1 && ENO == L && SRR == 1))
OFF[X]	OFF comparators for each channel can be powered off when EN0 is low: OFF[x] Enabled: VM[x] == 1 && (VMPD == 0 EN0 == H SRR == 1)

Four- to Seven-Input Automotive Power-System Monitor Family

Register Map

Top Level ADDRESS NAME MSB LSB **GENERAL CONFIGURATION** 0x00 ID[7:0] REV[3:0] DEV[3:0] 0x01 CONFIG1[7:0] _ _ _ _ RR MBST PECE 0x02 CLKF PAR RSTF EN1 BSTO* BSTU* CONFIG2[7:0] RST EN0 **VOLTAGE MONITOR SYSTEM** 0x03 VMON[7:0] VMPD VM7 VM6 VM5 VM4 VM3 VM2 VM1 0x04 RSTMAP[7:0] PARM IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN7 IN1 0x05 IN6 IN4 IN3 IN2 **STATOV**[7:0] _ IN5 IN1 0x06 STATUV[7:0] IN7 IN6 IN5 IN4 IN3 IN2 _ 0x07 STATOFF[7:0] IN7 IN6 IN5 IN4 IN3 IN2 IN1 _ 0x08 VIN1[7:0] D[7:0] 0x09 VIN2[7:0] D[7:0] 0x0A VIN3[7:0] D[7:0] 0x0B D[7:0] VIN4[7:0] 0x0C D[7:0] VIN5[7:0] 0x0D D[7:0] VINO6[7:0] 0x0E VINU6[7:0] D[7:0] 0x0F D[7:0] VINO7[7:0] 0x10 VINU7[7:0] D[7:0] 0x11 OVUV1[7:0] OV[3:0] UV[3:0] 0x12 OV[3:0] UV[3:0] OVUV2[7:0] 0x13 OV[3:0] UV[3:0] OVUV3[7:0] 0x14 OV[3:0] UV[3:0] OVUV4[7:0] 0x15 OVUV5[7:0] OV[3:0] UV[3:0] FLEXIBLE POWER SEQUENCE RECORDER NOTRD UEN FPSE SRR 0x16 FPSSTAT1[7:0] DEN 0x17 UVAL DVAL UVALM DVALM FPSEN1 FDIV[2:0] FPSCFG1[7:0] 0x18 D[7:0] UTIME1[7:0] D[7:0] 0x19 UTIME2[7:0] 0x1A D[7:0] UTIME3[7:0] D[7:0] 0x1B UTIME4[7:0] 0x1C UTIME5[7:0] D[7:0] 0x1D D[7:0] UTIME6[7:0] 0x1E D[7:0] UTIME7[7:0] 0x1F DTIME1[7:0] D[7:0] 0x20 DTIME2[7:0] D[7:0]

D[7:0]

DTIME3[7:0]

0x21

Four- to Seven-Input Automotive Power-System Monitor Family

ADDRESS	NAME	MSB							LSB			
0x22	DTIME4[7:0]	D[7:0]										
0x23	DTIME5[7:0]		D[7:0]									
0x24	DTIME6[7:0]				D[7	7:0]						
0x25	DTIME7[7:0]				D[7	7:0]						
WATCHDO	G AND RESET CONTROL											
0x26	WDSTAT[7:0]	_	-	-	-	OPEN	LFSR	WDUV	WDEXP			
0x27	WDCDIV[7:0]	-	SWW			WDI	/[5:0]					
0x28	WDCFG1[7:0]		CLO	[3:0]			OPN	I [3:0]				
0x29	WDCFG2[7:0]	-	-	_	-	WDEN		1UD[2:0]				
0x2A	WDKEY[7:0]				KEY	[7:0]						
0x2B	WDLOCK[7:0]	_	-	– – – – – – LOCK								
0x2C	RSTCTRL[7:0]	– – – – MR1 RHLD[1:0]										
0x2D	<u>CID[7:0]</u>				CID	[7:0]						

Register Details

<u>ID (0x00)</u>

Silicon Identification

BIT	7	6	5	4	3 2 1					
Field		REV	[3:0]			DEV	/[3:0]	<u> </u>		
Reset		0>	(3			0:	x0			
Access Type		Read	Only		Read Only					
BITFIE	LD	BITS			DE	SCRIPTION				
REV		7:4	Revis	Revision						
DEV		3:0	Devid	Device ID						

CONFIG1 (0x01)

Configuration Register 1

Conngaration	- 5			1 1					
BIT	7	6	5	4	4 3		2	1	0
Field	-	-	-	-		-	RR	MBST	PECE
Reset	_	-	-	_		_	OTP	OTP	OTP
Access Type	_	-	-			Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
RR	2	Reload Defa	ult OTP Config	guration		recordin 0b1: Als	load when ENC g finishes o reload when og violation		
MBST	1	When set, a	Test Mapping. ny comparator ESET pin to be	that fails BIST asserted.	will	mapped	ST for OV/UV/C to RESET pin ST for OV/UV/C pin	·	

Four- to Seven-Input Automotive Power-System Monitor Family

BITFIELD	BITS	DESCRIPTION	DECODE
PECE	0	Packet Error Checking Enable	0b0: PEC Disabled 0b1: PEC Enabled

CONFIG2 (0x02)

Configuration Register 2

*The BIST is initiated once V_{DD} crosses the ULVO rising threshold, and takes approximately 60µs (typ), 72.2µs (max) to complete by setting bits [1:0] in the CONFIG2 register.

BIT	7	6	5	4		3	2	1	0	
Field	CLKF	PAR	RSTF	RST		EN1	EN0	BSTO*	BSTU*	
Reset										
Access Type	Read Only	Read Only	Read Only	Read Only	Re	ad Only Read Only Rea		Read Only	Read Only	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
CLKF	7	Internal diag	Internal Oscillator Fault. Internal diagnostics will flag clock-stuck and "frequency-too-low" conditions. (bb0: Internal oscillator running properly 0b1: Internal oscillator halted or below approximately 100kHz							
PAR	6	Parity Checl	k Fault				register faults least one R/W		led a parity	
RSTF	5	condition is cause the pi conditions, t	I flag asserts w detected by the in RESET to as	thenever any fate IC that would ssert. Under no ays be the inverted RESET pin.	rmal	0b0: No fault condition detected. RESET pin should be high. 0b1: Fault condition detected. RESET pin sho be low.				
RST	4	The actual r is indicated	RESET Output Status. The actual read-back state of the RESET pin is indicated here. This allows detection of open or shorted pin faults by a supervisor. 0b0: RESET is low							
EN1	3	indicated he	ead-back state	e of the EN1 pir detection of or upervisor.	is ben		l1 is low l1 is high			
EN0	2	The actual r indicated he	EN0 Input Status. The actual read-back state of the EN0 pin is indicated here. This allows detection of open or shorted pin faults by a supervisor. 0b0: EN0 is low							
BSTO*	1			arators verify t	verify that 0b0: BISTs for OV comparators passed successfully 0b1: One or more of the OV comparators fa BIST					
BSTU*	0			arators verify th	nat	0b0: BISTs for UV and OFF comparators pa				

VMON (0x03)

Voltage Monitor Enable

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4		3	2	1	0	
Field	VMPD	VM7	VM6	VM5		VM4	VM3	VM2	VM1	
Reset	OTP	OTP	OTP	OTP		OTP	OTP	OTP	OTP	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Wri	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
VMPD	7	When set ar down seque comparators power const	umption. All con edge of EN0. S	and the power-		0b0: All OFF comparators are enabled at all tir OV/UV comparators are enabled as needed 0b1: All comparators power down with EN0 lov and power-down sequence recording finished.				
VM7	6	Voltage Mor When set, th enabled.		V/UV monitors	are	0b0: OV/UV monitors disabled 0b1: OV/UV monitors enabled				
VM6	5		Voltage Monitor Enable. When set, the channel's OV/UV monitors are enabled.				0b0: OV/UV monitors disabled 0b1: OV/UV monitors enabled			
VM5	4	Voltage Mor When set, th enabled.		V/UV monitors	are	0b0: OV/UV monitors disabled 0b1: OV/UV monitors enabled				
VM4	3	Voltage Mor When set, th enabled.		V/UV monitors	are		//UV monitors c //UV monitors e			
VM3	2		Voltage Monitor Enable. When set, the channel's OV/UV monitors are				//UV monitors c //UV monitors e			
VM2	1	Voltage Monitor Enable. When set, the channel's OV/UV monitors are enabled. 0b0: OV/UV monitors disabled 0b1: OV/UV monitors enabled								
VM1	0		Voltage Monitor Enable. When set, the channel's OV/UV monitors are 0b1: OV/UV monitors enabled							

RSTMAP (0x4)

Interrupt Mapping

BIT	7	6	5	4		3	2	1	0		
Field	PARM	IN7	IN6	IN5	IN4		IN3	IN2	IN1		
Reset	OTP	OTP	OTP	OTP	OTP		OTP	OTP	OTP		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPT	ION			D	ECODE			
PARM	7	Defines whe	Parity RESET Mapping. Defines whether a parity check failure asserts the RESET pin.				rity faults are no y parity fault ca t				

Four- to Seven-Input Automotive Power-System Monitor Family

BITFIELD	BITS	DESCRIPTION	DECODE
IN7	6	RESET Mapping.Defines whether OV/UV assertions cause theRESET pin to trigger.	0b0: OV/UV faults are not mapped to the RESET pin 0b1: OV/UV faults are mapped to the RESET pin
IN6	5	RESET Mapping.Defines whether OV/UV assertions cause theRESET pin to trigger.	0b0: OV/UV faults are not mapped to the RESET pin 0b1: OV/UV faults are mapped to the RESET pin
IN5	4	RESET Mapping.Defines whether OV/UV assertions cause theRESET pin to trigger.	0b0: OV/UV faults are not mapped to the RESET pin 0b1: OV/UV faults are mapped to the RESET pin
IN4	3	RESET Mapping.Defines whether OV/UV assertions cause theRESET pin to trigger.	0b0: OV/UV faults are not mapped to the RESET pin 0b1: OV/UV faults are mapped to the RESET pin
IN3	2	RESET Mapping.Defines whether OV/UV assertions cause theRESET pin to trigger.	0b0: OV/UV faults are not mapped to the RESET pin 0b1: OV/UV faults are mapped to the RESET pin
IN2	1	RESET Mapping.Defines whether OV/UV assertions cause theRESET pin to trigger.	0b0: OV/UV faults are not mapped to the RESET pin 0b1: OV/UV faults are mapped to the RESET pin
IN1	0	RESET Mapping.Defines whether OV/UV assertions cause theRESET pin to trigger.	0b0: OV/UV faults are not mapped to the RESET pin 0b1: OV/UV faults are mapped to the RESET pin

STATOV (0x5)

Voltage Monitor OV Comparator Statuses

BIT	7	6	5	4		3	2	1	0	
Field	-	IN7	IN6	IN5		IN4	IN3	IN2	IN1	
Reset	-									
Access Type	-	Read Clears All	Read Clears All	Read Clears All		Read ears All	Read Clears All	Read Clears All	Read Clears All	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
IN7	6	OV Compar	ator Status			0b0: IN voltage is below OV threshold 0b1: IN voltage is above OV threshold				
IN6	5	OV Compar	ator Status					w OV threshold e OV threshold		
IN5	4	OV Compar	ator Status			0b0: IN voltage is below OV threshold 0b1: IN voltage is above OV threshold				
IN4	3	OV Compar	ator Status				0	w OV threshold e OV threshold		
IN3	2	OV Compar	ator Status			0b0: IN voltage is below OV threshold 0b1: IN voltage is above OV threshold				
IN2	1	OV Compar	OV Comparator Status				0b0: IN voltage is below OV threshold 0b1: IN voltage is above OV threshold			
IN1	0	OV Compar	ator Status				•	w OV threshold e OV threshold		

STATUV (0x6)

Voltage Monitor UV Comparator Statuses

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4	3	2	1	0	
Field	-	IN7	IN6	IN5	IN4	IN3	IN2	IN1	
Reset	-								
Access Type	-	Read Clears All	Read Clears All	Read Clears All	Read ears All	Read Clears All	Read Clears All	Read Clears All	
BITFIELD	BITS		DESCRIPT	ION		D	ECODE		
IN7	6	UV Compara	ator Status		0b0: IN voltage is above UV threshold 0b1: IN voltage is below UV threshold				
IN6	5	UV Compara	ator Status				e UV threshold v UV threshold		
IN5	4	UV Compara	ator Status		0b0: IN voltage is above UV threshold 0b1: IN voltage is below UV threshold				
IN4	3	UV Compara	ator Status			0	e UV threshold v UV threshold		
IN3	2	UV Compara	ator Status		0b0: IN voltage is above UV threshold 0b1: IN voltage is below UV threshold				
IN2	1	UV Compara	ator Status		0b0: IN voltage is above UV threshold 0b1: IN voltage is below UV threshold				
IN1	0	UV Compara	ator Status		0b0: IN voltage is above UV threshold 0b1: IN voltage is below UV threshold				

STATOFF (0x7)

Voltage Monitor OFF Comparator Statuses

BIT	7	6	5	4		3	2	1	0	
Field	-	IN7	IN6	IN5		IN4	IN3	IN2	IN1	
Reset	-									
Access Type	-	Read Clears All	Read Clears All	Read Clears All		Read ears All	Read Clears All	Read Clears All	Read Clears All	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
IN7	6	OFF Compa	OFF Comparator Status 0b0: IN voltage is above OFF threshold 0b1: IN voltage is below 0FF threshold 0b1: IN voltage 0b1: IN v							
IN6	5	OFF Compa	OFF Comparator Status 0b0: IN voltage is above OFF threshold 0b1: IN voltage is below OFF threshold							
IN5	4	OFF Compa	rator Status			0b0: IN voltage is above OFF threshold 0b1: IN voltage is below OFF threshold				
IN4	3	OFF Compa	rator Status			0b0: IN voltage is above OFF threshold 0b1: IN voltage is below OFF threshold				
IN3	2	OFF Compa	OFF Comparator Status				0b0: IN voltage is above OFF threshold 0b1: IN voltage is below OFF threshold			
IN2	1	OFF Compa	rator Status	0b0: IN voltage is above OFE threshold						
IN1	0	OFF Compa	rator Status				voltage is abov voltage is belov			

<u>VIN1 (0x8)</u>

IN1 Nominal Voltage Setpoint

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4	3	2	1	0				
Field				D[7	':0]							
Reset		OTP										
Access Type		Write, Read										
BITFIELD	BITS		DESCRIPT	ION		۵	ECODE					
D	7:0	Nominal Rai	il Voltage			V _{NOM} = 500mV + 12.5mV x D[7:0] (0.5V to 3.6875V)						

VIN2 (0x9)

IN2 Nominal Voltage Setpoint

BIT	7	6	5	4	3	2	1	0			
Field		D[7:0]									
Reset		OTP									
Access Type		Write, Read									
BITFIELD	BITS		DESCRIPT	ION		D	ECODE				
D	7:0	Nominal Ra	il Voltage			V _{NOM} = 500mV + 12.5mV x D[7:0] (0.5V to 3.6875V)					

<u>VIN3 (0xA)</u>

IN3 Nominal Voltage Setpoint BIT 7 6 5 4 3 2 1 0 Field D[7:0] Reset OTP Access Write, Read Туре DESCRIPTION BITFIELD BITS DECODE V_{NOM} = 500mV + 12.5mV x D[7:0] (0.5V to 3.6875V) D 7:0 Nominal Rail Voltage

<u>VIN4 (0xB)</u>

IN4 Nominal Voltage Setpoint

BIT	7	6	5	4	3	2	1	0			
Field		D[7:0]									
Reset		OTP									
Access Type		Write, Read									
BITFIELD	BITS		DESCRIPT	ION		D	ECODE				
D	7:0	Nominal Rai	il Voltage			V _{NOM} = 500mV + 12.5mV x D[7:0] (0.5V to 3.6875V)					

<u>VIN5 (0xC)</u>

IN5 Nominal Voltage Setpoint

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4	3	3	2	1	0			
Field		D[7:0]										
Reset		OTP										
Access Type		Write, Read										
BITFIELD	BITS	BITS DESCRIPTION DECODE										
D	7:0	Nominal Rail Voltage V _{NOM} = 500mV + 20mV x D[7:0] (0.5V to 5						V to 5.6V)				

VINO6 (0xD)

IN6 Overvoltag	ge Threshold S	Setpoint											
BIT	7	6	5	4		3	2	1	0				
Field		D[7:0]											
Reset		OTP											
Access Type				Write,	Read								
BITFIELD	BITS	BITS DESCRIPTION DECODE											
D	7:0	OV Thresho	ld			V _{OV6} = 8	500mV + 5mV	′ x D[7:0] (0.5V	to 1.775V)				

VINU6 (0xE)

IN6 Undervolta	age Threshold	d Setpoint										
BIT	7	6	5	4	3	2	1	0				
Field		D[7:0]										
Reset				0.	ГР							
Access Type				Write,	Read							
BITFIELD	BITS		DESCRIPT	ION		I	DECODE					
D	7:0	UV Thresho	ld		V _{UV6} =	500mV + 5m	/ x D[7:0] (0.5V	to 1.775V)				

<u>VINO7 (0xF)</u>

IN7 Overvoltage Threshold Setpoint

BIT	7	6	6 5 4 3 2 1									
Field		D[7:0]										
Reset		OTP										
Access Type		Write, Read										
BITFIELD	BITS	ITS DESCRIPTION DECODE										
D	7:0	OV Thresho	ld		V _{OV7}	= 500mV + 5m\	/ x D[7:0] (0.5V	to 1.775V)				

<u>VINU7 (0x10)</u>

IN7 Undervoltage Threshold Setpoint

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4	3	3	2	1 0					
Field		D[7:0]											
Reset		OTP											
Access Type				Write,	Read								
BITFIELD	BITS	S DESCRIPTION DECODE											
D	7:0	UV Thresho	ld		V	V _{UV7} = 500mV + 5mV x D[7:0] (0.5V to 1.775V)							

<u>OVUV1 (0x11)</u>

IN1 Overvoltage & Undervoltage Thresholds

BIT	7	6	5	4	3	2	1	0			
Field		OV	[3:0]		UV[3:0]						
Reset		0.	ΓP			OTP					
Access Type		Write,	Read		Write, Read						
BITFIELD	BITS		DESCRIPT	ION		DECODE					
OV	7:4	IN1 Overvol	tage Threshold	ł	OV (%) = 102.5% + 0.5% x OV[3:0]						
UV	3:0	3:0 IN1 Undervoltage Threshold UV (%) = 97.5% - 0.5% x UV[3:0]									

<u>OVUV2 (0x12)</u>

IN2 Overvoltage & Undervoltage Thresholds

BIT	7	6	5	4	3	2	1	0									
Field	OV[3:0] UV[3:0]						UV[3:0]					UV[3:0]					
Reset		0.	TP			OTP											
Access Type		Write,	Read			Write, Read											
BITFIELD	BITS	BITS DESCRIPTION				D	ECODE										
OV	7:4	IN2 Overvol	IN2 Overvoltage Threshold			OV (%) = 102.5% + 0.5% x OV[3:0]											
UV	3:0	IN2 Undervo	IN2 Undervoltage Threshold UV (%) = 97.5% - 0.5% x UV[3:0]														

OVUV3 (0x13)

IN3 Overvoltage & Undervoltage Thresholds

BIT	7	6	5	4	3	2	1	0		
Field		OV	3:0]			UV[3:0]				
Reset		0.	ΓP		OTP					
Access Type		Write, Read Write, Read								
BITFIELD	BITS		DESCRIPT	ION		DECODE				
OV	7:4	IN3 Overvol	age Threshold		OV (%)	OV (%) = 102.5% + 0.5% x OV[3:0]				
UV	3:0	IN3 Undervo	ltage Thresho	ld	UV (%) = 97.5% - 0.5% x UV[3:0]					

<u>OVUV4 (0x14)</u>

IN4 Overvoltage & Undervoltage Thresholds

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4	3	2	1	0		
Field		OV[[3:0]		UV[3:0]					
Reset		0	TP		OTP					
Access Type		Write,	Read		Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DECODE				
OV	7:4	IN4 Overvol	tage Threshold	1	OV (%)	OV (%) = 102.5% + 0.5% x OV[3:0]				
UV	3:0	IN4 Undervo	oltage Thresho	ld	UV (%)	UV (%) = 97.5% - 0.5% x UV[3:0]				

OVUV5 (0x15)

IN5 Overvoltage & Undervoltage Thresholds

BIT	7	6	5	4	3	2	1	0		
Field		OV	[3:0]		UV[3:0]					
Reset		0.	ΓP		OTP					
Access Type		Write,	Read		Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DECODE				
OV	7:4	IN5 Overvol	tage Threshold	ł	OV (%)	OV (%) = 102.5% + 0.5% x OV[3:0]				
UV	3:0	IN5 Undervo	ltage Thresho	ld	UV (%)	UV (%) = 97.5% - 0.5% x UV[3:0]				

FPSSTAT1 (0x16)

Flexible Power Sequence Recorder Status

BIT	7	6	5	4		3	2	1	0
Field	_	_	_	NOTRD		UEN	DEN	FPSE	SRR
Reset	-	_	_						0x0
Access Type	-	-	-	Read Only	Read Only Read Only Read Only Read				Read Only
BITFIELD	BITS		DESCRIPTION DECODE						
NOTRD	4		at the UVAL an ared before las		ver-	0b1: The power-d	quencer runnin e sequencer en own triggers be ts were cleared	countered two fore the UVAL	
UEN	3	Power-Up S This is the s recorded.	ource. ource of the UT	ΓIME_ timestar	nps	to record 0b1: EN	0 low-to-high tr d timestamps ir 1 low-to-high tr d timestamps ir	UTIME_ regis	ters ed the FPSR
DEN	2	Power-Down This is the s recorded.	n Source. ource of the D1	ΓIME_ timestar	nps	0b0: EN0 high-to-low transition triggered the FPSR to record timestamps in DTIME_register 0b1: EN1 high-to-low transition triggered the FPSR to record timestamps in DTIME_registers			
FPSE	1	Flexible Pov	ver Sequence F	Recorder Enab	le	0b0: FPSR is disabled 0b1: FPSR is enabled			
SRR	0	Sequence R	ecorder Runni	ng		0b1: Se	quence recorde quence recorde p or power-dov	er is actively ree	cording a

Four- to Seven-Input Automotive Power-System Monitor Family

FPSCFG1 (0x17)

Flexible Power Sequence Recorder Configuration

BIT	7	6	5	4		3	2	1	0	
Field	UVAL	DVAL	UVALM	DVALM	FF	PSEN1		FDIV[2:0]		
Reset	OTP		OTP	OTP		OTP		OTP		
Access Type	Write 0 to Clear, Read	Write 0 to Clear, Read	Write, Read	Write, Read	Wri	te, Read		Write, Read		
BITFIELD	BITS		DESCRIPT	ION			DECODE			
UVAL	7	This bit is se power-up se before a new recorded. Th		SR records a nust be cleared quence can be done after the		0b0: Power-up sequence capture is not comple 0b1: Power-up sequence captured. FPSR inhit from recording new power-up sequence.				
DVAL	6	This bit is se power-down before a new recorded. Th		SR records a d must be clear sequence can l done after the		0b0: Power-down sequence capture is not completed 0b1: Power-down sequence captured. FPSR inhibited from recording new power-up sequenc				
UVALM	5	Power-Up S Mask	Power-Up Sequence Validation Interrupt Mask 0b0: The completion of a power-up s recording will generate an interrupt, low 0b1: No interrupt is generated when sequence recording finishes						oulling RESET	
DVALM	4	Power-Dowr Mask	n Sequence Va	alidation Interru	pt	recordin Iow 0b1: No	g generates a	f a power-dow n interrupt, pul nerated when nishes	ling RESET	
FPSEN1	3	FPS Timer S	PS Timer Start on EN1 Transition PS Tim					N1 will be igno gger FPSR. I1 rising/falling er. A rising tra ence recording	red). Only transitions nsition will and a falling	
FDIV	2:0	resulting sig This field co	cillator is divid nal is sent to th	ed by 32, and t ne FPS subsyst signal is furthe by the FPS.	/stem. 0b011: 200µs/tick, 51ms total recording t				rding time rding time ding time ding time ding time ording time	

UTIME1 (0x18)

Power-Up Timestamp for IN1

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4		3	2	1	0	
Field				D[7	7:0]					
Reset										
Access Type		Read Only								
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
D	7:0	This gives the U	ne time at whicl IV threshold	h the input rose	9	0b0: Inp Else: tim	ut voltage nev e = (D[7:0] - 1	er rose above l) x 25µs x 2 ^{FDI}	JV threshold V[2:0]	

UTIME2 (0x19)

Power-Up Timestamp for IN2

BIT	7	6	5	4	3	2	1	0
Field	-			D[7	7:0]			
Reset								
Access Type				Read	Only			
BITFIELD	BITS		DESCRIPT	ION			DECODE	
D	7:0	This gives the U	ne time at whic V threshold	h the input rose	e 0b0: Else:		ver rose above l 1) x 25µs x 2 ^{FDI}	

UTIME3 (0x1A)

Power-Up Timestamp for IN3 BIT 7 6 5 4 3 2 1 0 Field D[7:0] Reset Access Read Only Туре DECODE BITFIELD BITS DESCRIPTION 0b0: Input voltage never rose above UV threshold Else: time = (D[7:0] - 1) x 25μ s x $2^{FDIV[2:0]}$ This gives the time at which the input rose D 7:0 above the UV threshold

UTIME4 (0x1B)

Power-Up Tim	estamp for IN	14						
BIT	7	6	5	4	3	2	1	0
Field				D[7	7:0]			
Reset								
Access Type				Read	Only			
BITFIELD	BITS		DESCRIPT	ION		 D	ECODE	
D	7:0	This gives the U		h the input rose			er rose above L) x 25µs x 2 ^{FDI}	

UTIME5 (0x1C)

Power-Up Timestamp for IN5

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4		3	2	1	0				
Field				D[7	7:0]								
Reset													
Access Type		Read Only											
BITFIELD	BITS		DESCRIPT	ION			D	ECODE					
D	7:0	7:0This gives the time at which the input rose above the UV threshold0b0: Input voltage never rose above UV thresho Else: time = $(D[7:0] - 1) \times 25\mu \times 2^{FDIV[2:0]}$											

UTIME6 (0x1D)

Power-Up Timestamp for IN6

BIT	7	6	5	4	3	2	1	0
Field	-	-	•		7:0]		-	-
					.0]			
Reset								
Access Type				Read	Only			
BITFIELD	BITS		DESCRIPT	ION		[DECODE	
D	7:0	This gives the U	ne time at whicl V threshold	h the input rose		nput voltage nev time = (D[7:0] -		

UTIME7 (0x1E)

Power-Up Timestamp for IN7 BIT 7 6 5 4 3 2 1 0 Field D[7:0] Reset Access Read Only Туре DECODE BITFIELD BITS DESCRIPTION 0b0: Input voltage never rose above UV threshold Else: time = (D[7:0] - 1) x 25μ s x $2^{FDIV[2:0]}$ This gives the time at which the input rose D 7:0 above the UV threshold

DTIME1 (0x1F)

Power-Down 7	Fimestamp for	· IN1							
BIT	7	6	5	4		3	2	1	0
Field				D[]	7:0]				
Reset									
Access Type				Read	l Only				
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
D	7:0	-	he time at whic FF threshold	h the input fell				er rose above l) x 25µs x 2 ^{FDI}	

DTIME2 (0x20)

Power-Down Timestamp for IN2

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4		3	2	1	0				
Field		•		D[7	7:0]								
Reset													
Access Type		Read Only											
BITFIELD	BITS		DESCRIPT	ION			D	ECODE					
D	7:0	This gives the time at which the input fell below the OFF threshold $Db0$: Input voltage never rose above UV threshold $Db0$ threshold $Db0$: Input voltage ne											

DTIME3 (0x21)

Power-Down Timestamp for IN3

BIT	7	6	5	4	3	2	1	0
Field				D[7	7:0]			
Reset								
Access Type				Read	Only			
BITFIELD	BITS		DESCRIPT	ION		D	ECODE	
D	7:0		ne time at whic FF threshold	h the input fell		put voltage nev me = (D[7:0] - 1		

DTIME4 (0x22)

Power-Down 1	Timestamp for	· IN4											
BIT	7	6	5	4		3	2	1	0				
Field				D[7	7:0]								
Reset													
Access Type		Read Only											
BITFIELD	BITS		DESCRIPT	ION			D	ECODE					
D	7:0		ne time at whicl FF threshold	h the input fell				er rose above L) x 25µs x 2 ^{FDI}					

DTIME5 (0x23)

Power-Down 1	imestamp for	· IN5							
BIT	7	6	5	4	3	5	2	1	0
Field				D[7	7:0]				
Reset									
Access Type				Read	Only				
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
D	7:0	U U	ne time at whic FF threshold	h the input fell				er rose above L) x 25µs x 2 ^{FDI'}	

DTIME6 (0x24)

Power-Down Timestamp for IN6

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4		3	2	1	0				
Field		•		D[7	7:0]								
Reset													
Access Type		Read Only											
BITFIELD	BITS		DESCRIPT	ION			D	ECODE					
D	7:0	This gives the time at which the input fell below the OFF threshold $Db0$: Input voltage never rose above UV threshold $Db0$ threshold $Db0$: Input voltage ne											

DTIME7 (0x25)

Power-Down Timestamp for IN7

BIT	7	6	5	4	3	2		1	0			
Field			1	D[7:0]							
Reset												
Access Type		Read Only										
BITFIELD	BITS		DESCRIPT	ION			DECO	DE				
D	7:0		ne time at whicl FF threshold	h the input fell	0b0 Els): Input voltage e: time = (D[7:	e never ros 0] - 1) x 25	e above l µs x 2 ^{FDI}	JV threshold V[2:0]			

WDSTAT (0x26)

Watchdog Status

BIT	7	6	5	4		3	2	1	0	
Field	_	_			0	DPEN	LFSR	WDUV	WDEXP	
Reset	-	_			0x0					
Access Type	_	_	– – – Read				Read Clears All	Read Clears All	Read Clears All	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
OPEN	3	Watchdog W	Watchdog Window Open				0b0: Watchdog updates not accepted 0b1: Updates refresh the watchdog			
LFSR	2	LFSR Write	Mismatch			0b0: LFSR Key Matches 0b1: LFSR Key Mismatch				
WDUV	1	Watchdog U	pdate Violatior	1			timing violatior			
WDEXP	0	Watchdog V	/indow Expired				timing violatior Itchdog open-w freshed		bired before	

WDCDIV (0x27)

Watchdog Mode and Clock Divider

BIT	7	6	5	4	3	2	1	0
Field	-	SWW	WDIV[5:0]					
Reset	-	OTP	OTP					
Access Type	-	Write, Read			Write,	Read		

Four- to Seven-Input Automotive Power-System Monitor Family

BITFIELD	BITS	DESCRIPTION	DECODE		
SWW	6	Simple Windowed Watchdog Enable. The watchdog can operate in challenge/ response mode (in which a specific key value must be written to WDKEY) or in simple mode (in which any write to WDKEY will update the watchdog).	0b0: Challenge/response watchdog mode 0b1: Simple windowed watchdog mode		
WDIV	5:0	Watchdog Clock Divider. The main oscillator is divided by 32 and supplied to the watchdog subsystem. This field controls further dividing of the clock.	t _{WDCLK} = (WDIV[5:0] + 1) x 25µs x 8		

WDCFG1 (0x28)

Watchdog Configuration Register 1

BIT	7	6	5	4	3	2	1	0	
Field		CLC	D[3:0]			OP	N[3:0]		
Reset		0	TP			C	DTP		
Access Type		Write	, Read		Write, Read				
BITFIELD	BITS		DESCRIPTION			DECODE			
CLO	7:4	Sets the ler	Vatchdog Closed Window. Sets the length of the first portion of a vatchdog period, where updates are rejected.			t _{CLO} = (CLO[3:0] + 1) x 8 x t _{WDCLK}			
OPN	3:0	Sets the ler	Dpen Window. Igth of the seco eriod, where u	ond portion of a	t _{OPN} =	t _{OPN} = (OPN[3:0] + 1) x 8 x t _{WDCLK}			

WDCFG2 (0x29)

Watchdog Configuration Register 2

BIT	7	6	5	4		3	2	1	0
Field	-	_	– – – W		VDEN	1UD[2:0]			
Reset	-	-	-	-		OTP	OTP		
Access Type	-	-	-	-	Writ	rite, Read Write, Read			
BITFIELD	BITS		DESCRIPT	ION		DECODE			
WDEN	3	Watchdog E	nable			0b0: Watchdog Disabled 0b1: Watchdog Enabled			
1UD	2:0		Extension. Se			t _{1OPN} =	(t _{CLO} + t _{OPN})	x (1UD[2:0] x 2	: + 1)

WDKEY (0x2A)

Watchdog Key Register

BIT	7 6 5 4 3 2 1 0							
Field	KEY[7:0]							
Reset		0x55						
Access Type	Write, Read							

Four- to Seven-Input Automotive Power-System Monitor Family

BITFIELD	BITS	DESCRIPTION	DECODE
KEY	7:0	Contains the current key value, which must be used to compute the next key value in the sequence for challenge/response mode. Write key value to register to refresh.	LFSR polynomial: $x^8 + x^6 + x^5 + x^4 + 1$. Calculate new bit, shift existing bits upwards toward MSb, insert calculated bit as new LSb.

WDLOCK (0x2B)

Watchdog Lock

Waterlaug Loc										
BIT	7	6	5	4	3	2	1	0		
Field	-	_	-	_	_	-	_	LOCK		
Reset	-	_	-	_	_	_	_	OTP		
Access Type	-	-	-	_	-	-	_	Write, Read		
BITFIELD	BITS		DESCRIPT	ION		DECODE				
LOCK	0	Watchdog L	ock Bit		to 0b1: All	watchdog-relat writes to watch except for WD	idog-related re	gisters are		

RSTCTRL (0x2C)

RESET Control

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	-	-	MR1 RHLD[1:0]		D[1:0]
Reset	-	-	-	-	-	OTP	01	ſP
Access Type	-	-	-	-	-	Write, Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
MR1	2	Watchdog Violation Count for RESET Assertion. This determines whether the RESET pin is asserted on any single watchdog violation, or after two consecutive violations.	0b0: RESET asserts after any watchdog violation 0b1: RESET asserts only after two consecutive violations. Valid updates will reset the violation counter if one violation has been encountered.
RHLD	1:0	RESET Hold/Active Timeout Time. This is the amount of time that the RESET pin remains low after the removal of any event that would cause the RESET pin to assert low.	0b00: 0ms (6μs typ, used for interrupt-style functionality) 0b01: 8ms 0b10: 16ms 0b11: 32ms

CID (0x2D)

Chip Identification.

BIT	7 6 5 4 3 2 1							0	
Field		CID[7:0]							
Reset				0	TP				
Access Type		Read Only							
BITFIELD	BITS	BITS DESCRIPTION DECODE							
CID	7:0	A unique chip identification code to help determine which device is being queried. Set at factory							

Applications Information

Diagnostics

The MAX20480 is ASIL-D compliant when combined with a supervisor for monitoring and control over the IC. Individual fault indicators are available (see register CONFIG2) for parity-check failure, clock fault, EN and RESET pin readbacks, and BIST results. Internal OTP configuration information is protected by an automatic single-error-correcting coding scheme. Individual voltage-monitor comparators provide their statuses through the STATOV/UV/OFF registers. The FPSR relates sequencing status, triggers, and faults through the FPSSTAT1 and FPSCFG1 registers. The watchdog has individual fault flags to determine which type of error was encountered. To prevent the IC from being misconfigured by an I²C master device, which could cause a permanent fault, the IC features an OTP reload mechanism. Every time the EN0 pin transitions from high to low, the IC reloads all the registers with the information stored in the OTP after the FPSR finishes recording the power-down sequence. The data stored in the sequencer's UTIME and DTIME registers are not affected by this reload. There is also a configuration bit that, when set, causes the registers to reload from OTP whenever a watchdog fault is asserted. The OTP reload time after a high-to-low transition on EN0 or after a watchdog violation takes approximately 1µs.

For full safety-related information, contact Maxim Integrated.

Table 3. Diagnostics

FAULT	DIAGNOSTIC COVERAGE
Short to GND/VDD on IN_ pins	OV/UV comparators assert depending on voltage.
Open on IN_ pins	UV/OFF comparators assert.
Short to GND on VDD pin	Loss of I ² C communications.
Open on VDD pin	Loss of I ² C communications.
Open/Short to GND EN0/EN1 pins	Sequencing will not be detected. This is detectable by reading the EN0/EN1 state through the I2C and by loss of sequencing information in the status register.
Open/Short on SDA/ SCL	No I ² C communications. Communication attempts will result in a NACK response. Watchdog will violate due to inability to update the watchdog.
Open GND pin	RESET can still assert down to one body diode above system ground. Persistent UV conditions will occur if any voltage monitors are active.
Short to VDD on RESET	Test at power-on can verify that RESET pins are low.
Open on RESET pin	Can be detected by reading the state of the RESET pin through I ² C. If the RESET pin should be high, but is low (due to 2μ A pulldown current), the pin is open. Also detectable if a power-on watchdog test is performed.
Internal Watchdog Block Failure	Can be detected through host-induced test.

Table 4. ASIL Safety Diagnostics

DESCRIPTION	FAULT TO BE DETECTED	FAULT REACTION STATE
OV Comparator diagnostics for Channels 1–5	OV comparator stuck high/low	RESET pin asserted, I ² C register flag set
UV Comparator diagnostics for Channels 1–5	UV comparator stuck high/low	RESET pin asserted, I ² C register flag set
OFF Comparator diagnostics for Channels 1–5	VOFF comparator stuck high/low	RESET pin asserted, I ² C register flag set

Four- to Seven-Input Automotive Power-System Monitor Family

Table 4. ASIL Safety Diagnostics (continued)

DESCRIPTION	FAULT TO BE DETECTED	FAULT REACTION STATE
OV Comparator Diagnostics for Channel 6/7	OV comparator stuck high/low	RESET pin asserted, I ² C register flag set
UV Comparator diagnostics for channels 6/ 7	UV comparator stuck high/low	RESET pin asserted, I ² C register flag set
OFF Comparator diagnostics for channels 6/7	VOFF comparator stuck high/low	RESET pin asserted, I ² C register flag set
RESET output	Communicate all faults to supervisory systems	RESET pin asserted
OV Comparator for Channels 1–5	Voltage rail too high	RESET pin asserted, I ² C register flag set
UV Comparator for Channels 1–5	Voltage rail too low	RESET pin asserted, I ² C register flag set
VOFF Comparator for Channels 1–5	Voltage rail shut down	RESET pin asserted, I ² C register flag set
OV Comparator for Channels 6/7	Voltage rail too high	RESET pin asserted, I ² C register flag set
UV Comparator for Channels 6/7	Voltage rail too low	RESET pin asserted, I ² C register flag set
VOFF Comparator for Channels 6/7	Voltage rail shut down	RESET pin asserted, I ² C register flag set
Functionality Check of system clock	Clock stuck high/low; frequency too low	RESET pin asserted
Parity for I ² C registers	Erroneous bit flip in active register data	RESET pin asserted
Dual UVLO	IC supply voltage too low	RESET pin asserted, I ² C comm lost

Typical Application Circuit

Four- to Seven-Input Automotive Power-System Monitor Family

Ordering Information

Part	CID	Slave ID	Ch1 (V)	Ch2 (V)	Ch3 (V)	Ch4 (V)	Ch5 (V)	Ch6 OV (V)	Ch6 UV (V)	Ch7 OV (V)	Ch7 UV (V)
MAX20480BATEA/VY+*	0x10	0x48	3.3	1.8	1.8	1.8	5.0	-	-	-	-
MAX20480BATEB/VY+*	0x39	0x48	3.3	1.25	2.5	2.5	5.0	-	-	-	-
MAX20480DATEA/VY+	0x0F	0x28	3.3	1.8	1.2	3.3	1.8	1.26	1.14	1.15	0.6
MAX20480DATEB/VY+	0x0B	0x48	1.8	1.8	1.8	1.8	3.3	1.15	0.6	1.15	0.6
MAX20480DATEC/VY+	0x0	0x58	3.3	3.3	3.3	3.3	3.3	1.15	0.6	1.15	0.6
MAX20480DATED/VY+	0x0D	0x28	0.8	1.0	1.1	1.2	3.3	1.15	1.05	0.65	0.58
MAX20480DATEE/VY+	0x0E	0x38	1.8	1.0	1.8	1.8	3.3	1.2	0.6	1.5	1.1
MAX20480DATEF/VY+*	0x09	0x58	3.4	3.4	3.4	3.4	2.3	1.165	0.6	1.165	0.6
MAX20480DATEG/VY+*	0x0A	0x28	0.8125	1.1025	1.125	1.225	3.38	1.165	1.06	0.65	0.58
MAX20480DATEI/VY+*	0x01	0x38	1.0	1.1	1.8	2.5	3.3	0.84	0.79	0.85	0.8
MAX20480DATEJ/VY+	0x11	0x48	0.6	0.6	1.2	0.85	3.3	0.89	0.81	0.89	0.81

For variants with different options, contact the factory.

N Denotes an automotive qualified part.

Y Denotes a side-wettable package.

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

*Future product—contact factory for availability.

Four- to Seven-Input Automotive Power-System Monitor Family

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
0	9/18	Initial release	—
1	10/18	Added future product status to the following products in <u>Ordering Information</u> : • MAX20480DATEA/VY+* • MAX20480DATEC/VY+* • MAX20480DATED/VY+* • MAX20480DATEE/VY+*	42
2	10/18	 Removed future product status from the following products in <u>Ordering Information</u>: MAX20480DATEA/VY+* MAX20480DATEC/VY+* MAX20480DATED/VY+* MAX20480DATEE/VY+* 	42
3	11/18	Corrected base I ² C address of MAX20480DATEA/VY+ to 0x38 in Ordering Information	42
4	2/19	Added MAX20480BATEA/VY+* to Ordering Information	42
5	5/19	Updated Package Information	3
6	7/19	Updated Register Map, Applications Information, and Ordering Information	20, 21, 40, 42
7	9/19	Updated Typical Operating Characteristics, ID (0x00), and Ordering Information	8, 21, 43
8	12/19	Updated Typical Operating Characteristics, Functional Diagram, Watchdog Window Settings, CONFIG2 (0x02), and added Figure 6 and Table 4	8, 12, 18, 22, 41
9	9/20	Updated <u>Ordering Information</u> to remove future-product notation from MAX20480DATEJ/ VY+	40

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 MD7044 MD7050 MD7015 MD7022 MD7028 MD7031 MD7042 MD7043 MD7047 MD7060