

50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA

General Description

The MAX2065 high-linearity, analog/digital variablegain amplifier (VGA) is designed to operate in the 50MHz to 1000MHz frequency range with two independent attenuators (see the *Typical Application Circuit*). The digital attenuator is controlled as a slave peripheral using either the SPI™-compatible interface or a parallel bus with 31dB total adjustment range in 1dB steps. An added feature allows "rapid-fire" gain selection between each of four steps, preprogrammed by the user through the SPI-compatible interface. The 2-pin control allows the user to quickly access any one of four customized attenuation states without reprogramming the SPI bus. The analog attenuator is controlled using an external voltage or through the SPI-compatible interface using an on-chip 8-bit DAC.

Because each of the three stages has its own RF input and RF output, this component can be configured to either optimize NF (amplifier configured first), OIP3 (amplifier last), or a compromise of NF and OIP3. The device's performance features include 22dB amplifier gain (amplifier only), 6.5dB NF at maximum gain (includes attenuator insertion losses), and a high OIP3 level of +42dBm. Each of these features makes the MAX2065 an ideal VGA for numerous receiver and transmitter applications.

In addition, the MAX2065 operates from a single +5V supply with full performance, or a single +3.3V supply with slightly reduced performance, and has an adjustable bias to trade current consumption for linearity performance. This device is available in a compact 40-pin thin QFN package (6mm x 6mm) with an exposed pad. Electrical performance is guaranteed over the extended temperature range ($T_C = -40^{\circ}C$ to +85°C).

IF and RF Gain Stages

Temperature Compensation Circuits

Cellular Band WCDMA and cdma2000[®] Base Stations

Applications

GSM 850/GSM 900 EDGE Base Stations

WiMAX and LTE Base Stations and Customer Premise Equipment

Fixed Broadband Wireless Access

Wireless Local Loop

Military Systems

Video-on-Demand (VOD) and DOCSIS®-Compliant EDGE QAM Modulation

Cable Modem Termination Systems (CMTS)

SPI is a trademark of Motorola, Inc.

Features

- ♦ 50MHz to 1000MHz RF Frequency Range
- Pin-Compatible Family Includes: MAX2066 (Digital VGA) MAX2067 (Analog VGA)
- +19.4dB (Typ) Maximum Gain
- 0.5dB Gain Flatness Over 100MHz Bandwidth
- ♦ 62dB Gain Range (31dB Analog + 31dB Digital)
- Built-in DAC for Analog Attenuation Control
- Supports Four "Rapid-Fire" Preprogrammed Attenuator States Quickly Access Any One of Four Customized Attenuation States Without Reprogramming the SPI Bus Ideal for Fast-Attack, High-Level Blocker Protection

- Excellent Linearity (Configured with Amplifier Last)
 - +42dBm OIP3 +63dBm OIP2 +19dBm Output 1dB Compression Point -67dBc HD2 -83dBc HD3
- ♦ 6.5dB Typical Noise Figure (NF)
- ♦ Fast, 25ns Digital Switching
- Very Low Digital VGA Amplitude Overshoot/ Undershoot
- Single +5V Supply (Optional +3.3V Operation)
- External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ Reduced-Performance Mode

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX2065ETL+	-40°C to +85°C	40 Thin QFN-EP*	T4066-3
MAX2065ETL+T	-40°C to +85°C	40 Thin QFN-EP*	T4066-3

+Denotes a lead-free package.

*EP = Exposed pad.

T = Tape and reel.

Pin Configuration appears at end of data sheet.

cdma2000 is a registered trademark of Telecommunications Industry Association.

DOCSIS and CableLabs are registered trademarks of Cable Television Laboratories, Inc. (CableLabs®).

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Prevents ADC Overdrive Condition

ABSOLUTE MAXIMUM RATINGS

VCC_ to GND0.3V to +5.5V
VDD_LOGIC, DATA, CS, CLK, SER/PAR, VDAC_EN,
VREF_SELECT0.3V to (VCC_ + 0.3V)
STATE_A, STATE_B, D0–D40.3V to (VCC_ + 0.3V)
AMP_IN, AMP_OUT, VREF_IN,
ANALOG_VCTRL0.3V to (VCC_ + 0.3V)
ATTEN1_IN, ATTEN1_OUT, ATTEN2_IN,
ATTEN2_OUT1.2V to + 1.2V
RSET to GND0.3V to + 1.2V

RF Input Power (ATTEN1_IN, ATTEN1_OUT,	
ATTEN2_IN, ATTEN2_OUT)+20dBm	
RF Input Power (AMP_IN)+18dBm	
Continuous Power Dissipation (Note 1)6.5W	
θJA (Notes 2, 3)+38°C/W	
θ _{JC} (Note 3)+10°C/W	
Operating Temperature Range (Note 4)T _C = -40°C to +85°C	
Maximum Junction Temperature+150°C	
Storage Temperature65°C to +150°C	
Lead Temperature (soldering, 10s)+300°C	

Note 1: Based on junction temperature $T_J = T_C + (\theta_{JC} \times V_{CC} \times I_{CC})$. This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a printed-circuit board (PCB). See the Applications Information section for details. The junction temperature must not exceed +150°C.

- Note 2: Junction temperature $T_J = T_A + (\theta_{JA} \times V_{CC} \times I_{CC})$. This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150°C.
- Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
- Note 4: T_C is the temperature on the exposed pad of the package. T_A is the ambient temperature of the device and PCB.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, high-current (HC) mode, $V_{CC} = +3.0V$ to +3.6V, $T_{C} = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at $V_{CC} = +3.3V$ and $T_C = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Supply Voltage	V _{CC}		3.0	3.3	3.6	V
Supply Current	Icc			60	80	mA
LOGIC INPUTS (DATA, CS, CLK,	VDAC_EN, V	REF_SELECT, SER/PAR, STATE_A, STATE	_B, D0–D	4)		
Input High Voltage	VIH			2		V
Input Low Voltage	VIL			0.8		V

+5V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, V_{CC} = +4.75V to +5.25V, T_C = -40°C to +85°C. Typical values are at V_{CC} = +5V and $T_C = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Supply Voltage	V _{CC}		4.75	5	5.25	V	
Current Current		Low-current (LC) mode		73	93		
Supply Current	Icc	High-current (HC) mode		124	146	mA	
LOGIC INPUTS (DATA, CS, CLK,	LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT, SER/PAR, STATE_A, STATE_B, D0-D4)						
Input High Voltage	VIH		3			V	
Input Low Voltage	VIL				0.8	V	
Input Current Logic-High	Iн		-1		+1	μA	
Input Current Logic-Low	١ _{١L}		-1		+1	μA	

M/X/M

+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS

(*Typical Application Circuit*, V_{CC} = +3.0V to +3.6V, T_{C} = -40°C to +85°C. Typical values are at V_{CC} = +3.3V, HC mode with attenuators set for maximum gain, P_{IN} = -20dBm, f_{RF} = 200MHz, and T_{C} = +25°C, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
RF Frequency Range	fRF	(Notes 6, 7)	50		1000	MHz
Small Signal Gain	G			18.8		dB
Output Third-Order Intercept Point	OIP3	P _{OUT} = 0dBm/tone, maximum gain setting		37.5		dBm
Noise Figure	NF	Maximum gain setting		6.7		dB
Total Attenuation Range		Analog and digital combined		61.5		dB

+5V SUPPLY AC ELECTRICAL CHARACTERISTICS

(*Typical Application Circuit*, $V_{CC} = +4.75$ to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz $\leq f_{RF} \leq 1000$ MHz, $T_C = -40^{\circ}$ C to +85°C. Typical values are at $V_{CC} = +5.0$ V, HC mode, $P_{IN} = -20$ dBm, $f_{RF} = 200$ MHz, and $T_C = +25^{\circ}$ C, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	COND	CONDITIONS		ТҮР	MAX	UNITS
RF Frequency Range	f _{RF}	(Notes 6, 7)		50		1000	MHz
		200MHz			19.4		
		350MHz, $T_C = +25^{\circ}C$		17.5	18.7	19.7	
Small Signal Gain	G	450MHz			18.2		dB
		750MHz			16.4		
		900MHz			15.6		
Gain Variation vs. Temperature					-0.006		dB/°C
Gain Flatness vs. Frequency		Any 100MHz frequence to 500MHz	cy band from 50MHz		0.5		dB
		200MHz			6.5		
		350MHz, T _C = +25°C (Note 7)			6.8	8	dB
Noise Figure	NF	450MHz			7		
		750MHz			7.8		
		900MHz			8.2		
Total Attenuation Range		Analog and digital co	mbined		61.5		dB
Output Second-Order Intercept Point	OIP2	$P_{OUT} = 0 dBm/tone, \Delta$	$f = 1MHz, f_1 + f_2$		63		dBm
			200MHz		42		
		D D D	350MHz		40		
		$P_{OUT} = 0 dBm/tone,$ HC mode, $\Delta f = 1MHz$	450MHz		39		
		The mode, $\Delta I = 10012$	750MHz		36		
Output Third-Order Intercept	OIP3		900MHz		35		dBm
Point	UIP3		200MHz		40		иып
			350MHz		38		
		$P_{OUT} = 0 dBm/tone,$ LC mode, $\Delta f = 1MHz$	450MHz		37		
			750MHz		35		
			900MHz		33		

+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)

(*Typical Application Circuit*, $V_{CC} = +4.75$ to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz $\leq f_{RF} \leq 1000$ MHz, $T_C = -40^{\circ}$ C to +85°C. Typical values are at $V_{CC} = +5.0$ V, HC mode, $P_{IN} = -20$ dBm, $f_{RF} = 200$ MHz, and $T_C = +25^{\circ}$ C, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS		MIN	ΤΥΡ	MAX	UNITS
Output -1dB Compression Point	P _{1dB}	350MHz, T _C = +25°C	C (Note 8)	17	18.7		dBm
Second Harmonic		P _{OUT} = +3dBm, f _{RF} = (Note 7)	= 200MHz, T _C = +25°C	-60	-67		dBc
Third Harmonic		P _{OUT} = +3dBm, f _{RF} = (Note 7)	= 200MHz, T _C = +25°C	-71	-83		dBc
Input Return Loss		50 $Ω$ source, maximu	m gain setting		18		dB
Output Return Loss		50 Ω load, maximum	gain setting		18		dB
DIGITAL ATTENUATOR							
Insertion Loss					2.5		dB
Input Second-Order Intercept Point	IIP2	$P_{RF1} = 0dBm, P_{RF2} = f_1 + f_2$	= 0dBm, $\Delta f = 1MHz$,		52		dBm
Input Third-Order Intercept Point	IIP3	P _{RF1} = 0dBm, P _{RF2} =	= 0dBm, Δf = 1MHz		41		dBm
Attenuation Range					31.2		dB
Step Size					1		dB
Relative Step Accuracy					0.2		dB
Absolute Step Accuracy					0.45		dB
			0dB to 16dB		4.8		
Insertion Phase Step		$f_{RF} = 170 MHz$	24dB		8		Degrees
			31dB		10.8		
		Between any two	ET = 15ns		1.0		
Amplitude Overshoot/Undershoot		states	ET = 40ns		0.05		dB
		RF settled to within	31dB to 0dB		25		
Switching Speed		±0.1dB	0dB to 31dB		21		ns
Input Return Loss		50 Ω source			19		dB
Output Return Loss		50 Ω load			19		dB
ANALOG ATTENUATOR							
Insertion Loss					1.2		dB
Input Second-Order Intercept Point	IIP2	$P_{RF1} = 0dBm, P_{RF2} =$ setting, $\Delta f = 1MHz$, f	= 0dBm, maximum gain 1 + f ₂		70		dBm
Input Third-Order Intercept Point	IIP3	$P_{RF1} = 0dBm, P_{RF2} =$ setting, $\Delta f = 1MHz$	= 0dBm, maximum gain		36		dBm
Attenuation Range		Analog control input			31.1		dB
Gain Control Slope		Analog control input			-12.5		dB/V
Maximum Gain Control Slope		Over analog control input range			-35		dB/V
Insertion Phase Change		Over analog control input range			18		Degrees
Group Delay		Maximum gain setting			0.98		ns
Group Delay vs. Control Voltage		Over analog control i	-		-0.25		ns
Analog Control Input Range		~	-	0.25		2.75	V

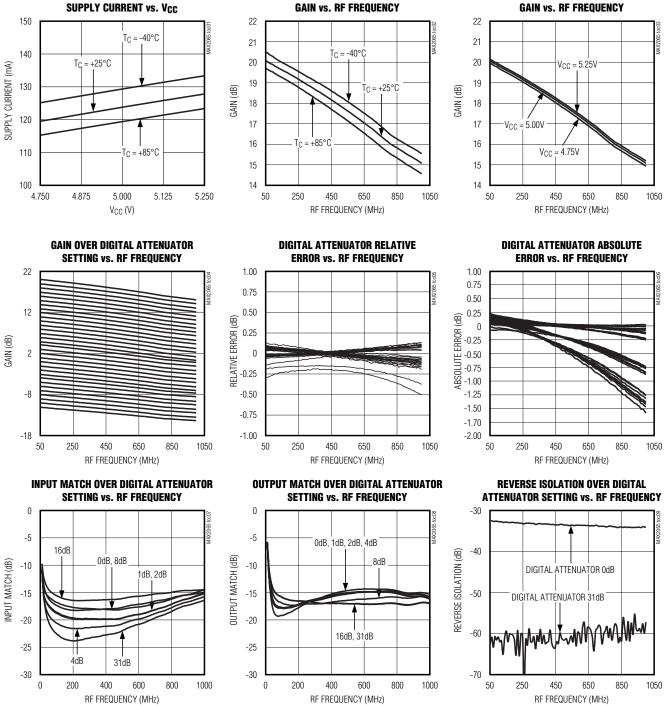
M/IXI/M

+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)

(*Typical Application Circuit*, $V_{CC} = +4.75$ to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz $\leq f_{RF} \leq 1000$ MHz, $T_C = -40^{\circ}$ C to +85°C. Typical values are at $V_{CC} = +5.0$ V, HC mode, $P_{IN} = -20$ dBm, $f_{RF} = 200$ MHz, and $T_C = +25^{\circ}$ C, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Analog Control Input Impedance				80		kΩ	
Input Return Loss		50Ω source		22		dB	
Output Return Loss		50 Ω load		22		dB	
D/A CONVERTER			·				
Number of Bits				8		Bits	
		DAC code = 00000000			0.25		
Output Voltage		DAC code = 11111111	2.75			V	
SERIAL PERIPHERAL INTERFAC	CE (SPI)	•	·			•	
Maximum Clock Speed	fCLK			20		MHz	
Data-to-Clock Setup Time	tcs			2		ns	
Data-to-Clock Hold Time	tСН			2.5		ns	
Clock-to-CS Setup Time	tes			3		ns	
CS Positive Pulse Width	tew			7		ns	
CS Setup Time	tews			3.5		ns	
Clock Pulse Width	tcw			5		ns	

Note 5: All limits include external component losses. Output measurements are performed at RF output port of the *Typical* Application Circuit.


Note 6: Operating outside this range is possible, but with degraded performance of some parameters.

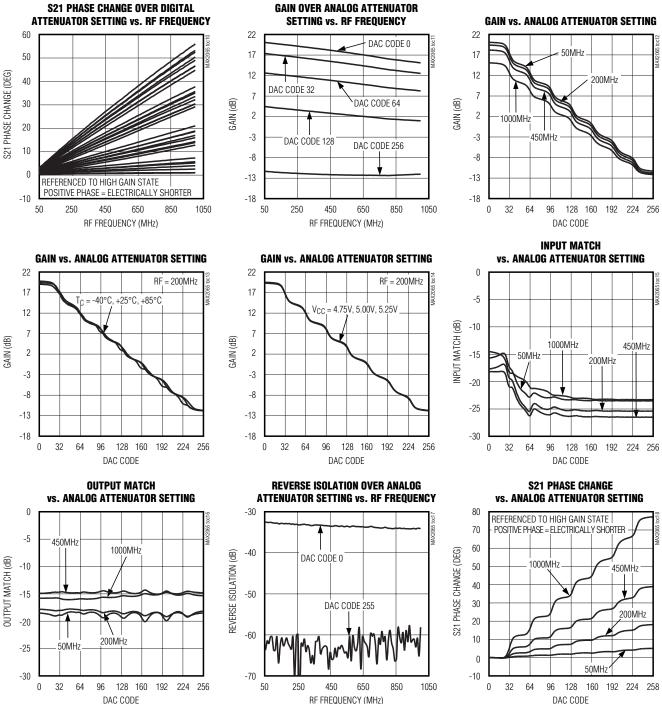
Note 7: Guaranteed by design and characterization.

Note 8: It is advisable not to operate continuously the VGA RF input above +15dBm.

(Vcc = +5.0V, HC mode, both attenuators set for maximum gain, $P_{IN} = -20$ dBm, $f_{RF} = 200$ MHz, and $T_C = +25$ °C, internal DAC reference used, unless otherwise noted.)

Typical Operating Characteristics

MAX2065



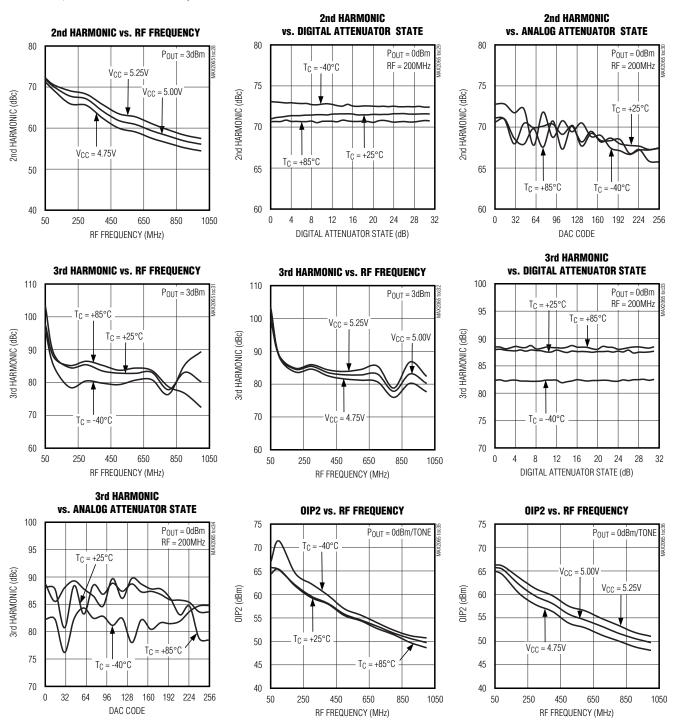
Typical Operating Characteristics (continued)

(V_{CC} = +5.0V, HC mode, both attenuators set for maximum gain, P_{IN} = -20dBm, f_{RF} = 200MHz, and T_{C} = +25°C, internal DAC reference used, unless otherwise noted.)

MAX2065

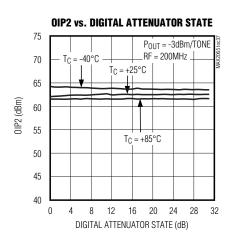
(Vcc = +5.0V, HC mode, both attenuators set for maximum gain, P_{IN} = -20dBm, f_{RF} = 200MHz, and T_{C} = +25°C, internal DAC refer-

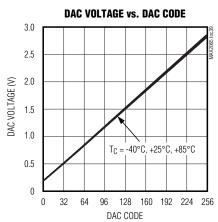
Typical Operating Characteristics (continued)

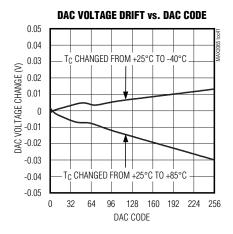

MAX2065

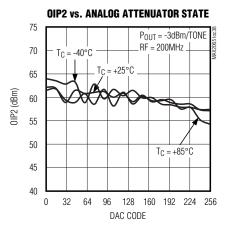
ence used, unless otherwise noted.) **NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY OUTPUT P1dB vs. RF FREQUENCY** 11 11 21 $T_{\rm C} = +85^{\circ}{\rm C}$ 10 10 T_C = +85°C 20 $V_{CC} = 4.75V$ $T_{\rm C} = +25^{\circ}{\rm C}$ 9 9 OUTPUT P1dB (dBm) NOISE FIGURE (dB) $T_{C} = +25^{\circ}C$ NOISE FIGURE (dB) 19 8 8 $V_{CC} = 5.00V$ 18 7 7 $T_{\rm C} = -40^{\circ}{\rm C}$ 17 $V_{CC} = 5.25V$ 6 6 $T_C = -40^{\circ}C$ 16 5 5 15 4 4 1050 1050 50 450 50 250 450 650 850 50 250 450 650 850 250 650 850 1050 RF FREQUENCY (MHz) RF FREQUENCY (MHz) **RF FREQUENCY (MHz) OUTPUT P1dB vs. RF FREQUENCY OUTPUT IP3 vs. RF FREQUENCY OUTPUT IP3 vs. RF FREQUENCY** 21 50 50 P_{OUT} = 0dBm/TONE P_{OUT} = 0dBm/TONE $V_{CC} = 5.25 V$ 20 45 45 OUTPUT P1dB (dBm) $V_{CC} = 5.00V$ $V_{CC} = 5.00V$ OUTPUT IP3 (dBm) 19 OUTPUT IP3 (dBm) $T_C = +25^{\circ}C$ $V_{CC} = 5.25V$ 40 40 18 17 $V_{CC} = 4.75V$ 35 -40°C 35 Tc = $V_{CC} = 4.75V$ 16 $T_C = +85^{\circ}C$ 15 30 30 50 250 450 650 850 1050 50 250 450 650 850 1050 50 250 450 650 850 1050 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) **OUTPUT IP3 OUTPUT IP3** vs. ANALOG ATTENUATOR STATE vs. DIGITAL ATTENUATOR STATE 2nd HARMONIC vs. RF FREQUENCY 42 45 80 P_{OUT} = -3dBm/TONE $P_{OUT} = -3dBm/TONE$ T_C = +25°C LSB, USB $P_{OUT} = 3dBm$ RF = 200MHz RF = 200MHz $T_C = -40^{\circ}C$ 40 41 70 2nd HARMONIC (dBc) OUTPUT IP3 (dBm) OUTPUT IP3 (dBm) 35 40 60 +85°C LSB, USB = $T_C = +25^{\circ}C$ ഗ 30 39 50 $T_C = +85^{\circ}C$ 40°C LSB, USB 40°C. +25°C, +85°C TONE = LSB, USB Tc Tc 25 38 40 96 128 160 192 224 256 32 64 Λ 4 8 12 16 20 24 28 32 0 50 250 450 650 1050 850 DIGITAL ATTENUATOR STATE (dB) DAC CODE RF FREQUENCY (MHz)

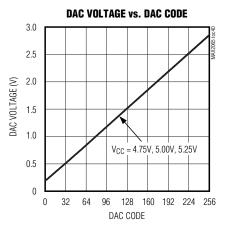
_Typical Operating Characteristics (continued)

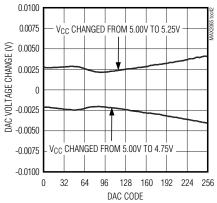

(V_{CC} = +5.0V, HC mode, both attenuators set for maximum gain, P_{IN} = -20dBm, f_{RF} = 200MHz, and T_{C} = +25°C, internal DAC reference used, unless otherwise noted.)

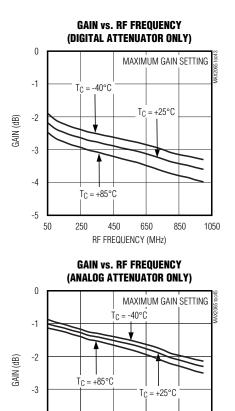



M /X / M


Typical Operating Characteristics (continued)


(V_{CC} = +5.0V, HC mode, both attenuators set for maximum gain, P_{IN} = -20dBm, f_{RF} = 200MHz, and T_{C} = +25°C, internal DAC reference used, unless otherwise noted.)





MAX2065

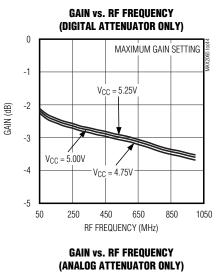
Typical Operating Characteristics (continued)

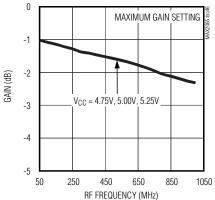
(Vcc = +5.0V, attenuator only, maximum gain, P_{IN} = -20dBm and T_C = +25°C, unless otherwise noted.)

-4

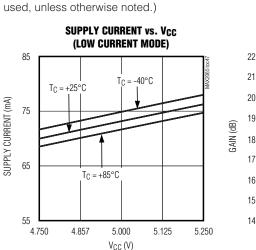
-5

50

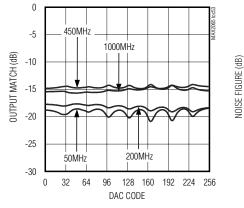

250

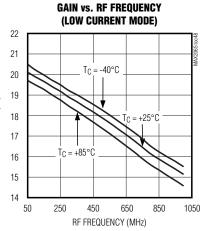

450

RF FREQUENCY (MHz)

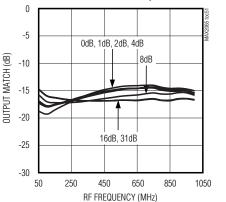

650

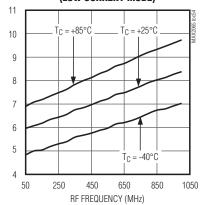
850


MAX2065



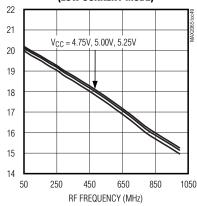
INPUT MATCH OVER DIGITAL ATTENUATOR Setting vs. RF Frequency


OUTPUT MATCH vs. ANALOG ATTENUATOR SETTING (LOW CURRENT MODE)

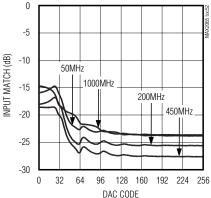


(Vcc = +5.0V, LC mode, both attenuators set for maximum gain, $P_{IN} = -20$ dBm, $f_{RF} = 200$ MHz, and $T_{C} = +25$ °C, internal reference

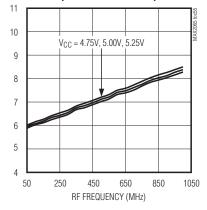
OUTPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY



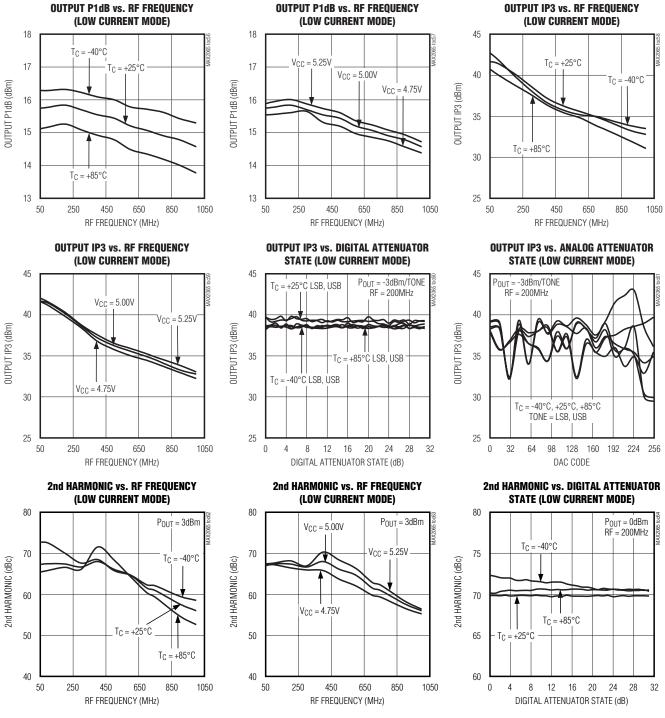
GAIN vs. RF FREQUENCY (LOW CURRENT MODE)


Typical Operating Characteristics (continued)

GAIN (dB)

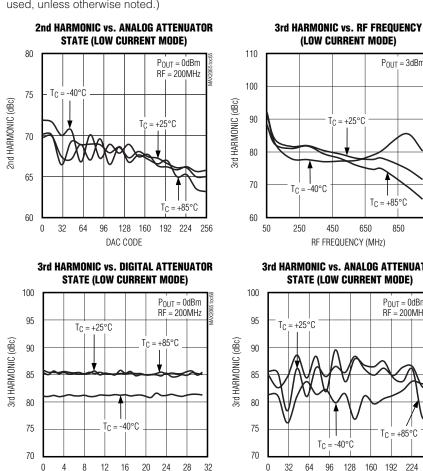

NOISE FIGURE (dB)

INPUT MATCH vs. ANALOG ATTENUATOR SETTING (LOW CURRENT MODE)

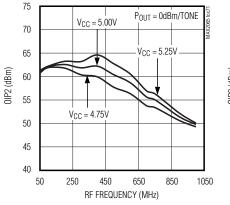


NOISE FIGURE vs. RF FREQUENCY (LOW CURRENT MODE)

Typical Operating Characteristics (continued)

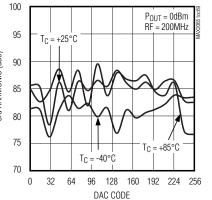

(Vcc = +5.0V, LC mode, both attenuators set for maximum gain, $P_{IN} = -20$ dBm, $f_{RF} = 200$ MHz, and $T_C = +25^{\circ}$ C, internal reference used, unless otherwise noted.)

M /X / M

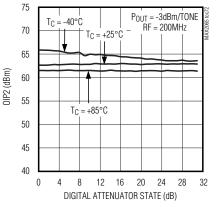

MAX2065

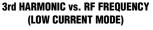
MAX2065

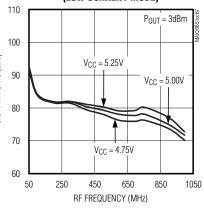
OIP2 vs. RF FREQUENCY (LOW CURRENT MODE)

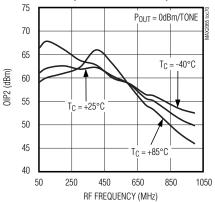


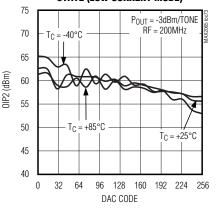
(V_{CC} = +5.0V, LC mode, both attenuators set for maximum gain, $P_{IN} = -20$ dBm, $f_{RF} = 200$ MHz, and $T_{C} = +25^{\circ}$ C, internal reference used, unless otherwise noted.)


(LOW CURRENT MODE) 110 $P_{OUT} = 3dBm$ 100 3rd HARMONIC (dBc) 90 T_C = +25°C

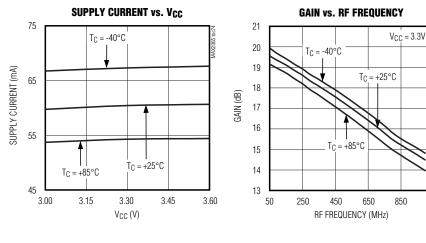

T_C = +85°C 650 850 1050

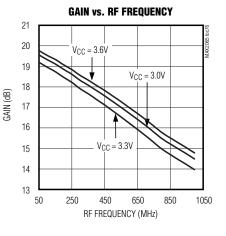

3rd HARMONIC vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE)


OIP2 vs. DIGITAL ATTENUATOR STATE (LOW CURRENT MODE)

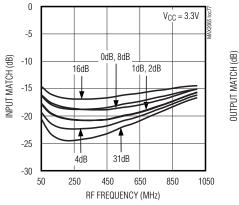


OIP2 vs. RF FREQUENCY (LOW CURRENT MODE)

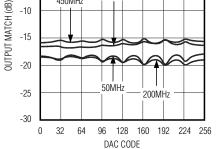

OIP2 vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE)

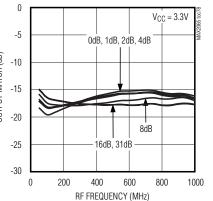


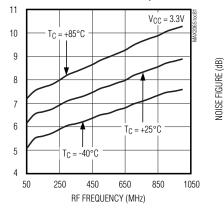
Typical Operating Characteristics (continued)


1050

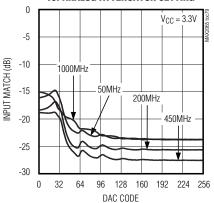
(V_{CC} = +3.3V, HC mode, both attenuators set for maximum gain, P_{IN} = -20dBm, f_{RF} = 200MHz, and T_{C} = +25°C, internal DAC reference used, unless otherwise noted.)



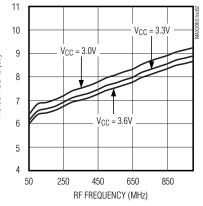

INPUT MATCH OVER DIGITAL ATTENUATOR Setting vs. RF Frequency


OUTPUT MATCH vs. ANALOG ATTENUATOR SETTING -5 -10

OUTPUT MATCH OVER DIGITAL ATTENUATOR Setting vs. RF Frequency



NOISE FIGURE vs. RF FREQUENCY



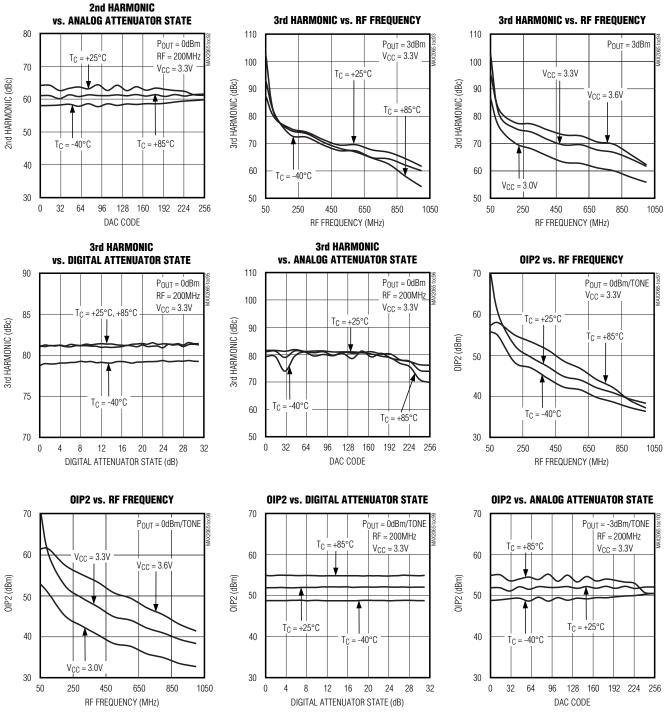
NOISE FIGURE (dB)

INPUT MATCH VS. ANALOG ATTENUATOR SETTING

NOISE FIGURE vs. RF FREQUENCY

(Vcc = +3.3V, HC mode, both attenuators set for maximum gain, $P_{IN} = -20$ dBm, $f_{RF} = 200$ MHz, and $T_{C} = +25^{\circ}$ C, internal DAC refer-

Typical Operating Characteristics (continued)


MAX2065

ence used, unless otherwise noted.) **OUTPUT P1dB vs. RF FREQUENCY OUTPUT P1dB vs. RF FREQUENCY OUTPUT IP3 vs. RF FREQUENCY** 17 17 50 $V_{CC} = 3.3V$ $V_{CC} = 3.3V$ 16 16 $V_{CC} = 3.3V$ $T_{\rm C} = -40^{\circ}{\rm C}$ $T_C = +25^{\circ}C$ 45 $V_{CC} = 3.6V$ 15 15 OUTPUT P1dB (dBm) OUTPUT P1dB (dBm) OUTPUT IP3 (dBm) 40 $T_C = +25^{\circ}C$ 14 14 -40°C 13 13 35 T_C = 12 12 T_C = +85°C 30 $V_{CC} = 3.0V$ 11 11 25 10 10 T_C = +85°C 9 9 20 250 50 450 650 850 1050 50 250 450 650 850 1050 50 250 450 650 850 1050 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) **OUTPUT IP3 OUTPUT IP3 OUTPUT IP3 vs. RF FREQUENCY** vs. DIGITAL ATTENUATOR STATE vs. ANALOG ATTENUATOR STATE 50 39 45 P_{OUT} = -3dBm/TONE P_{OUT} = -3dBm/TONE $V_{CC} = 3.3V$ $V_{CC} = 3.3V$ RF = 200MHz RF = 200MHz45 38 $V_{CC} = 3.3V$ 40 OUTPUT IP3 (dBm) OUTPUT IP3 (dBm) 40 OUTPUT IP3 (dBm) $V_{CC} = 3.6V$ 37 35 35 36 30 30 35 T_C = -40°C, +25°C, +85°C = -40°C, +25°C, +85°C Tc 25 TONE = LSB, USB TONE = LSB, USB $V_{CC} = 3.0V$ 20 34 25 4 32 64 0 8 12 16 20 24 28 0 96 128 160 192 224 256 250 450 650 850 1050 32 50 DIGITAL ATTENUATOR STATE (dB) DAC CODE RF FREQUENCY (MHz) 2nd HARMONIC vs. DIGITAL ATTENUATOR STATE 2nd HARMONIC vs. RF FREQUENCY 2nd HARMONIC vs. RF FREQUENCY 70 80 80 $P_{OUT} = 0 dBm$ P_{OUT} = 3dBm $P_{OUT} = 3dBm$ Tc = +85°C RF = 200MHz $V_{CC} = 3.3V$. T_C = +25°C 70 70 $V_{CC} = 3.3V$ $V_{CC} = 3.3V$ 65 2nd HARMONIC (dBc) 2nd HARMONIC (dBc) $V_{CC} = 3.6V$ 2nd HARMONIC (dBc) Гс = +85°С 60 60 4 60 50 50 T_C = +25°C 55 40 40 -40°C Tc = $T_{\rm C} = -40^{\circ}{\rm C}$ $V_{CC} = 3.0V$ 30 50 30 0 4 8 12 16 20 24 28 32 50 250 450 650 850 1050 50 250 450 650 850 1050 DIGITAL ATTENUATOR STATE (dB) RF FREQUENCY (MHz) RF FREQUENCY (MHz)

_Typical Operating Characteristics (continued)

(V_{CC} = +3.3V, HC mode, both attenuators set for maximum gain, P_{IN} = -20dBm, f_{RF} = 200MHz, and T_{C} = +25°C, internal DAC reference used, unless otherwise noted.)

M/IXI/M

afer-

Pin Description

PIN	NAME			DESCRIPTION			
1, 16, 19, 22, 24–28, 30, 31, 33–36	GND	Ground					
2	VREF_SELECT		•	ection Logic Input. Logic 1 = internal DAC reference voltage, nce voltage. Logic input disabled (don't care) when VDAC_EN = Logic 0.			
3	VDAC_EN	DAC Enable/	Disable Logic Ir	nput. Logic 0 = disable DAC circuit, Logic 1 = enable DAC circuit.			
4	DATA	SPI Data Dig	tal Input				
5	CLK	SPI Clock Dig	gital Input				
6	CS	SPI Chip-Sele	ect Digital Input				
7	VDD_LOGIC	Digital Logic	Supply Input				
8	SER/PAR	Digital Attenu Logic 1 = ser		allel Control Selection Logic Input. Logic 0 = parallel control,			
9	STATE_A	Digital Attenu	ator Preprogram	mmed Attenuation State Logic Input			
10	STATE_B	State A Logic = 0 Logic = 1 Logic = 0 Logic = 1	State B Logic = 0 Logic = 0 Logic = 1 Logic = 1	Digital Attenuator Preprogrammed State 1 Preprogrammed State 2 Preprogrammed State 3 Preprogrammed State 4			
11	D4	0	9	. Logic 0 = disable, Logic 1 = enable.			
11	D3		. .	Logic 0 = disable, Logic 1 = enable. Logic 0 = disable, Logic 1 = enable.			
12	D3			Logic $0 = \text{disable, Logic } 1 = \text{enable.}$			
13	D1			Logic $0 = \text{disable}$, Logic $1 = \text{enable}$.			
14	D0		<u> </u>	Logic $0 = \text{disable, Logic } 1 = \text{enable.}$			
17	AMP_OUT		ier Output (50 Ω	· · ·			
17	RSET			. See the <i>External Bias</i> section.			
20	AMP IN		ier Input (50 Ω)	. ככל והל באנטרומו שומס סטלוסוו.			
20	VCC_AMP		ier Supply Volta	ae Input			
23	ATTEN2_OUT		Attenuator Outp				
29	ATTEN2_IN	0					
32	ATTEN1_OUT	0	5-Bit Digital Attenuator Input (50Ω) Analog Attenuator Output (50Ω)				
37	ATTEN1_IN	Ŭ	Analog Attenuator Output (50 Ω)				
38	VCC_ANALOG	Ŭ	Analog Alteruator Input (502) Analog Bias and Control Supply Voltage Input				
39	ANALOG_VCTRL	Ŭ	Analog Blas and Control Supply Volage Input Analog Attenuator Voltage Control Input				
40	VREF_IN	0	External DAC Voltage Reference Input				
	EP	Exposed Pad		ected to GND. Connect EP to GND for proper RF performance and			

MAX2065

Detailed Description

The MAX2065 high-linearity analog/digital variable-gain amplifier is a general-purpose, high-performance amplifier designed to interface with 50Ω systems operating in the 50MHz to 1000MHz frequency range.

The MAX2065 integrates one digital attenuator and one analog attenuator to provide 62dB of total gain control, as well as a driver amplifier optimized to provide high gain, high IP3, low noise figure, and low power consumption. For applications that do not require high linearity, the bias current of the amplifier can be adjusted by an external resistor to further reduce power consumption.

The digital attenuator is controlled as a slave peripheral using either the SPI-compatible interface or a parallel bus with 31dB total adjustment range in 1dB steps. An added feature allows "rapid-fire" gain selection between each of the four unique steps (preprogrammed by the user through the SPI-compatible interface). The 2-pin control allows the user to quickly access any one of four customized attenuation states without reprogramming the SPI bus. The analog attenuator is controlled using an external voltage or through the SPI-compatible interface using an on-chip DAC. Because each of the three stages has its own external RF input and RF output, this component can be configured to either optimize NF (amplifier configured first), OIP3 (amplifier last), or a compromise of NF and OIP3. The device's performance features include 22dB standalone amplifier gain (amplifier only), 6.5dB NF at maximum gain (includes attenuator insertion loss for both attenuators), and a high OIP3 level of +42dBm. Each of these features makes the MAX2065 an ideal VGA for numerous receiver and transmitter applications.

Table 1. Control Logic

In addition, the MAX2065 operates from a single +5V supply, or a single +3.3V supply with slightly reduced performance, and has adjustable bias to trade current consumption for linearity performance.

Analog and 5-Bit Digital Attenuator Control

The MAX2065 integrates one analog attenuator and one 5-bit digital attenuator to achieve a high level of dynamic range. The analog attenuator has a 31dB range and is controlled using an external voltage or through the 3-wire serial peripheral interface (SPI) using an on-chip 8-bit DAC. The digital attenuator has a 31dB control range, a 1dB step size, and is programmed through the 3-wire SPI. See the *Applications Information* section and Table 1 for attenuator programming details. The attenuators can be used for both static and dynamic power control.

Driver Amplifier

The MAX2065 includes a high-performance driver with a fixed gain of 22dB. The driver amplifier circuit is optimized for high linearity for the 50MHz to 1000MHz frequency range.

Applications Information

SPI Interface and Attenuator Settings

The digital attenuator is programmed through the 3-wire SPI/MICROWIRE[™]-compatible serial interface using 5-bit words. Twenty-eight bits of data are shifted in MSB first and is framed by CS. When CS is low, the clock is active and data is shifted on the rising edge of the clock. When CS transitions high, the data is latched and the attenuator setting changes (Figure 1). See Table 2 for details on the SPI data format.

VDAC_EN	SER/PAR	VREF_SELECT	ANALOG ATTENUATOR	DIGITAL ATTENUATOR	D/A CONVERTER
0	0	х	Controlled by external control voltage	Parallel controlled	Disabled
1	0	1	Controlled by on-chip DAC	Parallel controlled	Enabled (DAC uses on- chip voltage reference)
0	1	Х	Controlled by external control voltage	SPI controlled	Disabled
1	1	0	Controlled by on-chip DAC	SPI controlled	Enabled (DAC uses external voltage reference)

X = Don't care.

MICROWIRE is a trademark of National Semiconductor Corp.

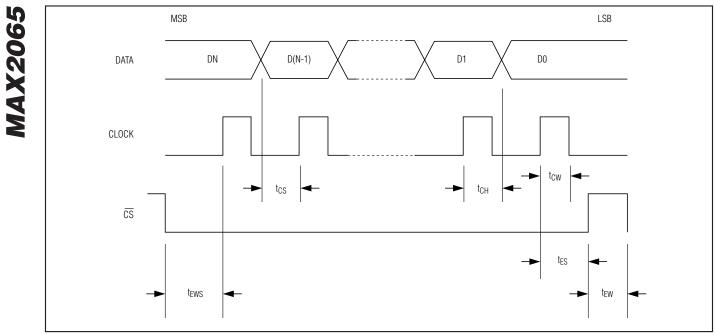


Figure 1. MAX2065 SPI Timing Diagram

Table 2. SPI Data Format

FUNCTION	BIT	DESCRIPTION
	D27 (MSB)	16dB step (MSB of the 5-bit word used to program the digital attenuator state 4)
	D26	8dB step
Digital Attenuator State 4	D25	4dB step
	D24	2dB step
	D23	1dB step (LSB)
	D22	
	D21	
Digital Attenuator State 3	D20	5-bit word used to program the digital attenuator state 3 (see the description for digital attenuator state 4)
	D19	
	D18	
	D17	
	D16	
Digital Attenuator State 2	D15	5-bit word used to program the digital attenuator state 2 (see the description for digital attenuator state 4)
	D14	
	D13	
	D12	
	D11	
Digital Attenuator State 1	D10	5-bit word used to program the digital attenuator state 1 (see the description for digital attenuator state 4)
	D9	
	D8	

FUNCTION	BIT	DESCRIPTION
	D7	Bit 7 (MSB) of on-chip DAC used to program the analog attenuator
	D6	Bit 6 of DAC
	D5	Bit 5 of DAC
On Chin DAC	D4	Bit 4 of DAC
On-Chip DAC	D3	Bit 3 of DAC
	D2	Bit 2 of DAC
	D1	Bit 1 of DAC
	D0 (LSB)	Bit 0 (LSB) of the on-chip DAC

Table 2. SPI Data Format (continued)

Attenuator and DAC Operation

The analog attenuator is controlled by an external control voltage applied at ANALOG_VCTRL (pin 39) or by the on-chip 8-bit DAC, while the digital attenuator is controlled through the SPI-compatible interface or parallel bus. The DAC enable/disable logic-input pin (VDAC_EN), digital attenuator SPI or parallel control selection logic-input pin (SER/PAR), and the DAC reference voltage selection logic-input pin (VREF_SELECT) determine how the attenuators are controlled. The onchip DAC can also be enabled or disabled. When the DAC is enabled, either the on-chip voltage reference or the external voltage reference can be selected. See Table 1 for the attenuator and DAC operation truth table.

Digital Attenuator Settings Using the Parallel Control Bus

To capitalize on its fast 25ns switching capability, the MAX2065 offers a supplemental 5-bit parallel control interface. The digital logic attenuator-control pins (D0–D4) enable the attenuator stages (Table 3).

Direct access to this 5-bit bus enables the user to avoid any programming delays associated with the SPI interface. One of the limitations of any SPI bus is the speed at which commands can be clocked into each peripheral device. By offering direct access to the 5-bit parallel interface, the user can quickly shift between digital attenuator states needed for critical "fast-attack" automatic gain control (AGC) applications.

"Rapid-Fire" Preprogrammed Attenuation States

The MAX2065 has an added feature that provides "rapid fire" gain selection between four preprogrammed attenuation steps. As with the supplemental 5-bit bus mentioned above, this "rapid fire" gain selection allows the user to quickly access any one of four customized digital attenuation states without incurring the delays associated with reprogramming the device through the SPI bus.

The switching speed is comparable to that achieved using the supplemental 5-bit parallel bus. However, by employing this specific feature, the digital attenuator I/O is further reduced by a factor of either 5 or 2.5 (5 control bits vs. 1 or 2, respectively) depending on the number of states desired.

INPUT	LOGIC = 0 (OR GROUND)	LOGIC = 1
D0	Disable 1dB attenuator, or when SPI is default programmer	Enable 1dB attenuator
D1	Disable 2dB attenuator, or when SPI is default programmer	Enable 2dB attenuator
D2	Disable 4dB attenuator, or when SPI is default programmer	Enable 4dB attenuator
D3	Disable 8dB attenuator, or when SPI is default programmer	Enable 8dB attenuator
D4	Disable 16dB attenuator, or when SPI is default programmer	Enable 16dB attenuator

The user can employ the STATE_A and STATE_B logicinput pins to apply each step as required (Table 4). Toggling just the STATE_A pin (one control bit) yields two preprogrammed attenuation states; toggling both the STATE_A and STATE_B pins together (two control bits) yield four preprogrammed attenuation states.

As an example, assume that the AGC application requires a static attenuation adjustment to trim out gain inconsistencies within a receiver lineup. The same AGC circuit can also be called upon to dynamically attenuate an unwanted blocker signal that could de-sense the receiver and lead to an ADC overdrive condition. In this example, the MAX2065 would be preprogrammed (through the SPI bus) with two customized attenuation states—one to address the static gain trim adjustment, the second to counter the unwanted blocker condition.

Table 4. Preprogrammed AttenuationState Settings

STATE_A	STATE_B	DIGITAL ATTENUATOR
0	0	Preprogrammed attenuation state 1
1	0	Preprogrammed attenuation state 2
0	1	Preprogrammed attenuation state 3
1	1	Preprogrammed attenuation state 4

Toggling just the STATE_A control bit enables the user to switch quickly between the static and dynamic attenuation settings with only one I/O pin.

If desired, the user can also program two additional attenuation states by using the STATE_B control bit as a second I/O pin. These two additional attenuation settings are useful for software-defined radio applications where multiple static gain settings may be needed to account for different frequencies of operation, or where multiple dynamic attenuation settings are needed to account for different blocker levels (as defined by multiple wireless standards).

Cascaded OIP3 Considerations

Due to both attenuator's finite IP3 performance, the cascaded OIP3 degrades when both attenuators are set at higher attenuation states.

External Bias

Bias currents for the driver amplifier are set and optimized through external resistors. Resistors R1 and R1A connected to RSET (pin 18) set the bias current for the amplifier. The external biasing resistor values can be increased for reduced current operation at the expense of performance.

Table 5. Typical Application Circuit Component Values (HC Mode)

DESIGNATION	VALUE	SIZE	VENDOR	DESCRIPTION
C1, C2, C7, C11	10nF	0402	Murata Mfg. Co., Ltd.	X7R
C3, C4, C6, C8, C9, C10	1000pF	0402	Murata Mfg. Co., Ltd.	COG ceramic capacitor
C12, C13	150pF	0402	Murata Mfg. Co., Ltd.	COG ceramic capacitor
L1	470nH	1008	Coilcraft, Inc.	1008CS-471XJLC
R1, R1A	10Ω	0402	Panasonic Corp.	1%
R2 (+3.3V applications only)	1kΩ	0402	Panasonic Corp.	1%
R3 (+3.3V applications only)	2kΩ	0402	Panasonic Corp.	1%
R4 (+5V applications and using internal DAC only)	47 k Ω	0402	Panasonic Corp.	1%
U1	_	40-pin thin QFN-EP (6mm x 6mm)	Maxim Integrated Products, Inc.	MAX2065ETL+

Table 6. Typical Application Circuit Component Values (LC Mode)

DESIGNATION	VALUE	SIZE	VENDOR	DESCRIPTION
C1, C2, C7, C11	10nF	0402	Murata Mfg. Co., Ltd.	X7R
C3, C4, C6, C8, C9, C10	1000pF	0402	Murata Mfg. Co., Ltd.	COG ceramic capacitor
C12, C13	150pF	0402	Murata Mfg. Co., Ltd.	COG ceramic capacitor
L1	470nH	1008	Coilcraft, Inc.	1008CS-471XJLC
R1	24Ω	0402	Vishay	1%
R1A	0.01µF	0402	Murata Mfg. Co., Ltd.	X7R
R2 (+3.3V applications only)	1kΩ	0402	Panasonic Corp.	1%
R3 (+3.3V applications only)	2kΩ	0402	Panasonic Corp.	1%
R4 (+5V applications and using internal DAC only)	47 k Ω	0402	Panasonic Corp.	1%
U1	_	40-pin thin QFN-EP (6mm x 6mm)	Maxim Integrated Products, Inc.	MAX2065ETL+

+5V and +3.3V Supply Voltage

The MAX2065 features an optional +3.3V supply voltage operation with slightly reduced linearity performance.

Layout Considerations

The pin configuration of the MAX2065 has been optimized to facilitate a very compact physical layout of the device and its associated discrete components.

The exposed paddle (EP) of the MAX2065's 40-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2065 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP **must** be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

Amplitude Overshoot Reduction

To reduce amplitude overshoot during digital attenuator state change, connect a bandpass filter (parallel LC type) from ATTEN2_OUT (pin 23) to ground. L = 18nH and C = 47pF are recommended for 169MHz operation (Figure 2). Contact the factory for recommended components for other operating frequencies.

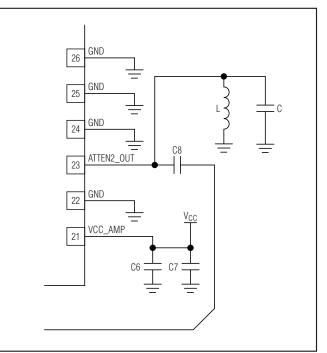
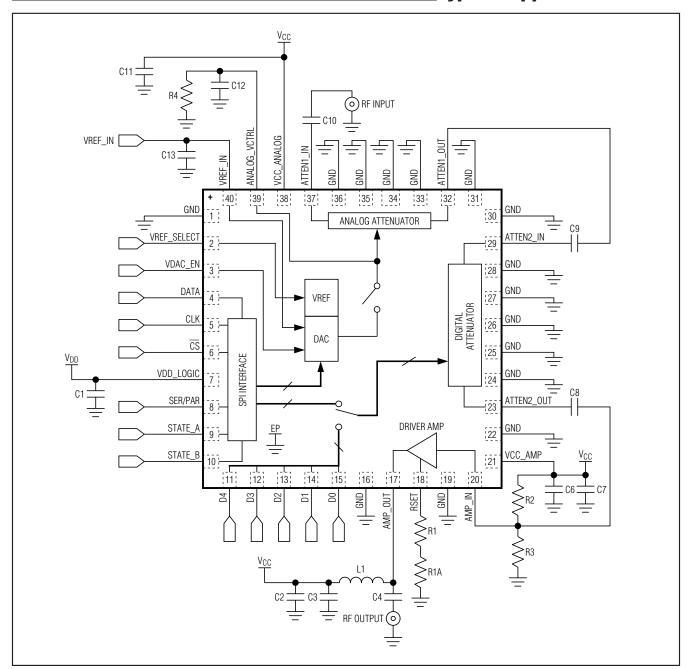
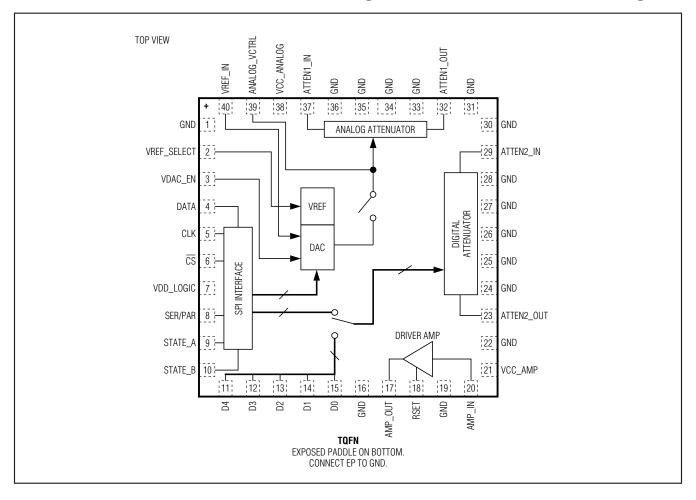
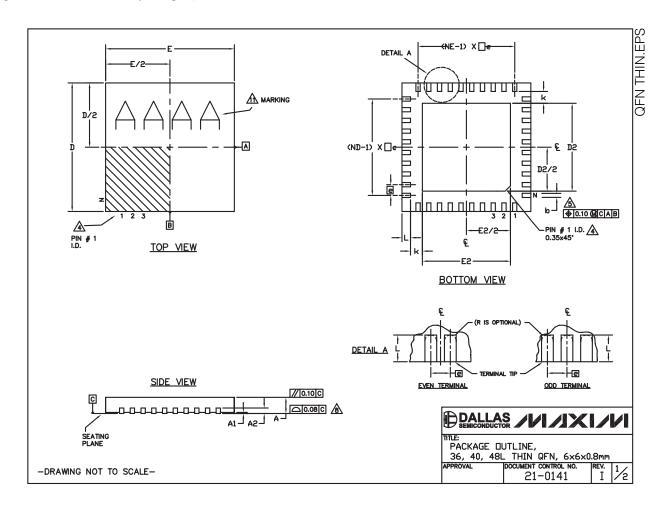




Figure 2. Bandpass Filter to Reduce Amplitude Overshoot

Typical Application Circuit

MAX2065

_Pin Configuration/Functional Block Diagram


Chip Information

PROCESS: SiGe BiCMOS

MAX2065

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

MAX2065

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

			cc	MMON	DIMENS	IONS						EXPC	osed P/	d varia	TIONS			
PKG).	36L 6>	6		40L 6x6			48L 6x6		1	PKG.		D2			E2		
SYME	BOL MI	I. NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	1	CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T3666-2	3.60	3.70	3.80	3.60	3.70	3.80	
A1	0	0.02	0.05	0	0.02	0.05	0	-	0.05		T3666-3	3.60	3.70	3.80	3.60	3.70	3.80	
A2	2	0.20 RE	F.		0.20 REF.			0.20 REF.		1	T3666N-1	3.60	3.70	3.80	3.60	3.70	3.80	
b	0.2	0.25	0.30	0.20	0.25	0.30	0.15	0.20	0.25	1	T3666MN-1	3.60	3.70	3.80	3.60	3.70	3.80	
D	5.9) 6.00	6.10	5.90	6.00	6.10	5.90	6.00	6.10]	T4066-2	4.00	4.10	4.20	4.00	4.10	4.20	
E	5.9) 6.00	6.10	5.90	6.00	6.10	5.90	6.00	6.10		T4066-3	4.00	4.10	4.20	4.00	4.10	4.20	
e		0.50 BS	<u>. </u>		0.50 BSC			0.40 BSC			T4066-5	4.00	4.10	4.20	4.00	4.10	4.20	
k	0.2	i –	-	0.25	-	-	0.25	-	-		T4866-1	4.40	4.50	4.60	4.40	4.50	4.60	
L	0.3	0.50	0.65	0.30	0.40	0.50	0.30	0.40	0.50		T4866N-1	4.40	4.50	4.60	4.40	4.50	4.60	
N		36			40			48			T4866-2	4.40	4.50	4.60	4.40	4.50	4.60	
NE	D	9			10			12		. '								
NE	E	9			10			12										
JEDE	EC	WJJD-1			WJJD-2		1	-										
1. DIMEN 2. ALL 1 3. N IS	DIMENSI THE TO	INS ARE	IN MII		ERS. A	NGLES	ARE	IN DEG	REES.] ION SH	HALL CONFI		го					
4. THE 1 JESD □R M/ 5. DIMEN 0.30mr 6. ND AN 7. DEPDF 8. C□PL/ 9. DRAW	DIMENSI THE TE TERMINA 95-1 S TED WI ARKED F ISION 6 m FROM ND NE F PULATIE ANARITY ING COM	INS ARE TAL NU L #1 II PP-012. HIN TH EATURE APPLIE TERMIN REFER 1 APPLIE APPLIE	IN MI MBER D ENTIFIE DETAJ E ZONE S TO M AL TIP. O THE JSSIBLE IS TO 1	LIMET TERN R ANI LS OF INDIC ETALL NUMBE IN A 'HE EX	ERS, A MINALS TERM TERM ATED. IZED T R OF T SYMME (POSED	INGLES INAL N INAL # THE TE ERMINA TERMINA TERMINA TRICAL HEAT	ARE : UMBER I IDEN RMINA SE ANI ALS DI FASH SINK	IN DEG ING CE ITIFIER I #1 I D IS ME N EACH IIDN. SLUG (REES. INVENT RARE I DENTIF EASURE I D AN AS WEL	DPTION TER MA D BET' D E SI	HALL CONFI AL, BUT MI AY BE EITH WEEN 0.25r DE RESPEC THE TERMI	UST 1 HER A nm AN CTIVE NALS	BE MOL ND :LY.					
1. DIMEN 2. ALL 1 3. N IS 4. THE 1 JESD LICAT OR MA 0.30mr 6. ND AN 7. DEPDI 8. COPLA 9. DRAW	DIMENSI THE TC TERMINA 95-1 S TED WI ARKED F VSIDN 6 M FROM ND NE F PULATIC ANARITY ING CD AGE T48 AGE SH ING IS ER OF I	UNS ARI TAL NU L #1 II PP-012. HIN TH EATURE APPLIE TERMIN REFER T N IS PI APPLIE IFORMS 366-1. ALL NO FOR PAG EADS S	IN MII MBER DI ENTIFIE DETAJ ZONE S TO M AL TIP. O THE JSSIBLE SS TO J TO JED EXCEE XAGE D HOWN F	LLIMET TERI R ANI LS OF INDIC ETALL NUMBE IN A HE EX EC MO RIENT OR RE	ERS. A MINALS TERM TERM ATED. IZED T SYMME (POSED 220, E mm. ATION FEREN	NGLES INAL N INAL # THE TE ERMINA TERMINA TRICAL HEAT XCEPT REFERI CE UNL	ARE : UMBER I IDEN RMINA ALS DI FASH SINK FOR C ENCE I	IN DEG ING CE ITIFIER ITIFIER I HI I D IS ME N EACH HIDN. SLUG A J.4mm L	REES. JNVENT ARE I DENTIF EASURE 1 D AN AS WEL EAD P	JPTION IER MA D BET' D E SI LL AS ITCH	AL, BUT MI AY BE EITH WEEN 0.25r DE RESPEC THE TERMI	UST I HER A MM AN CTIVE NALS	BE MDL ND CLY. AICONDA (AGE 40, 4		LINE,	QFN,	5 x6x	

MAX2065

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____ 27

is a registered trademark of Maxim Integrated Products, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310