Product Highlights

- Precision Zero Crossing Detection
- Integrated Zero Crossing Detection with $\pm 1 \%$ Accuracy
- High Frequency Noise Filter
- $4^{\text {th }}$ Order Low-Pass Filter (LPF)
- $4^{\text {th }}$ Order Band-Pass Filter (BPF)
- Configurability for Ease of Use
- User Selectable Filter Configuration (LPF or BPF)
- Selectable Input Frequency
- Power Saving Stand-By Mode
- Programmable DC Averaging Timer
- Saves PCB Space and Bill of Materials (BOM) Cost
- No External Precision Filter Capacitor Required
- 10 -Pin $\mu \mathrm{MAX}$ package $3 \mathrm{~mm} \times 3 \mathrm{~mm}$

For more product highlights, see Detailed Description.
Key Applications

- Industrial Lighting Dimming

The integrated filters eliminate the flicker and provide up to 75% reduction in PCB footprint compared to a discrete solution requiring multiple amplifiers, comparators, and precision filter capacitors and resistors. The MAX22707 features a low-power, precision analog filter based on the switchedcapacitor technology designed for precision filtering of $A C$ input noise. The device requires only a simple external input network preceding the AC inputs and no additional external components for the filters. The MAX22707 is rated for the operation at ambient temperatures of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

- AC Phase Detection

The integrated solution with user selectable filter configuration improves zero-crossing detection with $\pm 1 \%$ accuracy. The available filter types are the fourth order BPF and LPF. The DC averaging filter capacitor function is used for the LPF.

- Flexible Zero Crossing Detection

The MAX22707 supports two basic input frequencies which depend on the filter type. If the band-pass is selected, the frequency selection mode control pin (MC) is used to choose between 50 Hz and 60 Hz . If the low-pass is selected, the same pin is used to choose between $50 / 60 \mathrm{~Hz}$ and $100 / 120 \mathrm{~Hz}$ signal band. To select between sine and rectified inputs, the rectified select pin (RS) is used.

Pin Description

Ordering Information appears at end of data sheet.

Simplified Application Diagram

Absolute Maximum Ratings$V_{C C}$ to GND
\qquad
\qquadEN, RS, MC, FS to GND......-0.3V to $\operatorname{Min}\left(+6 \mathrm{~V},\left(\mathrm{~V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)\right) \mathrm{V}$
INP, INM to GND

\qquad
$-\left(\mathrm{V}_{\mathrm{CC}}+0.3\right) \mathrm{V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right) \mathrm{V}$Short Circuit Duration (ZCO to GND)
\qquad ContinuousContinuous Current (INP, INM to GND)
\qquad 20mA
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)

10-pin μ MAX (derate $8.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... 707.3 mW	
Temperature Ratings	
Operating Temperature Range..	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\ldots .+150^{\circ} \mathrm{C}$
Storage Temperature Range.	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 1s $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow).	+2

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

10- μ MAX

Package Code	U10+6C
Outline Number	21-0061
Land Pattern Number	90-0330
Thermal Resistance, Single Layer Board:	
Junction-to-Ambient (UJA) $^{\text {a }}$	180
Junction-to-Case Thermal Resistance ($\mathrm{JJc}_{\text {) }}$	42
Thermal Resistance, Four Layer Board:	
Junction-to-Ambient ($\mathrm{JJA}^{\text {) }}$	113.1
Junction-to-Case Thermal Resistance (Jsc $^{\text {) }}$	42

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{GND}}=3.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER (VCc, GND)						
Positive Supply Voltage	V_{CC}		3.0	5.0	5.5	V
Positive Supply Current	$I_{C C}$	$\mathrm{EN}=\mathrm{V}_{\mathrm{CC}}$		0.7	1.0	mA
		$\mathrm{EN}=\mathrm{GND}$			2.0	$\mu \mathrm{A}$
Undervoltage-Lockout Threshold	V ${ }_{\text {UVLO }}$	$\mathrm{V}_{\text {CC }}$ rising	1.7	2.2	2.6	V
Undervoltage-Lockout Threshold Hysteresis	V ${ }_{\text {UVHYST }}$			50		mV
DIGITAL LOGIC INTERFACE (MC, FS, RS, EN, ZCO)						
Input Voltage High	V_{IH}		$0.7 \mathrm{x} \mathrm{V}_{\text {CC }}$			V
Input Voltage Low	V_{IL}				$0.3 \times V_{C C}$	V
Input Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$	$V_{C C}=3 V$		300		mV
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		550		
Input leakage Current	ILK		-1		+1	$\mu \mathrm{A}$

$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{GND}}=3.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
Input Capacitance	$\mathrm{C}_{\text {IN }}$		2		pF
Output Logic H High Leakage Current	$\mathrm{IOH}_{\mathrm{OLK}}$	$\mathrm{ZCO}, \mathrm{V}_{\mathrm{ZCO}}=5.5 \mathrm{~V}$		+1	$\mu \mathrm{~A}$
Output Voltage Low	V_{OL}	$\mathrm{ZCO}, \mathrm{I}_{\mathrm{OUT}}=4 \mathrm{~mA}$		0.4	V

ANALOG SIGNAL INTERFACE (INP, INM)

Peak to peak Differential Voltage $\left\|\mathrm{V}_{\text {INP }}-\mathrm{V}_{\text {INM }}\right\|$ (Note 2, Note 3)	V ${ }_{\text {DF_PK }}$	All input configurations. See the Input Types: Bipolar and Unipolar.		0.8	V
Differential Input common-mode voltage	V ${ }_{\text {DF_CM }}$	SE or DF Input	Type 1	0	V
		DF Input	Type 2	0.625	
		SE Input	Type 2	1.25	
INM Voltage	$\mathrm{V}_{\text {INM }}$	SE Input	Type 3, 4	0	V

FILTER CHARACTERISTICS, FS = $\mathbf{0}$ (LOW PASS FILTER)

Upper Passband Frequency	$\begin{gathered} \hline \mathrm{f}_{\mathrm{C}} \text { LPF_PASS_ } \\ 60 \\ \hline \end{gathered}$	MC = '0', -3dB		56		Hz
	$\begin{gathered} \hline \mathrm{f}_{\mathrm{C}} \mathrm{LPF}_{-} \mathrm{STOP}_{-} \\ 60 \\ \hline \end{gathered}$	MC = '0', -25dB		168		
	$\begin{gathered} \hline \mathrm{f}_{\mathrm{C}} \text { LPF_PASS_ } \\ 120 \\ \hline \end{gathered}$	MC = '1', -3dB		112		
	$\begin{gathered} \hline \mathrm{f}_{\mathrm{C}} \mathrm{LPF}_{1} \text { STOP_ } \\ 120 \end{gathered}$	MC = '1', -25dB		336		
Slope in Transition		Between passband edge and stopband edge		-80		dB/dec
FILTER CHARACTERISTICS, FS $=1$ (BAND PASS FILTER)						
Upper Passband Frequency	f_{C} _BPF_PASS UP 50	Mode = '0', -3dB		86		Hz
Lower Passband Frequency	$\begin{gathered} \mathrm{f}_{\mathrm{C}} \text { BPF_PASS_ } \\ \text { LO } 50 \end{gathered}$	Mode = '0', -3dB		27		Hz
Upper Passband Frequency	$\begin{gathered} \hline \text { fC_BPF_PASS_ } \\ \text { UP } 60 \\ \hline \end{gathered}$	Mode = '1', -3dB		96		Hz
Lower Passband Frequency	$\begin{gathered} \hline \mathrm{f}_{\mathrm{C}} \text { BPF_PASS_ } \\ \text { LO } 60 \end{gathered}$	Mode = '1', -3dB		37		Hz
Slope in Transition		Between passband edge and stopband edge		-40		dB/dec
ZERO CROSSING DETECTION, FS=0 (LOW PASS FILTER)						
Zero Crossing Time Delay (Note 4)	$\begin{gathered} t_{D _} \text {LPF_ZCR_6 } \\ 0 \end{gathered}$	FS = MC = RS = '0', Total Time Delay with 60 Hz input, $D C A P=220 n F ; T_{A}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. See the Input Types: Bipolar and Unipolar.	6.6	7.7	9.2	msec
Zero Crossing Time Delay (Note 4)	$\frac{t_{D _F W _Z C R _12}}{0}$	FS = '0', MC = RS = ' 1 ', Total Time Delay with 120 Hz input, $D C A P=220 n F ; T_{A}=$ $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. See the Input Types: Bipolar and Unipolar.	-4.5	-3.7	-2.8	msec
Zero Crossing Time Delay (Note 4)	tD_HW_ZCR_60	FS = MC = '0', RS = '1', Total Time Delay with 60 Hz input, $D C A P=220 n F ; T_{A}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. See the Input Types: Bipolar and Unipolar.	5.3	6.2	7.5	msec

$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{GND}}=3.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Crossing Time Delay Repeatability (Note 4), (Note 5)	$\begin{gathered} \Delta t_{D_{-}} L P F_{6} Z C R_{-} \\ 60 \end{gathered}$	FS = MC = RS = '0', Total Time Delay Variation with 60 Hz input, DCAP $=$ $220 \mathrm{nF} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-16		+16	$\mu \mathrm{sec}$
Zero Crossing Time Delay Repeatability (Note 5)	$\begin{gathered} \Delta \mathrm{t}_{\mathrm{D}} \mathrm{FW} \mathrm{~F}_{120} \mathrm{ZCR} \end{gathered}$	FS = '0', MC = RS = '1', Total Time Delay Variation with 120 Hz input, DCAP $=$ $220 \mathrm{nF} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-20		+20	$\mu \mathrm{sec}$
Zero Crossing Time Delay Repeatability (Note 4), (Note 5)	$\begin{gathered} \Delta \mathrm{t}_{\mathrm{D}_{-} H W_{2}} \mathrm{ZCR} \end{gathered}$	FS = MC = '0', RS = '1' Total Time Delay Variation with 60 Hz input, DCAP $=$ $220 \mathrm{nF} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-16		+16	$\mu \mathrm{sec}$
Zero Crossing Comparator Reference		FS = '0'		$V_{\text {DCAP }}$		V

ZERO CROSSING DETECTION, FS=1 (BAND PASS FILTER)

Zero Crossing Time Delay (Note 4)	$\begin{gathered} \mathrm{t}_{\mathrm{D} _} \mathrm{BPF} \mathrm{O}_{0} \mathrm{ZCR} \text { _5 } \\ \hline \end{gathered}$	FS = '1', MC = '0', Total Time Delay with 50 Hz input; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. See the Input Types: Bipolar and Unipolar.	-200	0	200	$\mu \mathrm{sec}$
	$\begin{gathered} \text { tD_BPF_ZCR_6 }_{0} \\ \hline \end{gathered}$	FS = '1', MC = ' 1 ', Total Time Delay with 60 Hz input; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. See the Input Types: Bipolar and Unipolar.	-200	0	200	
Zero Crossing Time Delay Repeatability (Note 4) ,(Note 5)	$\Delta t_{\text {D_BPF_Z }}$	FS = '1', Total Time Delay Variation with 50 Hz or 60 Hz input	-21		+21	$\mu \mathrm{sec}$
ZC Comparator Reference		FS = '1'		INM		
PROTECTION						
ESD Protection (All Pins to GND)		Human Body Model		± 2		kV

Note 1: All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: Differential input is between INP and INM.
Note 3: Input voltage is signal without noise.
Note 4: Measurement performed with noise $\left(\mathrm{V}_{\text {NOISE }}=\mathrm{V}_{\text {IN_RMS }} / 17\right.$ and $\left.\mathrm{f}_{\text {NOISE }}=4 \times \mathrm{f}_{\text {SIG }}\right)$ added to input signal. $\mathrm{V}_{\text {IN_RMS }}$ is the RMS voltage of the input signal and $f_{I N}$ is the input frequency (e.g. $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$). For Type 1 , 2 , and 4 inputs, $f_{S I G}=f_{\text {IN }}$ while for Type 3 inputs, f SIG $=2 \times \mathrm{fIN}$. Input frequency must vary less than 1% of nominal.
Note 5: Repeatability refers to cycle-to-cycle variation of the delay for a single part and applies for a single set of conditions (i.e., fixed input frequency and fixed input amplitude).

Typical Operating Characteristics

($\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{GND}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Configurations

Pin Descriptions

PIN	NAME	FUNCTION	Type
1	INP	Input Positive AC Voltage (Line)	Analog Input
2	INM	Input Negative AC Voltage (Neutral). Connect based on input configuration.	Analog Input
3	DCAP	DC averaging capacitor for LPF mode. Connect a 220nF capacitor to ground. When using BPF mode connect DCAP to ground.	Analog Output
4	GND	Ground return.	Supply

5	VCC	Positive Supply, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V . Bypass V_{CC} to GND with a $0.1 \mu \mathrm{~F}$ capacitor	Supply
6	ZCO	Zero Crossing Open-Drain Output	Digital Output
7	RS	Rectified Input Selection. Set to 0 for sine wave input or set to 1 for rectified input.	Digital Input
8	MC	Mode Control. When FS $=0$ (LPF): Set to 0 for $50 / 60 \mathrm{~Hz}$ or Set to 1 for $100 / 120 \mathrm{~Hz}$. When FS $=1$ (BPF): Set to 0 for 50 Hz or set to 1 for $60 \mathrm{Hz}$.	Digital Input
9	FS	Filter Selection. Set to 0 for Low Pass Filter (LPF) or Set to 1 for Band Pass Filter (BPF).	Digital Input
10	EN	Set to 1 to Enable. Set to 0 to power down.	Digital Input

Functional Block Diagram

Detailed Description

The MAX22707 precision zero crossing detector provides a reliable and repeatable zero crossing detection signal based on an AC line input. The use of switched-capacitor filters helps to ensure minimal zero-crossing delay while tracking change in the input frequency and provides higher precision and a more inherently stable output than discrete solutions.
The MAX22707 features a low-power, precision analog filter based on the switched-capacitor technology designed for precision filtering of AC input noise. The device requires only a simple external input network preceding the AC inputs and no additional external components for the filters. The two different filter types can be selected by the Filter Selection pin (FS). The available filter types are the fourth order BPF and LPF. The DC averaging filter capacitor function is used for the latter.
The MAX22707 supports two standard line frequencies $(50 \mathrm{~Hz}$ and 60 Hz$)$ for both the filter types as well as rectified inputs in the case of LPF. If the BPF is selected, then the frequency selection Mode Control pin (MC) is used to select between 50 Hz and 60 Hz . If the LPF is selected, then the same pin is used to choose between $50 / 60 \mathrm{~Hz}$ or $100 / 120 \mathrm{~Hz}$ signal band (see Table 1). The Rectified Select pin (RS) is used to select between sine and rectified units (see_Table 2). The MAX22707 is available in a compact 10 -pin $\mu \mathrm{MAX}$ package and operates over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Mode Control

The combination of Mode Control (MC) and Filter Select (FS) inputs determine the application mode from Type 1 to 4 as described in the section Input Types: Bipolar and Unipolar.
Table 1. Mode Control - Selecting the Input Frequency

Mode Control (MC)	Filter Select (FS) $\mathbf{= 0 ,}$ LPF	Filter Select (FS) = 1, BPF
0	$50 / 60 \mathrm{~Hz}$	50 Hz
1	$100 / 120 \mathrm{~Hz}$	60 Hz

Input Stage Requirements

The input stage connected to the MAX22707 is comprised of a voltage divider that attenuates the high voltage AC line to the device input level and an anti-aliasing filter for the internal switched capacitor circuits. The MAX22707 handles both asymmetrical (SE) and symmetrical (DF) and bipolar and unipolar signals with the appropriate device configuration (FS, MC and RS) and the input network components.
When the LPF is selected ($F S=0$), then the input stage has high voltage input with high ohmic series resistors $(>100 \mathrm{k} \Omega$) in series and voltage divider to generate properly scaled single ended input signal to MAX22707 inputs (INP, INM). When the BPF is selected ($F S=1$), then the input stage has the differential high voltage input with high ohmic series resistors ($>100 \mathrm{k} \Omega$) in series and properly matched resistor divider feeding to the MAX22707 inputs (INP, INM). For the input types, see Input Types: Bipolar and Unipolar. For the input network configurations, see Input Network.

Negative Input

When bipolar input mode is selected, the inputs INP and INM must stay between $+\mathrm{V}_{\mathrm{CC}}$ and $-\mathrm{V}_{\mathrm{CC}}$. The input signal is filtered and compared with the ground reference to provide the zero-crossing signal.

Rectified Input Selection

The combination of Rectified Selection (RS) and Filter Select (FS) inputs determine the correct configuration for input Types 1 and 2 (Sinewave) or Type 3 (fully rectified) and Type 4 (half rectified).
Table 2. Rectified Selection

Rectified Selection (RS)	Filter Select (FS) $=\mathbf{0}$, LPF	Filter Select (FS) = 1, BPF
0	Sinewave	Not a Valid State
1	Rectified	Not a Valid State

Filters

The MAX22707 has two different types of filters, LPF and BPF, which are selected by the FS input pin (low for LPF or high for BPF). When the LPF is selected, an external capacitor must be included at the DCAP pin to provide DC averaged reference for the zero-crossing detection operation.

Input Types: Bipolar and Unipolar

The MAX22707 requires an external R-C input network to attenuate the AC line input to acceptable signal levels, while also providing the anti-aliasing filtering (as required with a sampled system using switched capacitors). The output of the input network is a differential signal that is applied to the INP and INM pins, after which it is converted to a single-ended signal and level shifted to maximize the filter input and output ranges. The MAX22707 has six different input configurations, two bipolar and four unipolar, defined as Type 1 to 4 and described in the following figures:

Type 1: Bipolar Input, Single Ended Sinusoidal	Type 1: Bipolar Input, Differential Sinusoidal
LPF or BPF - Type 1 input Single Ended / Bipolar $\begin{aligned} & V_{I D}=V_{I N P}-V_{I N M}=V_{I N P} \quad V_{C C}(T Y P)=3.3 V \\ & \mathrm{fiN}=50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{aligned}$	BPF - Type 1 input $\mathrm{V}_{\mathrm{ID}}=\mathrm{V} / \mathrm{NP}-\mathrm{V}_{\text {INM }}=\mathrm{V}$ INP Fully Differential / Bipolar $\mathrm{VCC}(\mathrm{TYP})=3.3 \mathrm{~V}$ $\mathrm{fIN}=50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
$\mathrm{ZCO} \quad \longleftrightarrow \mathrm{tD} \mathrm{XPF} \quad \longleftrightarrow \mathrm{ZCR}_{\text {fin }}$	

Type 3: Fully Rectified, Single Ended Sinusoidal Input	Type 4: Half Rectified, Single Ended Sinusoidal Input
LPF - Type 3 input Single ended / Unipolar $\begin{aligned} & V_{\text {ID }}=V_{\text {INP } P} V_{\text {INM }}=V_{\text {INP }} \quad V_{C C}(T Y P)=3.3 \mathrm{~V} \\ & \mathrm{fiN}=100 \mathrm{~Hz} / 120 \mathrm{~Hz} \end{aligned}$	LPF - Type 4 input Single ended / Unipolar $\begin{aligned} & V_{I D}=V_{\mathbb{N P} P}-V_{I N M}=V_{\mathbb{N P}} \quad V_{C C}(T Y P)=3.3 \mathrm{~V} \\ & f_{\text {iN }}=50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{aligned}$

Applications Information

Input Network

The external input network attenuates the input from AC line to the MAX22707 acceptable input range and performs antialiasing for the switched capacitor filters. See the Figure 1 for the Input network for low pass configuration (left) and the Figure 2 for the input network for band pass configuration (right).

See below tables for input network values, Table 3 for the LPF Configuration and Table 4 for the BPF Configuration. The values shown for the input network for each input configuration attenuate $280 \mathrm{~V}_{\mathrm{AC}}$ to $2.5 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}$ and limit the bandwidth to 5 kHz . The component values below may be modified for different AC standards while ensuring a $2.5 \mathrm{~V}_{\mathrm{pk} \text {-pk }}$ full-scale signal at MAX22707 inputs and maintaining a high input series resistance ($>100 \mathrm{k} \Omega$). If the $A C$ input has been attenuated, in the case of the LPF input configuration R1 and R2 may be omitted.
Table 3. Input Network Values for the LPF Configuration

Input network configuration	Type	Input	$\mathbf{R 1}(\boldsymbol{\Omega})$	$\mathbf{R 2}(\boldsymbol{\Omega})$	$\mathbf{R 3}(\boldsymbol{\Omega})$	$\mathbf{C}_{0}(\mathbf{n F})$	$\mathbf{V}_{\text {BIAS }}(\mathbf{V})$
LPF	1	SE	200 k	633	1447	22	0
	2	SE	200 k	633	1447	22	1.25
	3,4	SE	200 k	1271	1447	22	0

Table 4. Input Network Values for the BPF Configuration

Input network configuration	Type	Input	$\mathbf{R 1}(\Omega)$	$\mathbf{R 0}(\Omega)$	$\mathbf{C}_{0}(\mathbf{n F})$	$\mathbf{V}_{\text {BIAS1 }}(\mathbf{V})$	$\mathbf{V}_{\text {BIAS2 }}(\mathbf{V})$
BPF	1	DF	229 k	1452	22	0	n / a
	1	SE	229 k	1452	22	n / a	0
	2	DF	229 k	1452	22	0.625	n / a
	2	SE	229 k	1452	22	n / a	1.25

Full Wave Rectified Inputs

As listed in the Electrical Characteristics, the delay repeatability is performed without noise. This is vital in the full-wave rectified case since any imperfection of the rectified input signal results in worse zero-crossing time delay repeatability. The repeatability as specified in the Electrical Characteristics applies for an ideal full wave rectified signal.
The imperfection may result from the method of rectification or from the noise. In either case, the magnitude of the delay repeatability is larger than for an ideal signal since the input waveform is not periodic. As an example of the former case, a full wave rectified input is commonly generated as a composite signal. Given the tolerance of discrete components, some finite phase delay exists between the various paths of the constituent signals, resulting in phase delay between adjacent lobes of the rectified signal and worse zero-crossing delay repeatability.

Power Supply

The MAX22707 does not require special power supply sequencing. It is recommended to bypass V_{CC} supply with a $0.1 \mu \mathrm{~F}$ low-ESR ceramic capacitor placed as close to the device V_{CC} pin as possible.

ESD and EMC Testing

The MAX22707 is required to operate reliably in harsh industrial environments. The device can meet the transient immunity requirements as specified in IEC 61000-4, including Electrostatic Discharge (ESD) per IEC 61000-4-2, Electrical Fast Transient/Burst (EFT) per IEC 61000-4-4, and Surge Immunity per IEC 61000-4-5. Maxim's proprietary process technology provides robust input channels and power supply with internal ESD structures and high Absolute Maximum Ratings, but external components are also required to absorb excessive energy from ESD and surge transients. For more information on the input circuit schematic and components, refer to the MAX22707 EV Kit data sheet that allows MAX22707 to meet transient levels as listed in Table 5.

Table 5. ESD and Transient Immunity Characteristics

| PARAMETER | SYMBOL | CONDITIONS | VALUE | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Surge | $\begin{array}{c}\text { IN_ to Earth } \\ \text { GND }\end{array}$ | $\geq 100 \mathrm{k} \Omega$ input resistor from Line to System / Earth Ground, IEC 61000-4-5 | | |
| | | | | |$)$

Layout Considerations

The PCB designer should follow some critical recommendations to get the best performance from the design:

- Keep the input/output traces as short as possible. To keep signal path low inductance, avoid using vias.
- Have a solid ground plane underneath the input-output signal layer.
- Ensure to have ground keep-out from high voltage input interface.
- Ensure to maintain right creepage and clearance between components and traces at the input network until the signal is low voltage.

Typical Application Circuits

The MAX22707 can be used with any combination of input types (single ended/differential inputs) and polarity (unipolar/bipolar). Different R-C attenuation networks are recommended for the different input configurations the MAX22707 can be used in. See the Input Network section to calculate the input network components for the specific input level and type. Table 6 shows the applications modes.
Table 6. Application Modes

FS	MC	RS	Mode	Refer to Figure
0	0	0	Sinewave input, $50 / 60 \mathrm{~Hz}, \mathrm{LPF}$	Figure 3, Figure 4
0	1	0	Not a Valid State	N/A
0	1	1	Full Wave Rectified Input, $50 / 60 \mathrm{~Hz}$, LPF	Figure 5
0	0	1	Half Wave Rectified Input, $100 / 120 \mathrm{~Hz}, \mathrm{LPF}$	Figure 6
1	0	0	Sinewave input, $50 \mathrm{~Hz}, \mathrm{BPF}$	$\underline{\text { Figure 8, Figure 9 }}$
1	1	0	Sinewave input, $60 \mathrm{~Hz}, \mathrm{BPF}$	Figure 7, Figure 10
1	0	1	Not a Valid State	N/A
1	1	1	Not a Valid State	N/A

LPF for the Bipolar Sinewave Single Ended 50/60Hz Input

Figure 3. LPF for the Bipolar Sinewave Single Ended $50 / 60 \mathrm{~Hz}$ Input

LPF for the Unipolar Biased Single Ended 50/60Hz Input

Figure 4. LPF for the Unipolar Biased Single Ended 50/60Hz Input

LPF for the Full-Rectified 100/120Hz Input

Figure 5. LPF for the Full-Rectified $100 / 120 \mathrm{~Hz}$ Input

LPF for the Half-Rectified 50/60Hz Input

Figure 6. LPF for the Half-Rectified 50/60Hz Input

BPF for the Bipolar Differential 60Hz Input

Figure 7. BPF for the Bipolar Differential 60 Hz Input

BPF for the Bipolar Single Ended 50Hz Input

Figure 8. BPF for the Bipolar Single Ended 50Hz Input

BPF for the Unipolar Biased Differential 50Hz Input

Figure 9. BPF for the Unipolar Biased Differential 50Hz Input

BPF for the Unipolar Biased Single Ended 60Hz Input

Figure 10. BPF for the Unipolar Biased Single Ended 60Hz Input
Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX22707AUB +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 -pin $\mu \mathrm{MAX}$
MAX22707AUB +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 -pin $\mu \mathrm{MAX}$

+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape-and reel.
Chip Information
PROCESS: BiCMOS

Revision History

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $12 / 21$ | Release for Market Intro | CHANGED |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057
FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C PD0922J5050D2HF 1E1305-3 1G1304-30 B0922J7575AHF 2020-6622-20 TP-102-PIN TP-103-PIN BD1222J50200AHF

