Click here to ask about the production status of specific part numbers.

MAX25205

Gesture Sensor for Automotive Applications

General Description

The MAX25205 is a low-cost data-acquisition system for gesture and proximity sensing. The MAX25205 recognizes the following independent gestures:

- Hand swipe gestures (left, right, up, and down)
- Finger and hand rotation (CW and CCW)
- Proximity detection

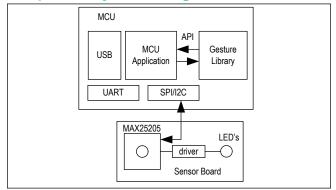
The proximity, hand detection, and gesture recognition functions of the MAX25205 operate by detecting the light reflected from the controlled IR-LED light source with an integrated 6x10-element optical sensor array. The MAX25205 can detect these gestures even when exposed to bright ambient light. A low-power, low-cost CPU, such as the MAX32630, is required to process the data from the sensor.

This discrete light source is created externally with one or more FETs driven directly from the MA25205. The light source's PWM duty cycle is programmable from 1/16 to 16/16. The LEDs are pulsed on one or more times in a programmable sequence that is repeated for every sample.

For flexibility, the MAX25205 supports two different serial communication protocols: I^2C (400kHz) and SPI (6MHz).

The MAX25205 is available in a 4mm x 4mm, 20-pin, optical QFN package.

Applications


- Central Information Display Control
- Rear-Seat Entertainment Systems
- Door, Moon Roof, and Trunk Control
- Mechanical Switch Replacement
- Occupant Detection

Benefits and Features

- Low-Cost, Flexible Gesture-Sensing Solution for Automotive Applications
- Low-Power, Low-Cost External CPU Processes Sensor Output
- Supports Swipe, Rotation, and Proximity Gestures
- Highly Integrated
 - 60-Pixel IR Photodiode Array
 - Integrated LED Driver
 - 400kHz I²C and 6MHz SPI Serial Interfaces
- Operates in 120k Lux Ambient Light
- AEC-Q100 Qualified
 - -40°C to +85°C Operation
 - MSL1
- Ultra-Low-Power Operation
 1mA at 3.3V
- Compact 4mm x 4mm x 1.35mm, 20-Pin, Side-Wettable QFN Package

Ordering Information appears at end of datasheet.

Simplified System Diagram

TABLE OF CONTENTS

General Description
Applications
Benefits and Features
Simplified System Diagram
Absolute Maximum Ratings
Package Information
4mm x 4mm QFN
Electrical Characteristics
Pin Configuration
MAX25205
Pin Description
Functional Diagrams
Block Diagram
Detailed Description
Recommended Operating Conditions
Register Map
MAX25205
Register Details
Applications Information
Principle of Operation
Operation Mode
CDS Mode 0
CDS Mode 1
MAX25205 Sample-Sequence Timing
Array Orientation
I ² C Serial Interface
Enabling I ² C or SPI communications
START and STOP Conditions
Early STOP Conditions
Acknowledge
Write Data Format
Read Data Format
SPI Interface
Typical Application Circuits
Typical Application Circuit with External FET LED Drive
Typical Application Circuit with Internal Current Drive
Ordering Information
Revision History

Gesture Sensor for Automotive Applications

LIST OF FIGURES

Figure 1. Timing Setting: NCDS = 2, NRPT = 2, CRST = 1	. 29
Figure 2. Timing Setting: NCDS = 2, NRPT = 2, CRST = 0	. 29
Figure 3. Array Orientation Relative to Pin 1	. 30
Figure 4. START, REPEAT START, STOP Conditions	. 30
Figure 5. ACKNOWLEDGE	. 31
Figure 6. Write 1 Byte	. 32
Figure 7. Write n Bytes	. 32
Figure 8. Reading 1 Byte of Indexed Data	. 33
Figure 9. Reading n Bytes of Indexed Data	. 33
Figure 10. SPI Write	. 34
Figure 11. SPI Read	. 34

LIST OF TABLES

Table 1. Recommended Operating Conditions	11
Table 2. Sequence Timing Specification	29
Table 3. I ² C Slave Address	31

Gesture Sensor for Automotive Applications

Absolute Maximum Ratings

LDO_IN to GND	
PGND to GND	
V _{LED} , DRV to GND	0.3V to 3.6V
LDO_OUT to GND	0.3V to 2.2V
V _{DD} to GND	0.3V to 2.2V
V _{DDIO} to GND	0.3V to 6V
CS, SCL, SDA, INT, SYNC, SEL to GND	00.3V to V _{DDIO} + 0.3V
DOUT, ELED to GND	0.3V to V _{DDIO} + 0.3V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

4mm x 4mm QFN

Package Code	Q2044Y+2
Outline Number	<u>21-100404</u>
Land Pattern Number	<u>90-100083</u>
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ_{JA})	25.1 (C/W)
Junction to Case (θ_{JC})	4.7 (C/W)

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

Electrical Characteristics

(MAX25205 Typical Application Circuit, V_{DDIO} = 1.7V to 5.5V, LDO_IN = 2.7V to 5.5V, V_{LED} = 2.7V to 3.6V, LDO_OUT connected to V_{DD} . T_A = -40°C to +85°C. Typ values: V_{DDIO} = 3.3V, LDO_IN = 3.3V, V_{LED} = 3.3V, T_A = +25°C. (Note 1) Default register settings (Note 3).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC Characteristics						
LDO_IN Supply Voltage	LDO IN	Note 2	2.7	3.3	5.5	V
LDO_OUT Supply Voltage	LDO_OUT		1.7	1.8	2.0	V
V _{DD} Supply Voltage	V _{DD}	Note 2	1.7	1.8	2.0	V
Logic Supply Voltage	V _{DDIO}	Note 2	1.7	3.3	5.5	V
LDO_IN Current	ILDO_IN	LDO_OUT connected to V _{DD} .		0.8		mA
Shutdown Current	I _{SHDN}	Register 0x02 Bit 7 = 1		6		μA
Power-Up Time	T _{ON}	$\frac{Note 4}{V_{LDO}_{OUT}} = V_{DD} = 1.7V,$ $V_{LDO}_{IN} = V_{DDIO} = 2.7V$		6		ms

Electrical Characteristics (continued)

(MAX25205 Typical Application Circuit, V_{DDIO} = 1.7V to 5.5V, LDO_IN = 2.7V to 5.5V, V_{LED} = 2.7V to 3.6V, LDO_OUT connected to V_{DD} . T_A = -40°C to +85°C. Typ values: V_{DDIO} = 3.3V, LDO_IN = 3.3V, V_{LED} = 3.3V, T_A = +25°C. (Note 1) Default register settings (Note 3).)

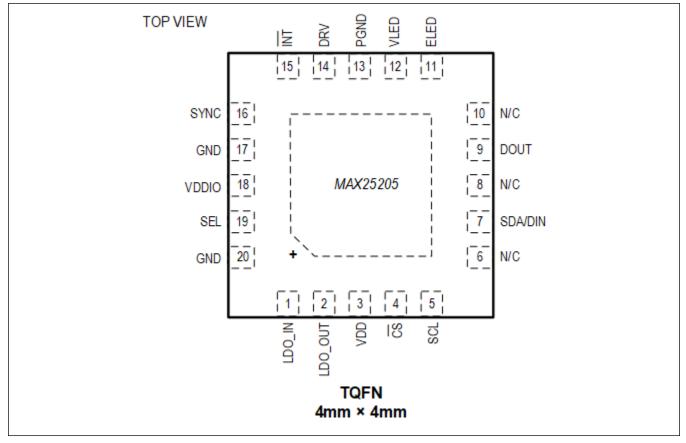
PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS	
IR LED DRIVER								
			DRV[3:0] = 0000		0			
			DRV[3:0] = 0001	13.3				
			DRV[3:0] = 0010		26.7			
			DRV[3:0] = 0011		40			
			DRV[3:0] = 0100		53.3			
			DRV[3:0] = 0101		66.7]	
			DRV[3:0] = 0110		80]	
		DRV Voltage =	DRV[3:0] = 0111		93.3		1	
LED Current	I _{LED}	1.8V	DRV[3:0] = 1000		106.7		mA	
			DRV[3:0] = 1001		120]	
			DRV[3:0] = 1010		133.3]	
			DRV[3:0] = 1011		146.7]	
			DRV[3:0] = 1100		160			
			DRV[3:0] = 1101		173.3		l	
			DRV[3:0] = 1110		186.7		-	
			DRV[3:0] = 1111	180	200	220		
LED Current Accuracy		I _{LED} = 200mA, V _D	_{RV} = 0.8V to 3.6V	-10		10	%	
IR RECEIVER CHARACT	ERISTICS	·	·					
Optical Response		with irradiance = 1 scale = 16384 cou	External 940nm collimated light source with irradiance = 175μ W/cm ² . ADC full scale = 16384 counts. Optical response is the average response of the center four pixels. <i>Note 5</i>				Counts	
DIGITAL CHARACTERIS	TICS							
Output Low-Voltage SDA, INT	V _{OL}	I _{SINK} = 6mA, oper	n-drain outputs			0.4	V	
Output Low-Voltage DOUT, SYNC, ELED	V _{OL}	I _{SINK} = 1mA, CMC	OS outputs			0.4	V	
Output High Voltage DOUT, SYNC, ELED	V _{OH}	I _{SOURCE} = 1mA, (CMOS outputs	0.75 x V _{DDIO}			V	
Leakage Current						1.0	μA	
Input Low Voltage SDA/ DIN, SCL, SEL, CS, SYNC	V _{IL}					0.3 x V _{DDIO}	v	
Input High Voltage SDA/ DIN, SCL, SEL, CS, SYNC	V _{IH}			0.7 x V _{DDIO}			v	
Input Capacitance					3		pF	

Electrical Characteristics (continued)

(MAX25205 Typical Application Circuit, V_{DDIO} = 1.7V to 5.5V, LDO_IN = 2.7V to 5.5V, V_{LED} = 2.7V to 3.6V, LDO_OUT connected to V_{DD} . T_A = -40°C to +85°C. Typ values: V_{DDIO} = 3.3V, LDO_IN = 3.3V, V_{LED} = 3.3V, T_A = +25°C. (Note 1) Default register settings (Note 3).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Internal Oscillator Frequency			2.5	2.56	2.62	MHz
I ² C TIMING CHARACTER	RISTICS SDA, S	CL				
I ² C Clock Rate	f _{SCL}	Note 2			400	kHz
SCL Pulse Width	t _{LOW}	Note 4	1.3			
	t _{HIGH}	<u>Note 4</u>	0.6			- μs
Data Hold Time	t _{HD}	Note 4	0		900	ns
Data Setup Time	ts∪	Note 4	100			ns
SPI TIMING CHARACTE	RISTICS <u>CS,</u> SC	L, DIN and DOUT				
SCL Frequency	fCLK	<u>Note 2</u>			6	MHz
SCL Pulse Width High	t _{CH}	Note 4	75			ns
SCL Pulse Width Low	t _{CL}	Note 4	75			ns
CS Fall to SCL Rise Setup Time	tcss	<u>Note 4</u>	25			ns
DIN to SCL Rise Setup Time	t _{DS}	Note 4	20			ns
DIN to SCL Rise Hold Time	t _{DH}	<u>Note 4</u>	10			ns

Note 1: Limits are 100% tested at $T_A = +25^{\circ}C$ and $T_A = +85^{\circ}C$. Operation at $T_A = -40^{\circ}C$ is guaranteed by design and characterization. **Note 2:** Condition of production test.


Note 3: Default register settings 0x01 = 0x04, 0x02 = 0x02, 0x03 = 0x04, 0x04 = 0xAC, 0x05 = 0x08, 0x06 = 0x0A, 0xC1 = 0x0A, 0xA5 = 0x88, 0xA5 = 0x88, 0xA5 = 0x88, 0xA6 = 0x88, 0xA7 = 0x88, 0xA8 = 0x88, 0xA9 = 0x88.

Note 4: Not production tested. Guaranteed by design and characterization.

Note 5: Count up A, eliminate B mode. Default register setting with the following exceptions: 0x04 = 0xAE, 0x05 = 0x00.

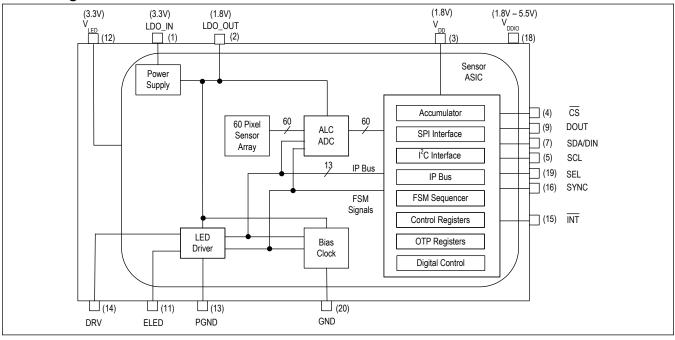
Pin Configuration

MAX25205

Pin Description

PIN	NAME	F	REF SUPPLY	TYPE		
1	LDO_IN		nnect to low-noise (V_N <150m V_{PP}) 3.3V supply through a $\Omega\Omega$ resistor. Bypass with at least a 2.2µF ceramic capacitor. e <i>Typical Application Circuits</i> .			
2	LDO_OUT	Bypass with a 1.0µF ceramic <u>Circuits</u> . Connect to V _{DD} (Pin	1.8V	Regulated Output		
3	V _{DD}	Connect to LDO_OUT(Pin 2) digital circuitry.	1.8V	Power		
4	cs	SPI Chip Select/I ² C Address CS Write Address 0 9E 1 A0	Chip Select/I ² C Address Select S Write Address Read Address 9E 9F			

Gesture Sensor for Automotive Applications


Pin Description (continued)

PIN	NAME	FUNCTION	REF SUPPLY	TYPE
5	SCL	I^2C Serial Clock. For I^2C operation, pull up to V_{DDIO} with 4.7k Ω .	V _{DDIO}	Input
6, 8, 10	NC	Connect to ground.		No Connect
7	SDA/DIN	When the SEL pin is connected to V _{DD} , Pin 7 becomes SDA for I ² C communication. When the SEL pin is connected to GND, Pin 7 becomes DIN or SPI communication. For I ² C operation, pull SDA up to V _{DDIO} with 4.7k Ω .	V _{DDIO}	Input/Output
9	DOUT	SPI Data Out	V _{DDIO}	Output
11	ELED	External LED CMOS Level Voltage PWM Drive Output. This pin drives the gate of either a p-channel FET or an n-channel FET. A resistor in series with the FET's drain limits the maximum pulse current supplied to the external LED. ELED output level for a logic low is 0V and for a logic high is V_{DDIO} . Note : When using a 1.8V V_{DDIO} , a MOSFET with very low threshold voltage (V_{TH} <1V), should be used to ensure minimal R _{DS(ON)} .	V _{DDIO}	Output
12	V _{LED}	ESD Protection for DRV Pin. Internal protection diodes clamp negative pulses to ground and positive pulses to the same supply used to supply the external LED. Bias V_{LED} at 3.3V for typical applications. If the DRV pin is not used, it should be grounded to PGND.	V _{LED}	Power
13	PGND	LED driver ground when DRV pin is used to drive LED		GND
14	Direct LED Current Drive. When the MAX25205 is configured for direct LED drive, connect the DRV pin to the cathode of the LED.		VLED	Output
15	ĪNT	Interrupt Signal. At the end of a conversion sample sequence, the INT pin goes low. The host μ P can monitor this pin to determine when the ADC output registers are ready to be read. INT pin should be pulled up with a 4.7k Ω resistor to V _{DDIO} . The status register 0x00 must be read once for the INT pin to become active.	V _{DDIO}	Input/Output
16	External Synchronization Pin. Driving SYNC with a controlled		V _{DDIO}	Input/Output
18	V _{DDIO}	Digital I/O Supply Pin. The digital I/O is compatible with 1.8V, 3.3V, or 5V CMOS logic levels.	V _{DDIO}	Power
19	SEL	Serial Interface Mode Select: SEL = V _{DD} : I ² C SEL = GND: SPI	V _{DDIO}	Input
17, 20	GND	Ground		GND
EP	Backside Paddle	This pin must be connected to ground.		Backside Paddle

Gesture Sensor for Automotive Applications

Functional Diagrams

Block Diagram

Detailed Description

The proximity, hand-detection, and gesture-recognition functions are achieved by detecting the light reflected from the controlled IR-LED light source while rejecting ambient light. An integrated 6x10-element optical sensor array performs the light measurements. This discrete light source is created externally with one or more FETs driven directly from the MA25205. The light source's PWM duty cycle is programmable from 1/16 to 16/16. The LEDs are pulsed on one or more times in a programmable sequence. This pulse sequence is repeated for every sample. A low-power, low-cost CPU such as the MAX32630 is required to process the data from the sensor.

Recommended Operating Conditions

Table 1. Recommended Operating Conditions

PARAMETER	PIN NAME	MIN	ТҮР	MAX	UNIT	
	LDO_IN	2.7	3.3	5.5		
Supply Range	V _{DD}	1.7	1.8	2		
	V _{DDIO}	1.7	3.3	5.5	V	
Bias Range	V _{LED}	2.7	3.3	3.6		
Movimum Supply Noice	LDO_IN		150		m)/	
Maximum Supply Noise	V _{DD}		50		mV _{P-P}	

Register Map

MAX25205

ADDRESS	NAME	MSB							LSB
STATUS	1		1	1		1	1	ı	L
0x00	INTERRUPT STATUS[7:0]	-	-	_	PWRON	_	EOCINT S	_	_
CONFIGUR	ATION								
0x01	MAIN CONFIGURATION 1[7:0]	-	E	EXSYNC[2:0)]	-	EOCINT E	-	_
0x02	MAIN CONFIGURATION 2[7:0]	SHDN	RESET	_	SYNC	OSEN	OSTRIG	_	_
0x03	SEQ CONFIGURATION 1[7:0]		SDL	Y[3:0]	1		TIM[2:0]	1	_
0x04	SEQ CONFIGURATION 2[7:0]		NRPT[2:0]			NCDS[2:0]		CDSMO DE	_
0x05	AFE CONFIGURATION[7:0]	-	ALC_CO ARSE	-	-	ALCEN	-	PGA	[1:0]
0x06	LED CONFIGURATION[7:0]	-	-	-	-		DRV	/[3:0]	
ADC									
0x10	ADC00H[7:0]	_	_	_	_	_	_	_	_
0x11	ADC00L[7:0]	_	-	_	-	_	_	_	_
0x12	ADC01H[7:0]	_	-	_	-	_	_	_	_
0x13	ADC01L[7:0]	_	-	-	-	-	-	-	_
0x14	ADC02H[7:0]	_	_	_	-	_	_	_	_
0x15	ADC02L[7:0]	_	-	_	-	-	-	-	_
0x16	ADC03H[7:0]	-	-	-	-	-	-	-	-
0x17	ADC03L[7:0]	_	-	_	-	-	-	-	_
0x18	ADC04H[7:0]	_	-	-	-	-	-	-	_
0x19	ADC04L[7:0]	_	_	_	-	_	_	_	_
0x1A	ADC05H[7:0]	-	-	_	-	_	_	_	_
0x1B	ADC05L[7:0]	_	_	_	-	_	_	_	_
0x1C	ADC06H[7:0]	-	-	-	-	-	-	-	_
0x1D	ADC06L[7:0]	-	-	_	-	-	-	-	_
0x1E	ADC07H[7:0]	_	-	_	_	_	-	-	_
0x1F	ADC07L[7:0]	_	-	_	-	_	_	_	_
0x20	ADC08H[7:0]	_	-	_	_	_	-	_	_
0x21	ADC08L[7:0]	_	_	_	_	_	_	_	_
0x22	ADC09H[7:0]	_	-	-	_	_	_	_	_
0x23	ADC09L[7:0]	_	-	_	-	-	-	-	_
0x24	ADC10H[7:0]	_	_	_	_	_	_	_	_

Gesture Sensor for Automotive Applications

ADDRESS	NAME	MSB							LSB
0x25	ADC10L[7:0]	-	-	-	-	-	-	-	_
0x26	ADC11H[7:0]	_	_	_	-	-	-	_	_
0x27	ADC11L[7:0]	_	_	-	-	-	-	-	-
0x28	ADC12H[7:0]	_	_	-	-	-	-	-	-
0x29	ADC12L[7:0]	_	_	-	-	_	-	_	_
0x2A	ADC13H[7:0]	_	_	_	-	_	-	_	_
0x2B	ADC13L[7:0]	_	_	-	-	_	-	_	_
0x2C	ADC14H[7:0]	-	_	-	-	_	-	_	_
0x2D	ADC14L[7:0]	-	_	-	-	-	-	_	_
0x2E	ADC15H[7:0]	-	_	-	-	-	-	-	-
0x2F	ADC15L[7:0]	-	_	-	-	-	-	_	_
0x30	ADC16H[7:0]	-	_	-	-	_	-	_	_
0x31	ADC16L[7:0]	-	_	-	-	-	-	-	-
0x32	ADC17H[7:0]	-	-	-	-	-	-	-	-
0x33	ADC17L[7:0]	-	_	-	-	-	-	-	-
0x34	ADC18H[7:0]	-	_	-	-	-	-	-	-
0x35	ADC18L[7:0]	-	_	-	-	-	-	-	-
0x36	ADC19H[7:0]	-	_	-	-	-	-	-	-
0x37	ADC19L[7:0]	-	_	-	-	-	-	-	-
0x38	ADC20H[7:0]	-	-	-	-	-	-	-	-
0x39	ADC20L[7:0]	-	_	-	-	-	-	-	-
0x3A	ADC21H[7:0]	-	_	-	-	-	-	-	-
0x3B	ADC21L[7:0]	—	_	-	-	-	-	-	-
0x3C	ADC22H[7:0]	-	_	-	-	-	-	-	-
0x3D	ADC22L[7:0]	-	_	-	-	-	-	_	_
0x3E	ADC23H[7:0]	-	-	-	-	-	-	-	-
0x3F	ADC23L[7:0]	-	_	-	-	-	-	-	-
0x40	ADC24H[7:0]	—	_	-	-	-	-	-	-
0x41	ADC24L[7:0]	-	_	-	-	-	-	-	
0x42	ADC25H[7:0]	-	_	-	-	-	-	_	
0x43	ADC25L[7:0]	-	_	-	-	-	-	_	_
0x44	ADC26H[7:0]	-	_	-	-	-	-	_	
0x45	ADC26L[7:0]	-	_	-	-	-	-	_	_
0x46	ADC27H[7:0]	-	_	-	-	-	-	_	_
0x47	ADC27L[7:0]	-	_	-	-	-	-	_	_
0x48	ADC28H[7:0]	-	-	-	-	-	-	-	-
0x49	ADC28L[7:0]	-	-	-	-	-	-	-	-
0x4A	ADC29H[7:0]	-	-	-	-	-	-	-	-
0x4B	ADC29L[7:0]	-	-	-	-	-	-	-	-
0x4C	ADC30H[7:0]	-	_	-	-	-	-	_	_
0x4D	ADC30L[7:0]	-	-	-	-	-	-	-	-

Gesture Sensor for Automotive Applications

ADDRESS	NAME	MSB							LSB
0x4E	ADC31H[7:0]	_	_	-	-	-	-	-	-
0x4F	ADC31L[7:0]	_	_	_	-	-	-	-	-
0x50	ADC32H[7:0]	_	_	-	-	-	-	-	-
0x51	ADC32L[7:0]	_	_	-	-	-	-	-	-
0x52	ADC33H[7:0]	_	_	-	-	-	-	-	-
0x53	ADC33L[7:0]	_	_	-	-	-	-	-	-
0x54	ADC34H[7:0]	_	_	-	-	-	-	-	-
0x55	ADC34L[7:0]	_	_	_	-	_	_	_	_
0x56	ADC35H[7:0]	_	_	-	-	_	_	_	_
0x57	ADC35L[7:0]	-	_	-	-	_	_	_	_
0x58	ADC36H[7:0]	-	_	-	-	_	_	_	-
0x59	ADC36L[7:0]	_	_	-	-	_	_	_	_
0x5A	ADC37H[7:0]	-	_	-	-	-	-	-	-
0x5B	ADC37L[7:0]	-	_	-	-	_	_	_	-
0x5C	ADC38H[7:0]	-	_	-	-	_	_	_	-
0x5D	ADC38L[7:0]	-	_	-	-	-	-	-	-
0x5E	ADC39H[7:0]	-	_	-	-	_	_	_	-
0x5F	ADC39L[7:0]	-	_	-	-	-	-	-	-
0x60	ADC40H[7:0]	-	_	-	-	_	_	_	_
0x61	ADC40L[7:0]	-	_	-	-	-	-	-	-
0x62	ADC41H[7:0]	-	_	-	-	-	-	-	-
0x63	ADC41L[7:0]	-	_	-	-	-	-	-	-
0x64	ADC42H[7:0]	-	_	-	-	-	-	-	-
0x65	ADC42L[7:0]	-	_	-	-	-	-	-	-
0x66	ADC43H[7:0]	-	-	-	-	-	-	-	-
0x67	ADC43L[7:0]	-	-	-	-	-	-	-	-
0x68	ADC44H[7:0]	-	_	-	-	-	-	-	-
0x69	ADC44L[7:0]	-	_	-	-	-	-	-	-
0x6A	ADC45H[7:0]	-	_	-	-	-	-	-	-
0x6B	ADC45L[7:0]	-	_	-	-	-	-	-	-
0x6C	ADC46H[7:0]	-	-	-	-	-	-	-	-
0x6D	ADC46L[7:0]	-	_	-	-	-	-	-	-
0x6E	ADC47H[7:0]	-	_	-	-	-	-	-	-
0x6F	ADC47L[7:0]	-	_	-	-	-	-	-	-
0x70	ADC48H[7:0]	-	_	-	-	_	_	_	-
0x71	ADC48L[7:0]	-	-	-	-	-	-	-	-
0x72	ADC49H[7:0]	-	-	-	-	-	-	-	-
0x73	ADC49L[7:0]	-	-	-	-	-	-	-	-
0x74	ADC50H[7:0]	-	-	-	-	_	_	-	-
0x75	ADC50L[7:0]	-	_	-	-	_	_	_	-
0x76	ADC51H[7:0]	-	-	-	-	-	-	-	-

Gesture Sensor for Automotive Applications

ADDRESS	NAME	MSB							LSB
0x77	ADC51L[7:0]	-	_	_	-	_	_	_	_
0x78	ADC52H[7:0]	-	-	_	-	_	-	_	_
0x79	ADC52L[7:0]	-	-	-	-	-	-	-	-
0x7A	ADC53H[7:0]	-	_	_	-	_	-	_	_
0x7B	ADC53L[7:0]	-	-	-	-	-	-	-	-
0x7C	ADC54H[7:0]	-	-	-	-	-	-	-	-
0x7D	ADC54L[7:0]	-	_	_	-	_	-	_	_
0x7E	ADC55H[7:0]	-	_	_	-	_	_	_	_
0x7F	ADC55L[7:0]	-	_	_	-	_	_	_	_
0x80	ADC56H[7:0]	-	_	_	-	_	-	_	_
0x81	ADC56L[7:0]	-	_	_	-	_	_	_	_
0x82	ADC57H[7:0]	-	_	-	-	-	-	-	-
0x83	ADC57L[7:0]	-	_	_	-	_	_	_	_
0x84	ADC58H[7:0]	-	_	_	-	_	_	_	_
0x85	ADC58L[7:0]	-	_	_	-	_	-	_	_
0x86	ADC59H[7:0]	-	_	_	-	_	_	_	_
0x87	ADC59L[7:0]	-	-	-	-	-	-	-	-
CHANNEL	GAIN TRIMS			•	•			•	
0xA5	<u>COLUMN GAIN 2.</u> 1[7:0]		CGAI	N2[3:0]			CGAII	N1[3:0]	
0xA6	<u>COLUMN GAIN 4.</u> 3[7:0]		CGAI	N4[3:0]			CGAII	N3[3:0]	
0xA7	<u>COLUMN GAIN 6.</u> 5[7:0]		CGAI	N6[3:0]			CGAII	N5[3:0]	
0xA8	<u>COLUMN GAIN 8.</u> 7[7:0]		CGAI	N8[3:0]			CGAII	N7[3:0]	
0xA9	<u>COLUMN GAIN 10,</u> 9[7:0]		CGAIN	110[3:0]		CGAIN9[3:0]			
LED CONTROL									
0xC1	LED_CTRL[7:0]	_	_	_	_	GAINSE L	DRV_EN	ELED_E N	ELED_P OL

Register Details

INTERRUPT STATUS (0x00)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	PWRON	-	EOCINTS	-	-
Reset	-	-	-		_		-	-
Access Type	-	-	-	Read Only	-	Read Only	-	-

Gesture Sensor for Automotive Applications

BITFIELD	BITS	DESCRIPTION	DECODE
PWRON	4	Power On Reset	PWRON = 1 indicates that a power-up event occurred, either because the part was turned on, or because there was a power-supply voltage glitch. All interrupt threshold settings in the registers are reset to power-on-default states, and should be examined if necessary. The INT pin is also pulled low. Once this bit is set, the only way to clear this bit is to read this register. PWRON = 0 indicates normal operation; no interrupt event occurred.
			EOCINTS = 1 indicates that the most recent sample cycle has ended, and the newest ADC values are readable. This bit will be cleared in one of the following ways: - Main Status Register is read.
			- Any of the four gesture/proximity ADC output registers is read.
EOCINTS	2	End Of Conversion Interrupt	- A new sample cycle begins.
			The \overline{INT} pin is also cleared when EOCINTS = 1
			This bit is always set to 0 if the EOCINTE bit is set to 0, and the external $\overline{\text{INT}}$ will not react to an end of conversion.
			EOCINTS = 0 indicates that no interrupt trigger event occurred.

MAIN CONFIGURATION 1 (0x1)

BIT	7	6	5	4	3	2	1	0
Field	-	EXSYNC[2:0]			-	EOCINTE	-	-
Reset	-	0b000			-	0b1	-	-
Access Type	_		Write, Read		-	Write, Read	-	_

Gesture Sensor for Automotive Applications

BITFIELD	BITS	DESCRIPTION		DECODE		
			The 3 bits of EXSYNC[2:0] control the external synchronization feature of the MAX25205. This is required for the case where two MAX25205 devices are used in a system, and a means is needed to avoid simultaneous flashing of the two LEDs. If the host processor is available to perform this function, then the internal SNYC and one-shot modes described later can be used. If the host processor is not available to coordinate the sample timing, then the two MAX25205 parts in the system must self-coordinate by communicating through the SYNC pin. The 3 bits of EXSYNC control the operation of the SYNC pin for this purpose.			
			EXSYNC[2:0]	Function		
EXSYNC	6:4	External Sync	000	The SYNC pin is set to input, but has no function. The customer must tie the pin to a logic-high, low voltage, or to a pulldown or pullup resistor.		
			001	The SYNC pin is set to input, and this MAX25205 functions as an LED SYNC slave		
			010	The SYNC pin is set to output, and this MAX25205 functions as an LED SYNC master		
			011	Same as 000		
			100	Same as 000		
			101	Same as 000		
			110	Same as 000		
			111	Same as 000		
EOCINTE	EOCINTE 2 End-of-Conversion Interrupt Enable		ECOINTE = 1 enables the end-of-conversion interrupt. An end-of-conversion event triggers a hardware interrupt in which the INT pin is pulled low and EOCINTS bit (register 0x00[2]) is set high. Note: INT is cleared from the active state after six clock cycles if the processor does not clear it first			
			by reading the s			

MAIN CONFIGURATION 2 (0x2)

BIT	7	6	5	4	3	2	1	0
Field	SHDN	RESET	-	SYNC	OSEN	OSTRIG	-	-
Reset	0b0	0b0	-	0b0	0b0	0b0	-	-
Access Type	Write, Read	Write, Read	-	Write, Read	Write, Read	Write, Read	-	-

Gesture Sensor for Automotive Applications

BITFIELD	BITS	DESCRIPTION	DECODE
SHDN	7	Shutdown Control	 SHDN = 1 places the MAX25205 into a power-save mode. While all registers remain accessible and retain data, ADC conversion data contained in them are previous values. Writable registers also remain accessible in shutdown. All interrupts are cleared. SHDN = 0 places the MAX25205 in normal operation. When the part returns from shutdown, the data in the registers is not current until the first
			conversion cycle is completed.
RESET	6	Reset Control	RESET = 1 triggers the power-on-reset sequence. All configuration, threshold, and data registers are reset to power-on state by writing a 1 to this bit, and an internal hardware reset pulse is generated. This bit then automatically becomes 0 after the RESET sequence is completed. Post-reset, the PWRON Interrupt is triggered.
			RESET = 0 configures the MAX25205 for normal operation.
SYNC	4	Master Slave Synchronize	This bit is used for synchronizing and staggering LED pulses when multiple devices are used in the system. This prevents two devices from flashing their LED at the same time. This is a self-clearing bit. When set to 1, it resets to 0 after one I ² C clock. The rising edge of this bit aborts the current ADC conversion cycle and starts a new ADC conversion cycle (ADC conversion cycle includes LED pulse, precharge, and ADC conversion/integration time). The ADC conversion cycles repeat after the delay set by SDLY[3:0]. Note 1: This scheme will not work for short SDLY settings. When multiple devices are used in a system, there is a limit on the minimum SDLY. The SDLY of the master must be larger than the integration time of the slave. Note 2: The software may periodically execute the sync sequence to take care of clock drift and mismatch on multiple devices.
OSEN	3	One-Shot Mode Enable	This bit enables one-shot mode. In this mode, the parameter SDLY is ignored, and no samples are automatically initiated. Instead, the system waits in idle mode until the bit OSTRIG (one-shot trigger) is set. This mode is used if the host processor requires full control over the timing of sample sequences, such as the case where there are multiple MAX25205 devices in one system. When combined with the EOCINT feature, the processor can be in full control of the start of a sample sequence, and then can be alerted when the sequence is done. When cleared to 0, the sequencer reverts to normal operation.

Gesture Sensor for Automotive Applications

BITFIELD	BITS	DESCRIPTION	DECODE
			The bit OSTRIG is used for initiating one ADC conversion cycle under software control when OSEN is set to 1. When OSEN is set to 0, OSTRIG is ignored.
OSTRIG	2	One-Shot Trigger	This is a self-clearing bit. When set to 1, it resets to 0 after one I ² C clock. The rising edge of this bit starts an ADC conversion cycle. The cycle does not repeat until OSTRIG is cleared, and then set to 1 again.

SEQ CONFIGURATION 1 (0x3)

BIT	7	6	5	4	3	2	1	0	
Field		SDLY	′ [3:0]	·		TIM[2:0]	·	-	
Reset		0b0	111			0b011		-	
Access Type		Write,	Read			Write, Read			
BITFIELD	BITS		DESCRIP	TION		D	ECODE		
					SDL [3:0			Between les (ms)	
					0000	0	0		
					0001	3998	1.56		
					0010	7995	3.12		
						15990	6.25		
					0100	31980	12.49		
						63960	24.98		
						127920	49.97		
SDLY	7:4	End of Conv	End of Conversion Delay			255840	99.94		
					1000	511680	199.98		
					1001	1023360	399.75		
					1010	2046720	799.5		
					1011-	4093440	1599		
					delay ti be used applica	its of SDLY[3:0 mes for all cha I to save powe ions where the g continuously	nnels. This ad r in power-sen e 60 ADC do n	sitive	

Gesture Sensor for Automotive Applications

BITFIELD	BITS	DESCRIPTION		DECODE			
			The 3 bits of TIM[2:0] set the integration time for the ADC conversion, as shown below.				
			TIM[2:0]	LED Pulse Width (clock counts)	Integration Time (µs)		
			000	16	6.25		
			001 32				
TIM	3:1	Integration Time	010	64	25.0		
			011 128	50.0			
		100 256			100		
			101 512				
			110	1024	400		
			111	2048	800		

SEQ CONFIGURATION 2 (0x4)

BIT	7	6	5	4	3	2	1	0
Field		NRPT[2:0]		NCDS[2:0]			CDSMODE	_
Reset		0b100			0b100	0b0	_	
Access Type		Write, Read		Write, Read			Write, Read	_
BITFIELD	BITS		DESCRIPT	IPTION DECODE				

BITFIELD	BITS	DESCRIPTION	DECODE					
			NRPT[2:0] sets the number of times the CDS sequence is repeated. Each repeat of the CDS sequence is identical to the previous—there is single ALC pulse followed by one or more CDS B pairs, as set by NCDS[2:0]. The integration counters are not reset during this repetitive sequence; they continue to accumulate the couNRPT[2:0]Number of CDS sequences					
				Number of CDS sequences				
NRPT	7:5	Number of Repeats	000	1				
			001	2				
			010	4				
			011	8				
			100	16				
			101	32				
			110	64				
			111	128				

Gesture Sensor for Automotive Applications

BITFIELD	BITS	DESCRIPTION		DECODE
NCDS	4:2	Number of Coherent Double Samples	times that the single sample Setting nCDS programmed repeated nCE The integratio	tes the value of nCDS, the number of CDS sequence is repeated within a e cycle after a single pulse of ALC. to a value greater than 1 causes the CDS sequence (Mode 0 or 1) to be DS times after the single ALC pulse. on counters are not reset during the ed sequences; they continue to ne count. Number of CDS sequences following a single ALC pulse 1 2 4 8 16 32 64 128
CDSMODE	1	Coherent Double Sampling Mode	CDSMODE 0 1	DescriptionCount up during sequence A and down during sequence BCount up during sequence A, do not subtract sequence B

AFE CONFIGURATION (0x5)

BIT	7	6	5	4		3	2	1	0
Field	-	ALC_COAR SE	-	-	A	LCEN	I – PGA[1:0]		. [1:0]
Reset	-	0b0	-	-		0b1	-	0b	00
Access Type	-	Write, Read	-	-	Writ	e, Read	-	Write,	Read
BITFIELD	BITS		DESCRIPTION DECODE						
ALC_COARS E	6	ALC Coarse	Current Corre	ction		Factory use only. Set to 0.			
ALCEN	3	Coarse Amb	Coarse Ambient Light Compensation Enable 0 = coarse a enabled.					arse ambient li n the 60 analog nt compensatio nt compensatio	g front end n is not

Gesture Sensor for Automotive Applications

BITS	DESCRIPTION	DECODE				
		The 2 bits PGA[1:0] set the gain range of the ADC channels according to the table below.				
PGA 1:0	PGA[1:0		Relative ADC Gain	I _{REF} (nA)		
	Programable Gain Amplifier	00	1	16		
		01	1/4	64		
		10	1/16	256		
		11	1/32	512		
	BITS 1:0		1:0 Programable Gain Amplifier The 2 bits PC channels acc 00 01 10	1:0 Programable Gain Amplifier 1:0 Programable Gain Amplifier		

LED CONFIGURATION (0x6)

BIT	7	6	5	4	3	2	1	0	
Field	—	_	-	-	DRV[3:0]				
Reset	_	-	-	-	0b0000				
Access Type	-	-	-	-	Write, Read				

Gesture Sensor for Automotive Applications

		DRV[3:0]			
				UTY CYCLE	
		0000	1/16		
		0001	2/16		
		0010	3/16		
		0011	4/16		
		0100	5/16		
		0101	6/16		
		0110	7/16		
		0111	8/16		
		1000	9/16		
		1001	10/16		
		1010	11/16		
		1011	12/16		
		1100	13/16		
	One of the following: • LED PWM drive setting when ELED_EN = 1 and DRV_EN = 0 • LED current drive setting when ELED_EN = 0 and DRV = 1.	1101	14/16		
		1110	15/16		
2.0		1111	16/16		
3:0		r		1	
			0]	mA	
				0	
				13.3	
				26.7	
				40	
				53.3	
				66.7 80	
				93.3	
				106.7	
				120	
				133.3	
				146.7	
				160	
				173.3	
		1110		186.7	
		1111		200	
	3:0	• LED PWM drive setting when ELED_EN = 1 and DRV_EN = 0 • LED current drive setting when ELED_EN =	3:0 One of the following: • LED PVWM drive setting when ELED_EN = 1 and DRV_EN = 0 • LED current drive setting when ELED_EN = 0 and DRV = 1. DRV [3:1 0000 0001 0011 0110 0111 1110 1111 1110 1111 1110 1111 1100 1011 1110 1111 1110	3:0 One of the following: • LED PWM drive setting when ELED_EN = 1 and DRV_EN = 0 • LED current drive setting when ELED_EN = 1 0 and DRV = 1. One of the following: • LED VMM drive setting when ELED_EN = 1 0 and DRV = 1. DRV [3:0] 0000 0001 0011 0110 0111 0100 0111 0100 0111 0100 0111 0100 0111 0100 0111 0100 0111 0100 0111 0100 0111 0100 0111 0100 0111 0110 0111 0100 0111 0111 0100 0111 0100 0111 0110 0111 0100 0111 0111 0111 0110 0111 0110 0111 0111 0111 0111 0111 0111 0110 0111 0111 0110 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111 0110 0111 0111 0111 0111 0111 0111 0111 0111 0111 0110 0111	

Gesture Sensor for Automotive Applications

COLUMN GAIN 2, 1 (0xA5)

BIT	7	6	5	4	3	2	1	0		
Field		CGAIN	12[3:0]			CGAI	N1[3:0]	·		
Reset		0b1	000			0b ⁻	1000			
Access Type		Write,	Read			Write, Read				
BITFIELD	BITS		DESCRIP	TION		D	ECODE			
					entire 60	re ten different 0-channel arra ne ten columns	y. Each trim v	alue applies to		
					GAIN (hex)	I _{REF} Mu Factor	Itiplication	Gain Factor		
					0x00	3.06		0.33		
					0x01	2.71		0.37		
					0x02	2.35		0.43		
					0x03	2.06		0.49		
		Column Gain 2			0x04	1.77		0.56		
CGAIN2	7:4				0x05	1.55		0.65		
					0x06	1.33		0.75		
					0x07	1.17		0.86		
					0x08	1.00		1.00		
					0x09	0.88		1.14		
					0x0A	0.75		1.33		
					0x0B	0.66		1.53		
					0x0C	0.56		1.79		
					0x0D	0.49		2.04		
					0x0E	0.42		2.38		
					0x0F	0.37		2.70		

Gesture Sensor for Automotive Applications

BITFIELD	BITS	DESCRIPTION		DECODE				
			There are ten different 4-bit column gains for the entire 60-channel array. Each trim value applies to one of the ten columns in the pixel array.					
			GAIN (hex)	I _{REF} Multiplication Factor	Gain Factor			
			0x00	3.06	0.33			
			0x01	2.71	0.37			
			0x02	2.35	0.43			
			0x03	2.06	0.49			
			0x04	1.77	0.56			
CGAIN1	3:0	Column Gain 1	0x05	1.55	0.65			
			0x06	1.33	0.75			
			0x07	1.17	0.86			
			0x08	1.00	1.00			
			0x09	0.88	1.14			
			0x0A	0.75	1.33			
			0x0B	0.66	1.53			
			0x0C	0.56	1.79			
			0x0D	0.49	2.04			
			0x0E	0.42	2.38			
			0x0F	0.37	2.70			

COLUMN GAIN 4, 3 (0xA6)

BIT	7	6	5	4	3 2 1 0					
Field		CGAII	N4[3:0]		CGAIN3[3:0]					
Reset		0b1	000			0b1000				
Access Type		Write	, Read			Write, Read				
BITFIELD	BITS		DESCRIPT	ION		DECODE				
CGAIN4	7:4	Column Gai	Column Gain 4			See description in CGAIN1.				
CGAIN3	3:0	Column Gai	n 3		See de	See description in CGAIN1.				

COLUMN GAIN 6, 5 (0xA7)

BIT	7	6	5	4	3	2	1	0	
Field		CGAII	N6[3:0]		CGAIN5[3:0]				
Reset		0b1000 0b1000							
Access Type		Write	, Read		Write, Read				
BITFIELD	BITS		DESCRIPT	ION		DECODE			
CGAIN6	7:4	Column Gai	Column Gain 6			See description in CGAIN1.			
CGAIN5	3:0	Column Gai	Column Gain 5 See description in CGAIN1.						

Gesture Sensor for Automotive Applications

COLUMN GAIN 8, 7 (0xA8)

BIT	7	6	5	4	3 2 1 0					
Field		CGAI	N8[3:0]		N7[3:0]					
Reset		0b1	000			0b1000				
Access Type		Write,	Read		Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DECODE				
CGAIN8	7:4	Column Gai	Column Gain 8			See description in CGAIN1.				
CGAIN7	3:0	Column Gai	n 7		See description in CGAIN1.					

COLUMN GAIN 10, 9 (0xA9)

BIT	7	6	5	4	3	2	1	0		
Field	CGAIN10[3:0]				CGAIN9[3:0]					
Reset	0b1000					0b1000				
Access Type	Write, Read				Write, Read					
BITFIELD	BITS		DESCRIPTION			D	ECODE			
CGAIN10	7:4	Column Gain 10			See des	See description in CGAIN1.				
CGAIN9	3:0	Column Gain 9 See description in CGAIN1.								

LED_CTRL (0xC1)

BIT	7	6	5	4		3	2	1	0	
Field	_	_	_	_	GA	INSEL	DRV_EN	ELED_EN	ELED_POL	
Reset	-	-	-	-		0b0	0b0	0b0	0b0	
Access Type	_	_	– – – Write, Rea			e, Read	Write, Read	Write, Rea	d Write, Read	
BITFIELD	BITS	DESCRIPTION DECODE								
						Value	Enumeratio	on	Decode	
GAINSEL	3	Factory Gain Trim Selection				0x0	Gain Trim Register Sele		ss 0xA5 - (default)	
					0x1	Gain Trim Register Sele	ct Intern	al Trim Value		
						Value	e Enum	neration Decode		
DRV_EN	2	Current Drive Output Enable.			0x0	DRV Outp	out	Disabled		
		0x1					DRV Outp	out	Enabled	
					ELED is an output pin design to drive a pMOS nMOS switch with a PWM signal.				ve a pMOS or	
ELED_EN	1	External LED Output Enable				Valu	e Enum	neration	Decode	
						0x0	Output		Disable	
						0x1	Output		Enable	

Gesture Sensor for Automotive Applications

BITFIELD	BITS	DESCRIPTION	DECODE		
		External LED Polarity Control	Value	Enumeration	Decode
ELED_POL	0		0x0		Drive nMOS Switch
			0x1		Drive pMOS Switch
				•	•

Applications Information

Principle of Operation

Two electrical techniques are used to reject ambient light: coarse correction and fine correction. For coarse correction, the photo diode current is sampled and stored during time T1 when the IR LED is off. This current, which is a coarse measure of the ambient light, is then subtracted during the entire conversion cycle. The fine-correction method, however, uses coherent double sampling (CDS). An A pulse representing IR+ambient is measured when the IR LED is pulsed on. A second B pulse is measured with the LED off, representing ambient light. Subtracting the B pulse from the A pulse results in reflected IR with no common-mode ambient light (ambient-light compensation). The net reflected IR current is sampled with a 1-bit first-order sigma-delta ADC. The ADC is sampled with a 2.5MHz clock. Full scale of the ADC is given by:

N_{FS} = TIM x NCDS x NRPTS

The ratio of ADC sample count (N) to ADC full scale (N_{FS}) is porportional to the ratio of IR current to ADC reference current (I_{REF}),

$I_n / I_{REF} = N / N_{FS}$.

The maximum resolution of the sigma-delta ADC is 15 bits or N = 32,768 counts. Choosing large values for the full ADC scale will improve SNR while increasing integration time. The maximum current the ADC will clip at is I_{REF} , while the minimum current is:

 $I_{min} = I_{REF} / N_{FS}$.

Operation Mode

The MAX25205 operates on a periodic sample schedule. When a sample is scheduled to occur, a sequence of digital signals activates the optical measurement circuits, i.e. pixels, and then collects the respective digital output data. When the sample sequence is finished, the pixels are disabled and placed in a low-power sleep mode. The register variable SDLY[3:0] controls the length of the sleep period. The pixels are held in this mode until the next scheduled sample sequence occurs. The timing of the periodic sampling schedule can be reset by setting the SYNC bit. In one-shot mode, (OSEN = 1), the periodic sampling is disabled, and the MAX25205 executes a sample sequence only when the OSTRIG bit is set.

The length and nature of the sampling sequence is controlled by the variables TIM[2:0], NRPT[2:0], and NCDS[2:0]. The variable CDSMODE selects one of the following methods to acquire the data during the sampling sequence.

CDS Mode 0

CDS Mode 0 is the default mode of operation. Every sample sequence consists of two measurements, A and B. In the A sequence, the LED is energized and the channel counters count up. The A sequence is then repeated in the subsequent B sequence, except the LED is not energized and the channel counters count down, which reduces the value stored. This algorithm removes slow-moving offsets and optical interference.

CDS Mode 1

CDS Mode 1 is similar to Mode 0, except that in the B sequence, the count down is not subtracted. Use Mode 1 if there is no need for the additional offset correction.

MAX25205 Sample-Sequence Timing

The timing specification is selectable with register variables, defined as follows:

- NCDS[2:0]: Number of CDS (A/B sequence) pairs, is also the number of LED pulses
- NRPT[2:0]: Number of ALC coarse correction + CDS pairs
- CRST: Enable the integrator reset between A/B sequences. The reset time is 16 clocks when CRST is high, or 0 when CRST is low.

Gesture Sensor for Automotive Applications

The nominal clock frequency is 2.56MHz, so a 256-clock-cycle sample takes 100 μ s. Each cycle of the clock, T_{CK}, is 391ns.

Table 2. Sequence Timing Specification

PARAMETER	FUNCTION	# CLOCKS
T1	ALC duration time	256
D1	Delay time to start integration	32
T2	LED ON pulse	Defined by TIM[2:0]
Т3	LED OFF pulse	T3 = T2
T4	Reset time between A/B, CRST = 0	0
T4	Reset time between A/B, CRST = 1	16
D2	Fixed delay	520

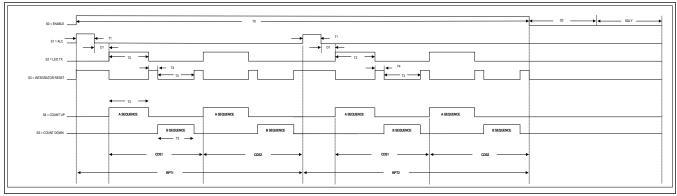


Figure 1. Timing Setting: NCDS = 2, NRPT = 2, CRST = 1

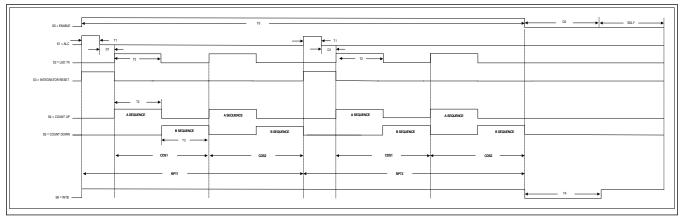


Figure 2. Timing Setting: NCDS = 2, NRPT = 2, CRST = 0

Array Orientation

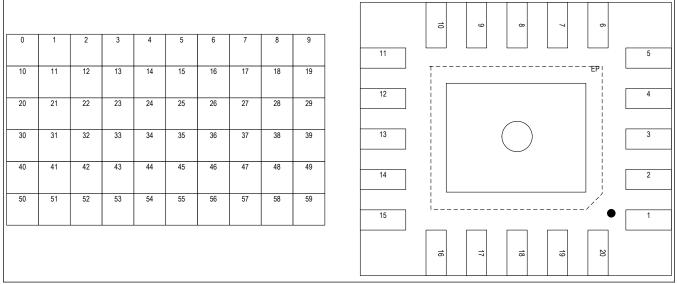


Figure 3. Array Orientation Relative to Pin 1

I²C Serial Interface

The MAX25205 IC features an I²C/SMBus-compatible, 2-wire serial interface consisting of a serial-data line (SDA) and a serial-clock line (SCL). SDA and SCL facilitate communication between the IC and the master at clock rates up to 400kHz. The master generates SCL and initiates data transfer on the bus. A master device writes data to the IC by transmitting the proper slave address, followed by the register address and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START (S_R) condition and a STOP (P) condition. Each word transmitted to the IC is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the IC transmits the proper slave address followed by a series of nine SCL pulses. The IC transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START or REPEATED START condition, a NOT ACKNOWLEDGE, and a STOP condition. SDA operates as both an input and an open-drain output. A pullup resistor is required on the SDA bus. SCL operates only as an input. A pullup resistor is required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the IC from high-voltage spikes on the bus lines and minimize crosstalk and undershoot of the bus signal.

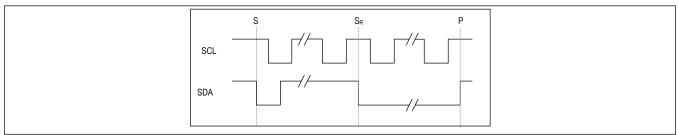


Figure 4. START, REPEAT START, STOP Conditions

Enabling I²C or SPI communications

When the SEL input is set to V_{DD} , the MAX25205 operates in I²C mode. In this mode, the \overline{CS} input functions as the I²C address select pin. When \overline{CS} = 0, the MAX25205 is pre-programmed with a slave address of 0x9E for write and 0x9F for

Gesture Sensor for Automotive Applications

read. When \overline{CS} is set to V_{DDIO}, the logic adds 2 to the programmed I²C address. In this case, the I²C address is 0xA0 for write and 0xA1 for read. The address is defined as the seven most significant bits (MSBs) followed by the read/write bit. Set the read/write bit to 1 to configure MAX25205 to read mode. Set the read/write bit to 0 to configure the MAX25205 to write mode. The address is the first byte of information sent to MAX25205 after the START condition.

When the SEL pin is set to GND, the MAX25205 operates in SPI mode. There is no device address for SPI communications. A given part is selected by setting a low state on its \overline{CS} pin. If there are multiple MAX25205 parts sharing the same SPI bus, then each must have its own \overline{CS} signal, but the parts can share the SCL and DOUT nets. When a part is deselected by setting its \overline{CS} signal high, the DOUT pin on that part is set to Hi-Z, permitting another part to drive the shared DOUT net. The shared SCL net is always driven from the master at the desired serial-clock frequency, and all of the slave devices share that signal.

Table 3. I²C Slave Address

CS Pin	SLAVE ADDRESS FOR WRITING	SLAVE ADDRESS FOR READING
GND	1001 1110 (0X9E)	1001 1111 (0X9F)
V _{DD}	1010 0000 (0XA0)	1010 0001 (0XA1)

START and STOP Conditions

SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high. A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission and frees the bus by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition.

Early STOP Conditions

The IC recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition.

Acknowledge

The acknowledge bit (ACK) is a clocked ninth bit that the IC uses to handshake receipt of each byte of data when in write mode. The IC pulls down SDA during the entire master-generated ninth clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master can retry communication. The master pulls down SDA during the ninth clock cycle to acknowledge receipt of data when the IC is in read mode. An ACKNOWLEDGE is sent by the master after each read byte to allow data transfer to continue. A NOT ACKNOWLEDGE is sent when the master reads the final byte of data from the IC, followed by a STOP condition.

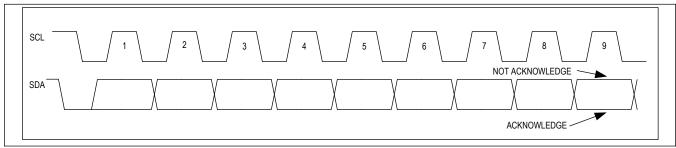


Figure 5. ACKNOWLEDGE

Write Data Format

A write to the IC includes transmission of a START condition, the slave address with the R/W bit set to 0, 1 byte of data to

Gesture Sensor for Automotive Applications

configure the internal register address pointer, one or more bytes of data, and a STOP condition. See figures illustrating the proper frame format for writing 1 byte of data to the IC and the frame format for writing n-bytes of data to the IC.

The slave address with the R/W bit set to 0 indicates that the master intends to write data to the IC. The IC acknowledges receipt of the address byte during the master-generated ninth SCL pulse.

The second byte transmitted from the master configures the IC's internal register address pointer. The pointer tells the IC where to write the next byte of data. An acknowledge pulse is sent by the IC upon receipt of the address pointer data.

The third byte sent to the IC contains the data that is written to the chosen register. An ACKNOWLEDGE pulse from the IC signals receipt of the data byte. The address pointer automatically increments to the next register address after each received data byte. This auto-increment feature allows a master to write to sequential registers within one continuous frame. Figure 6 and Figure 7 illustrate how to write to multiple registers with one frame. The master signals the end of transmission by issuing a STOP condition.

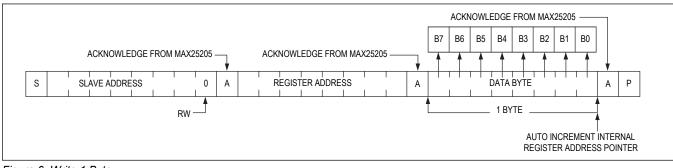


Figure 6. Write 1 Byte

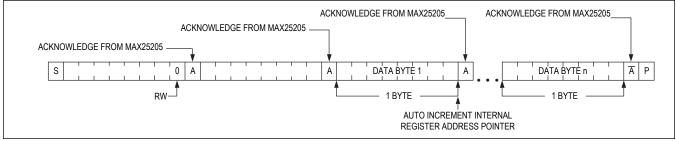
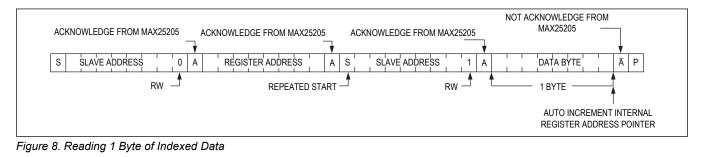


Figure 7. Write n Bytes


Read Data Format

Send the slave address with the R/W bit set to 1 to initiate a read operation. The IC acknowledges receipt of its slave address by pulling SDA low during the ninth SCL clock pulse. A START command followed by a read command resets the address pointer to register 0x00. The first byte transmitted from the IC is the contents of register 0x00. Transmitted data is valid on the rising edge of the master-generated serial clock (SCL). The address pointer automatically increments after each read-data byte. This automatic-increment feature allows all registers to be read sequentially within one continuous frame.

A STOP condition can be issued after any number of read-data bytes. If a STOP condition is issued and followed by another read operation, the first data byte to be read is from register 0x00, and subsequent reads automatically increment the address pointer until the next STOP condition. The address pointer can be preset to a specific register before a read command is issued. The master presets the address pointer by first sending the IC's slave address with the R/W bit set to 0, followed by the register address. A REPEATED START condition is then sent, followed by the slave address with the R/W bit set to 1. The IC transmits the contents of the specified register. The address pointer automatically increments after transmitting the first byte. Attempting to read from register addresses higher than 0xFF results in repeated reads of 0xFF. Note that 0xB0–0xC0 are reserved registers. The master acknowledges receipt of each read byte during the

Gesture Sensor for Automotive Applications

acknowledge clock pulse. The master must acknowledge all correctly received bytes except the final byte, which must be followed by a NOT ACKNOWLEDGE from the master and then a STOP condition.

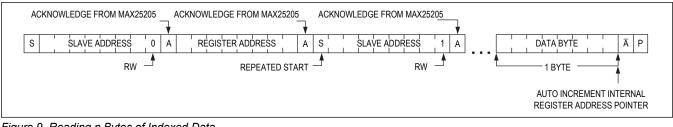


Figure 9. Reading n Bytes of Indexed Data

SPI Interface

The MAX25205 4-wire serial interface is compatible with MICROWIRE, SPI, QSPI, and DSPs. The interface provides three inputs, SCL, \overline{CS} , and DIN, and one output, DOUT. The chip-select input (\overline{CS} , active-low) frames the data loaded through the serial-data input (DIN). Following a \overline{CS} input high-to-low transition, the data is shifted in synchronously and latched into the input register on each rising edge of the serial-clock input (SCL).

The SPI interface in the MAX25205 has an 8-bit address, 8-bit command (but only 1-bit MSb is valid) and 8-bit data. The MAX25205 SPI only supports SPI mode 0, clock polarity CPOL = 0, clock phase CHPA = 0.

Each serial operation word is 24 bits long. The serial-input register transfers its contents to the destination registers after loading 24 bits of data on the 24th SCL rising edge. To initiate a new SPI operation, drive \overline{CS} high and then low to begin the next operation sequence, ensuring that all relevant timing requirements are met. During \overline{CS} high periods, SCL is ignored, allowing communication to other devices on the same bus. SPI operations consisting of more than 24 SCL cycles are executed on the 24th SCL falling edge, using the first 3 bytes of data available. SPI operations consisting of less than 24 SCL cycles will not be executed.

The SPI read operation is always operated in burst mode with bursts framed by \overline{CS} . Therefore, to read all 120 bytes of ADC values, initiate a read operation as follows:

CS High-Low Transition

- 1. Write 8-bit add (0x10 or 0x01 is the high byte of ADC 00's 2-byte value)
- 2. Write 8-bit read command (0x80)
- 3. Read 8-bit ADC_00_h, high byte data output for ADC00
- 4. Read 8-bit ADC_00_I, low byte data output for ADC00
- 5. Read 8-bit ADC_01_h,
- 6. Read 8-bit ADC_01_I
- 7. ...
- 8. Read 8-bit ADC 58 h
- 9. Read 8-bit ADC_58_I
- 10. Read 8-bit ADC_59_h
- 11. Read 8-bit ADC_59_I

Gesture Sensor for Automotive Applications

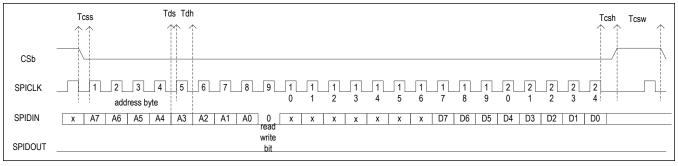


Figure 10. SPI Write

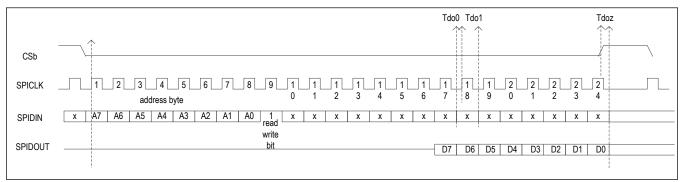
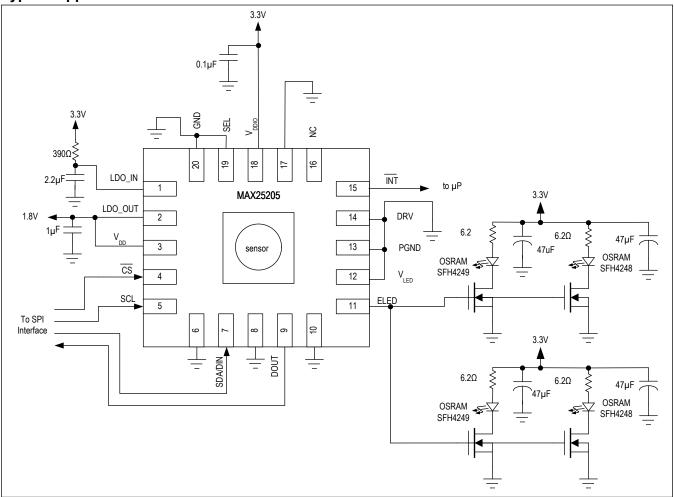
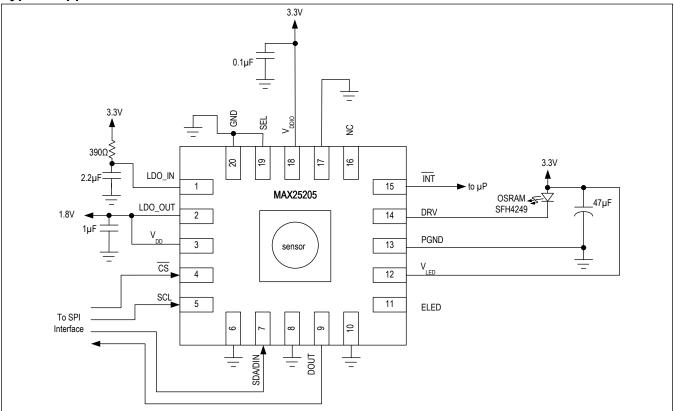



Figure 11. SPI Read


Typical Application Circuits

Typical Application Circuit with External FET LED Drive

Typical Application Circuits (continued)

Typical Application Circuit with Internal Current Drive

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE	[TOP MARKING]
MAX25205EQP/VY+	-40°C to +85°C	20-pin 4mm x 4mm QFN	

+ Denotes a lead(Pb)-free/RoHS-compliant package.

T Denotes tape-and-reel.

The MAX25205 is an optical receiver and assembly should include a "no wash" approach to ensure contaminants are not deposited on the optical aperture.

Gesture Sensor for Automotive Applications

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/19	Initial release	—
1	9/20	Updated Benefits and Features and Ordering Information	1, 32

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Sensor Interface category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

ZSC31150GEG1-T ZSSC4161BE2W LM1815MX/NOPB MAX31850KATB+ FM-252-4 FM-215-8 FM-216-AR2 FM-253-4-P AS8510-ASSM AD598JRZ AD598SD/883B 743478D AD698APZ AD698SQ ADA4558WHCPZ-R7 ADPD4000BCBZR7 ADPD4001BCBZR7 MAX31855SASA+ MAX31855TASA+ DRV401AIDWPR AS89010 MAX31855SASA+T MAX1358BETL+ MAX31855EASA+ MAX31855KASA+ MAX31855NASA+ MAX31911AUI+ RE46C803SS20 MAX1452AAE+ MAX9926UAEE+ RE46C800SS20 SSC7102-GQ-AB2 MAX6675ISA+ MAX6674ISA+ MAX31855RASA+ MAX6675ISA+T FM-252-4-P SNJ306 ZSSC4132CE4W BD9251FV-E2 XTR110KU LM1815M/NOPB PGA302EPWT PGA308AIDRKT PGA309AIPWR RCV420JP TDC7200PWR XTR106UA/2K5 TPIC8101DW TPIC8101DWR