6-Switch Matrix Manager for Automotive

 Lighting
General Description

The MAX25606 6-switch matrix manager IC for automotive lighting applications includes a 6 -switch array for bypassing individual LEDs in a single- or dual-string application. It features six individually controlled n-channel MOSFET switches with each switch having an on-resistance of 0.2Ω and rated to withstand 16 V . A single current source can be used to power all the LEDs connected in series. Individual LEDs can be dimmed by turning on and off the bypass switches across each LED. The device can also be configured in two string applications with three switches in series per string. Each switch can be connected across one, two, or three LEDs in series. It also allows for parallel connection of two switches to bypass high-current LEDs. The IC also includes an internal charge pump that provides power for the gate drive for the LED bypass switches.
The IC features a universal asynchronous receiver-transmitter (UART) communication interface. Each switch can be turned on, turned off, or PWM modulated with 12 bits of PWM duty cycle adjustment. Transitions between two different PWM settings can either happen instantly or a logarithmic fade transition can be applied. The logarithmic fade algorithm is built into the device and only requires a single software command. The IC features open-LED protection as well as open and short LED fault reporting through the serial interface. The device is available in a $20-\mathrm{pin} 4 \times 4 \mathrm{~mm}$ side wettable TQFN and a 20-pin thin shrink small-outline package (TSSOP) with exposed pad. The device is AECQ100 grade 1 qualified and designed to operate over the full $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Benefits and Features

- Automotive Ready: AEC-Q100 Qualified
- Six-Switch Matrix Manager Allows for Flexible Configuration
- Single and Dual-String Configurations
- Up to 6 Switches in Series for Single String
- Up to 3 Switches in Series in Dual-String
- Up to 3 LEDs per Switch
- Robust Serial Interface
- Multidrop UART Communication Interface
- Up to 64 Addressable Devices
- Compatible with CAN Physical Layer
- Optimal PWM Dimming Arrangement Provides

Excellent Dimming Performance

- Programmable 12-Bit PWM Dimming
- Fade Transition Between PWM Dimming States
- Internal Clock Generator or External Clock for PWM Dimming
- EMI Mitigation
- Programmable Slew Rate for EMI Control
- Integrated Spread Spectrum Frequency Dithering
- Protection Features and Package Improve Reliability
- Open-LED Protection
- Programmable Open and Short-LED Threshold
- Open and Shorted-LED Fault Reporting
- Open Trace Fault Reporting
- Thermally Enhanced 20-Pin Side Wettable TQFN and 20-Pin TSSOP with Exposed Pad

Ordering Information appears at end of datasheet.

Applications

- Automotive Matrix LED Systems and Adaptive Drive Beam Lights

Simplified Block Diagram

TABLE OF CONTENTS

General Description. 1
Applications 1
Benefits and Features 1
Simplified Block Diagram 1
Absolute Maximum Ratings 5
Package Information 5
20 TQFN-EP* (SW) 5
20 TSSOP-EP* 5
Electrical Characteristics 6
Pin Configurations 8
TQFN 8
TSSOP 8
Pin Description 8
Functional Diagrams 10
MAX25606 Block Diagram 10
Detailed Description 11
Power-On Reset and VDD UVLO 11
Internal Switches 11
Charge Pump 11
Programming Options 12
MAX25606 Pin Resistor Decode Table 12
Resistor Programming Table. 12
PWM Clock and Synchronous Operation with Multiple Devices 13
Parallel Operation for Higher Current Applications 13
PWM Dimming 13
Dimming With and Without Fade 14
LED Fault Detection and Protection 15
LED Short Threshold 15
UART Serial Interface 15
Overview 15
Device Connections 15
UART Frame Format 15
Synchronization and Acknowledge Frames 16
Device ID and Address Frame Format 16
Write Transactions 17
CRC Error Checking 17
UART Watchdog Function. 17
UART Communication Error Handling 18
Thermal Protection 18

TABLE OF CONTENTS (CONTINUED)

PWM Clock and Synchronous Operation with Multiple Devices 18
Register Map 19
MAX25606 19
Register Details 21
Applications Information 42
Configuration 42
Synchronized PWM Phase. 42
Recommended LED Drivers 42
Thermal Considerations 42
Layout Considerations 42
Typical Application Circuits 43
MAX25606 in 6-Channel Matrix Lighting Application 43
Ordering Information 43
Revision History 44

LIST OF FIGURES

Figure 1. PWM Phase and Duty Cycle Definitions . 14

Figure 3. ACK Frame . 16
Figure 4. SYNC Frame . 17
Figure 5. SYNC Frame . 17
Figure 6. SYNC Frame . 17

MAX25606

6-Switch Matrix Manager for Automotive Lighting

Absolute Maximum Ratings

IN to GND.	5
$V_{D D}$ to GND.	-0.3V to +2.5V
CPN to GND	-0.3V to +65V
CPP to GND	-0.3V to +70V
CPP to CPN	-0.3V to +6V
CPP to DR6	-0.3V to +70V
DR6 to GND	-0.3V to +65V
DRx to DR(x-1) (Note 1)	-0.3V to +16V
SRCx to GND	-0.3V to +65V
DR6 to SRC4	-0.3V to +48 V
DR4 to SRC4	-0.3V to +16V
DR3 to SRC1.	-0.3V to +48V
DR1 to SRC1	-0.3V to +16V

Note 1: Does not apply to DR4 to DR3.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

20 TQFN-EP* (SW)

Package Code	$\mathrm{T} 2044 \mathrm{Y}+3 \mathrm{C}$
Outline Number	$\underline{21-100068}$
Land Pattern Number	$\underline{90-0037}$
Thermal Resistance, Single-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$59^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$6^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Four-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$39^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$6^{\circ} \mathrm{C} / \mathrm{W}$

20 TSSOP-EP*

Package Code	U20E +3 C
Outline Number	$\underline{21-100132}$
Land Pattern Number	$\underline{90-100049}$
Thermal Resistance, Single-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$46^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$2^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Four-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$37^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$2^{\circ} \mathrm{C} / \mathrm{W}$

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

(Input Voltage $=I N=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltages						
Supply Voltage	$\mathrm{V}_{\text {IN }}$	Operating Voltage Range	4.0		60	V
Input Current	IN			2	5	mA
Input Power-On Reset (POR) Threshold	VIN-POR	VIN Rising	3.6		3.9	V
Charge-Pump Operating Voltage	$\mathrm{V}_{\text {CPP }}$				65	V
V_{DD} Regulator						
$V_{\text {DD }}$ Output	$V_{D D}$	$2.2 \mu \mathrm{~F}$ Capacitor Placed between V_{DD} and GND Pins. IVDD $=10 \mathrm{~mA}$	1.71	1.8	1.89	V
VDD undervoltage lockout (UVLO) Rising Threshold	UVLO_R_TH		1.61		1.69	V
VDD UVLO Falling Threshold	UVLO_F_TH		1.54		1.63	V
LED Dimming						
Internal Oscillator Frequency	Fosc	Used for Charge Pump and PWM Dimming of LEDs		16.384		MHz
LED Switches						
Single-Switch OnResistance	R DSON			0.2		Ω
On-Resistance with Series Switches 3-1 On				0.6	1.2	Ω
On-Resistance with Series Switches 6-4 On				0.6	1.2	Ω
Open LED Threshold	$\mathrm{V}_{\text {OTH }}$		12.5	13.75	15	V
Open Trace Threshold	lLED_MIN	Minimum Current Required to Detect Open Trace		45	100	mA
Short LED Threshold	$\mathrm{V}_{\text {STH }}$	VSTH[2:0] = 0b000, Rising $\mathrm{V}_{\text {DS }}$	1.26	1.40	1.54	V
		VSTH[2:0] = 0b001, Rising V ${ }_{\text {DS }}$	3.24	3.6	3.96	
		VSTH[2:0] = 0b010, Rising V ${ }_{\text {DS }}$	3.6	4.00	4.4	
		VSTH[2:0] = 0b011, Rising V ${ }_{\text {DS }}$	4.95	5.5	6.05	
		VSTH[2:0] = 0b100, Rising $\mathrm{V}_{\text {DS }}$	5.4	6.0	6.6	
		VSTH[2:0] = 0b101, Rising V ${ }_{\text {DS }}$	5.94	6.6	7.26	
		VSTH[2:0] = 0b110, Rising V ${ }_{\text {DS }}$	6.48	7.2	7.92	
		VSTH[2:0] = 0b111, Rising V_{DS}	6.93	7.70	8.47	
$\overline{\text { FLT Flag }}$						
$\overline{\text { FLT Output Low Voltage }}$		$\mathrm{I}_{\text {SINK }}=2 \mathrm{~mA}$		0.06	0.4	V
FLT Output High Leakage Current		$\overline{\mathrm{FLT}}=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
Clock External Sync Input, Clock Frequency	$\mathrm{f}_{\text {CLK }}$		0.3		18	MHz

Electrical Characteristics (continued)

(Input Voltage $=\mathbb{I N}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS (CLK, RX)						
Input High Voltage	$\mathrm{V}_{\text {IH }}$		1.4			V
Input Low Voltage	V_{IL}				0.4	V
DIGITAL OUTPUTS (CLK, TX)						
Output Low Voltage	V_{OL}	$\mathrm{I}_{\text {SINK }}=2 \mathrm{~mA}$			0.4	V
THERMAL SHUTDOWN						
Thermal-Warning Threshold	TH_WARN	Rising Temperature		140		${ }^{\circ} \mathrm{C}$
Thermal-Warning Hysteresis	HYS_WARN			15		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Threshold	TH_SHDN	Rising Temperature		165		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	HYS_SHDN			15		${ }^{\circ} \mathrm{C}$
CHARGE PUMP						
Charge-Pump Output Voltage	V_{0}	$\mathrm{V}_{\text {CPP }}-\mathrm{V}_{\text {CPN }}, \mathrm{I}_{\text {CPP }}=190 \mu \mathrm{~A}$	3.8		5.8	V
Charge-Pump PowerGood Threshold	VCPP_OK	Rising Threshold		4.0		V
UART Timing						
UART Bit Rate	FUART		10		500	kbps

Note 2: Limits are 100% production tested at $\mathrm{TA}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage are guaranteed by design and characterization.

Pin Configurations

TQFN

TSSOP

TSSOP

Pin Description

PIN		NAME	
TQFN	TSSOP		
1	3	$I N$	Input Supply. Connect to external power supply to provide power to the device. Connect a minimum $0.1 \mu \mathrm{~F}$ ceramic capacitor between IN and GND.

Pin Description (continued)

PIN		NAME	FUNCTION
TQFN	TSSOP		
2	4	$V_{D D}$	LDO Output. Nominal voltage is 1.8 V . Connect a minimum $2.2 \mu \mathrm{~F}$ ceramic capacitor between $V_{D D}$ and GND.
3	5	GND	Ground Connection
4	6	RX	UART Receive Input
5	7	TX	UART Transmit Output
6	8	$\overline{\text { FLT }}$	Open-Drain Fault Indicator. Goes low when a fault condition is present.
7	9	CLK	Sequence Period Programming Input. Connect a resistor from CLK to GND to set the sequence period.
8	10	A0	A0 programming input. Connect a resistor from A0 to GND to set the 4 leastsignificant bytes (LSBs) of the UART device ID.
9	11	A1	A1 programming input. Connect a resistor from A1 to GND to set the 2 mostsignificant bytes (MSBs) of the UART device ID.
10	12	A2	A2 programming input. Connect a resistor from A2 to GND to use as a general purpose decode, such as for a binning resistor. The corresponding A2 code can be read through the UART interface after powerup.
11	13	SRC1	Source of Internal Switch 1
12	14	DR1	Drain of Internal Switch 1
13	15	DR2	Drain of Internal Switch 2
14	16	DR3	Drain of Internal Switch 3
15	17	SRC4	Source of Internal Switch 4
16	18	DR4	Drain of Internal Switch 4
17	19	DR5	Drain of Internal Switch 5
18	20	DR6	Drain of Internal Switch 6
19	1	CPP	Charge Pump Capacitor Positive Connection. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor from CPP to CPN.
20	2	CPN	Charge Pump Capacitor Negative Connection. Connect a 0.1μ F ceramic capacitor from CPP to CPN.
-	-	EP	Exposed Pad Connection. Connect this pad to a contiguous ground plane.

Functional Diagrams

MAX25606 Block Diagram

MAX25606

6-Switch Matrix Manager for Automotive Lighting

Detailed Description

The MAX25606 6-switch matrix manager IC for automotive lighting applications includes a 6-switch array for bypassing individual LEDs in single- or dual-string applications. It features six individually controlled n-channel MOSFET switches, each switch having an RD ${ }_{\text {SON }}$ of 0.2Ω and rated to withstand 16 V . Each group of three cascoded switches can withstand up to 48 V . The low on-resistance of the switches minimizes conduction loss and power dissipation.
For single-string applications a single current source can be used to power all the LEDs connected in series. Dual-string applications use a separate current source for each string, with three switches in series per string. For high-current applications, the two sets of three switches can be connected in parallel with a single current source. Each switch can be connected across one, two, or three LEDs in series.
The IC features a serial peripheral interface (UART) for serial communication. The MAX25606 is a slave device that uses the UART to communicate with an external micro-controller ($\mu \mathrm{C}$), which acts as the master. The serial interface supports the use of CAN transceivers for a robust physical layer. Up to 64 separate devices can be connected using a star topology. Each of the six switches can be independently programmed to bypass the LEDs in the string. Each switch can be turned on, turned off, or PWM modulated with 12 bits of PWM duty cycle adjustment. Transitions between two different PWM settings can either happen instantly or a logarithmic fade transition can be applied. The logarithmic fade algorithm is built into the device and only requires a single software command. The $\mu \mathrm{C}$ can assign device Cluster IDs to allow for simultaneous programming of multiple devices. The serial interface allows the user to program the slew rate to minimize EMI. The PWM frequency can be set by an internal oscillator or synchronized to an external clock source. The IC features built-in open circuit protection, as well as detailed open- and short-LED fault reporting and open trace fault reporting through the serial interface. The short LED fault threshold is programmable to accommodate a wide variety of LED diodes. The IC also includes an internal charge pump that provides power for the gate drive of each of the LED bypass switches.

The device is available in a 20-pin $4 x 4 \mathrm{~mm}$ side wettable TQFN and a 20 -pin TSSOP package with exposed pad. The device is AEC-Q100 Grade 1 qualified and designed to operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Power-On Reset and VDD UVLO

Once the IC is powered, an internal power-on reset (POR) signal sets all the registers to their default states. All six switches are in the on-state upon a POR (all LEDs are off). The LEDs remain off until a command is received by the UART. To ensure reliable operation, the IN supply voltage ($\mathrm{V}_{\text {IN }}$) must be greater than $\mathrm{V}_{\text {IN-POR }}$. If $\mathrm{V}_{\text {IN }}$ falls below $\mathrm{V}_{\text {IN }}-\mathrm{POR}$ and the VDD regulator output falls below VDD_UVLO, the registers reset to their default state. The IN voltage must be greater than $V_{\text {IN-POR }}$ and VDD must be above VDD_UVLO for proper operation. The bypass switches remain in their default on-state until the UART is used to enable LED dimming.

Internal Switches

Charge Pump

The MAX25606 integrates a charge pump that provides the voltage rails for each switch gate driver and level shifter. The charge pump requires a single $0.1 \mu \mathrm{~F}$ capacitor connected between CPP and CPN for operation. The charge pump includes spread spectrum, which dithers the switching frequency by $\pm 6 \%$ around the fundamental of 16.384 MHz . The input power for the charge pump is taken from the higher voltage of IN, DR6, or DR3. Therefore, IN and DR6 should have an external decoupling capacitor of at least $0.01 \mu \mathrm{~F}$ as close as possible to the device, assuming DR6 is always a greater voltage than DR3. If the DR6 and DR3 segments are controlling two different LED strings, then DR3 should also have a close decoupling capacitor.
A status flag CP_NOT_RDY indicates that the charge pump is not yet powered up. When the charge pump is not powered up, the switches inside the IC are off, allowing any current from the LED driver to flow through the LEDs.
Register configurations for LED short detection threshold and switch slew rate in address 0×02 gets level shifted to each switch. Since the level-shift circuit uses the charge pump supply, these registers can only be updated if the charge pump is ready. If the charge pump loses power, these level-shifted registers are reset to 0 . The level-shifted registers for each switch only get updated if the charge pump supply is good and a new value is written to the logic level register map. Therefore, if a nonzero value is used for the slew rate or short threshold setting, it is recommended to write 0 and rewrite
the correct value to these registers any time the charge pump supply is interrupted. Make sure the SW_GO_EN bit is set to 0 whenever updating the register 0×02 configuration bits.

Programming Options

MAX25606 Pin Resistor Decode Table

Multiple MAX25606 devices can be used in a multidrop UART bus with an external uC acting as the master. The resistors on pins A0 and A1 are used to program the UART Device ID of the MAX25606. The first two LSBs of the A1 code are concatenated with the 4 bits of the A0 code to produce the device ID. For example, a value of 309Ω on A1 (code $x 2$) and a value of 1050Ω on A0 (code x8) result in a Device ID of x28.
Table 1. Device ID and A0/A1 Inputs

\{A1[1:0], A0[3:0]\}	
$x 00$	$x 00$
$x 01$	D01
\ldots	\ldots
$x 3 F$	x3F

The remaining unused bits $\{\mathrm{A} 1[3: 2], \mathrm{A} 2[3: 0]\}$ can be used for as general purpose indicators, for example, a binning resistor and/or a hardware revision identifier. The MAX25606 stores the coded value of the resistors on A0, A1, and A2 in the STAT_RES_CODE register, address 0x0C, and thus the information is available to the microcontroller through the UART bus.

Resistor Programming Table

The IC provides 16 levels of detection between 0 and 1.2 V on the $\mathrm{A} 0, \mathrm{~A} 1$, and A 2 pins, which are used to configure the MAX25606 device ID. The pins source 400μ A, allowing the use of an external resistor between A0/A1/A2 and GND to set the voltage level. See Table 2 for recommended resistor values.
Table 2. A0/A1/A2 Recommended Values

A0/A1/A2[3:0] DECODE VALUE	A0/A1 RESISTOR VALUE $(\Omega, 1 \%)$
0000	95.3
0001	200
0010	309
0011	422
0100	536
0101	649
0110	768
0111	909
1000	1050
1001	1210
1010	1400
1011	1620
1100	1870
1101	2150
1110	2490
1111	2870

A0 sets the four LSBs of the 6-bit device ID. A1 sets the two MSBs of the 6-bit device ID.

PWM Clock and Synchronous Operation with Multiple Devices

The PWM clock for the IC can be selected from the internal oscillator or from an external clock source driving the CLK pin. The CLK pin is bidirectional, allowing a single device to be the master clock, providing a common clock source to multiple devices. The PWM clock source and CLK pin direction are configured through PWM_CLK[1:0] in the CNFG_GEN (0x03) register. The default value is internal oscillator with the CLK pin disabled. For synchronous operation with multiple devices, use the PWM_CLK_SEL bits in the CNFG_GEN (0x03) register to set the master with internal oscillator and CLK pin output, and the slave devices with external oscillator and CLK pin input.
The PWM dimming frequency is programmable by setting the value of the DIV[1:0] bits in the CNFG_GEN (0x03) register, which sets the divide ratio for both the internal (16.384 MHz) and external clock sources.
The CLK output mode requires a pullup resistor from CLK to VDD because the CLK output is an open-drain output. The pullup strength depends on the desired UART frequency. A $10 \mathrm{k} \Omega$ resistor pullup works for most frequencies. If 500 k baud rate is needed, then a stronger pullup resistor, on the order of $1 \mathrm{k} \Omega$, is most likely required.

Parallel Operation for Higher Current Applications

The switches in the IC can handle current up to 0.75 A (max); however, for applications that require higher currents, the switches can be configured in parallel. For example, if the current capability needs to be doubled with three LEDs, connect switch SW0 in parallel to SW3, SW1 in parallel to SW4, and SW2 in parallel to SW5. Make sure the switches connected in parallel have the same phase shift and PWM dimming duty cycles.

PWM Dimming

The IC provides 12-bit programmable dimming on each individual switch. An internal 12-bit counter (COUNT) is generated according to the clock settings. The switch turns off when COUNT is equal to the delay set by the corresponding PSFT register and stays off until the COUNT exceeds the sum of PSFT and PWM duty-control registers. In this way, the duty cycle and relative phase shift of the individual switches can be set independently.

Figure 1. PWM Phase and Duty Cycle Definitions

Dimming With and Without Fade

Each switch of the IC can be independently programmed to perform dimming without fade transition, or dimming with fade transition. For dimming without fade transition, the dimming changes from the initial value to the target value in one dimming cycle. For dimming with fade transition, the dimming changes transitionally step by step, starting from the initial value to the target value in multiple dimming cycles, following a predetermined exponential curve.
To enable dimming with fade transition, set the FADE bit to 1 and the DUTY bits to the target value for the specific switches. Each transitional step value is calculated using 12 bits according to the following formula:
DUTYnext = DUTYnow x CF
where DUTY is the duty cycle and CF is the constant factor
$C F=1.0625$ and CF $=0.9375$ for an up transition and down transition, respectively.
DUTYnext continues to be updated according to the formula until DUTYnext reaches the target value.
The transition period is defined by the TDIM_ register for the switch. The number of transitional steps depends on the distance between the initial value and the target value. The maximum number of transitional steps from 1(/8191) to 8191(/8191) is 115 steps.
The number of transitional steps depends on the distance between the initial value and the target value. The maximum number of transitional steps from $8191(/ 8191)$ to $1(/ 8191)$ is 111 steps.

Duty-cycle steps smaller than CF update in one step.
Each step runs TDIM_PWM dimming cycles, and each dimming cycle consists of 8192 clock cycles by default; therefore Tstep $=$ TDIM_ x 8192. The 8192 clock cycles timer can also be changed to 16384, 32768, or 65536 clock cycles by
programming bits [3:2] in register address 0×02.

LED Fault Detection and Protection

The IC is able to detect a shorted LED, open LED, and open trace between the device and the LED. To detect and report a LED fault, several conditions must be met. First, the LED switch must be operating and LED-open and LED-short detection requires the switch to be open so the duty cycle must be greater than zero. Conversely, open-fault detection requires the switch to be closed so the PWM duty cycle must be less than 100%. In general, it takes up to one dimming cycle to make sure these conditions have been met after a fault condition is applied. This period depends on the PWM dimming frequency.
To ensure proper operation of the fault detection circuits, it is recommended to use a minimum PWM pulse width which is at least twice as long as the programmed slew rate.

LED Short Threshold

The LED short threshold is programmable to support single LED short detection for applications with 1, 2, or 3 LEDs per switch. The short threshold can be independently programmed for each group of three cascoded switches. The VSTH_123 programs the short threshold for the three switches between DR3 and SRC1. The VSTH_456 programs the short threshold for the three switches between DR6 and SRC4.

UART Serial Interface

Overview

The MAX25606 includes a full-duplex UART serial interface to enable fully programmable matrix manager functionality. The system ECU/MCU acts as the UART master, driving read/write packets on the RX line and receiving packets on the TX line. The RX and TX lines can connect up to 64 MAX25606 devices on a common bus using a star topology. The device address of each MAX25606 is pin-programmable using external resistors to ground on the A0 and A1 pins. Devices may be addressed individually using their Device ID[5:0]. They may also be simultaneously addressed using the General Call ID or by using the programmable Cluster Call ID value.
The baud rate of incoming UART packets on RX is automatically detected by the MAX25606, from a minimum of 10 kbps up to a maximum of 500 kbps . The MAX25606 then returns frames on the TX line at the same baud rate according to the packet format described below.

Device Connections

The UART interface ensures compatibility with standard microcontrollers from a variety of manufacturers. It also enables the use of CAN tranceivers for applications where the matrix manager is remote from the microcontroller. The RX line should be driven by the microcontroller master. It can be connected to an individual MAX25606 or to multiple devices in a star topology. The TX line is an open-drain output. Multiple devices can share the same TX connection as well. No external timing reference is required, the MAX25606 automatically detects the bit rate on each RX packet and adjusts the bit rate of the TX response accordingly.

UART Frame Format

Read/write packets are composed from multiple UART frames. Each frame consists of 1 start bit, 8 data bits, 1 parity bit (even), and 1 stop bit. The parity bit should be high if the number of ones in the data bits is odd, otherwise it should be low. If the next frame is in the same packet, there can be no more than 12-bit periods of idle (high) state between frames.

Synchronization and Acknowledge Frames

Each read/write packet must begin with a special Synchronization (SYNC) frame. This is a UART frame containing the data x 79 .

Figure 2. SYNC Frame
Each response packet always begins with a special Acknowledge (ACK) frame. This is a UART frame containing the data xC 3 .

Figure 3. ACK Frame

Device ID and Address Frame Format

Each MAX25606 device in the star configuration should be assigned a unique device ID number using resistors connected to the ADDR0 and ADDR1 pins. There are 64 possible device IDs that can be assigned in this way, from x00 to x3F. See MAX25606 Pin Resistor Decode Table.

In addition to addressing devices individually, the MAX25606 also supports Global Call and Cluster Call write commands. A Global write command addresses all devices on the bus. A Cluster call addresses all devices with a matching cluster call ID in the CNFG_UART register. Read commands cannot use the Global/Cluster Call option and must be addressed to a specific device ID.
The address frame data bits are assigned as follows: the MSB is the Global/Cluster call bit. The next 6 bits are the device ID. The LSB is the Read/Write bit.

Figure 4. SYNC Frame

Write Transactions

Each write packet consists of five UART frames on the RX pin. The first frame shall be the SYNC packet. The second frame consists of the Global/Cluster call flag, then the 6-bit device ID, and then the R/W bit. The R/W bit shall be low for a write command. The third frame shall be the register address being written to. The fourth frame shall be the lower byte of the data being written. The fifth and final frame shall include the 3-bit cyclic redundancy check (CRC) code followed by the upper 5 bits of the data being written. Upon receiving a valid write packet, the device responds with an ACK frame on the TX pin.
Fourth UART frame, lower 8 bits of data packet

Figure 5. SYNC Frame

Fifth UART frame, upper 5 bits of data packet +3 bits of CRC

| ----- |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 6. SYNC Frame

CRC Error Checking

Read/Write transactions are protected using a 3-bit CRC on the frame. The CRC is provided by the master on last three data bits of each UART_RX packet. The MAX25606 calculates its own CRC using the same polynomial, and the transaction is only accepted if the CRC bits match. For response frames on read packets, the MAX25606 appends its own 3-bit CRC code to the 13-bit read data.
The input to the CRC calculation consists of the data bits from the device ID, address, and data frames.
The CRC calculation uses the polynomial $x^{3}+x^{1}+1$ with a starting value of 000 .

UART Watchdog Function

The MAX25606 UART Watchdog feature sets the switches into a preconfigured state in the event of UART communication bus failures. If the EN_WATCHDOG bit is set in the CNFG_WATCHDOG register, the device asserts a UART_WATCHDOG fault when the UART_RX pin has been inactive for more than 4 seconds. When the UART_WATCHDOG fault is set, the FLT output is asserted low and the state of the channel switches is set to the value of the $\bar{W} D$ LED_STATE register. The default value of WD_LED_STATE is $x 00$, which opens all six switches in the event of a watchdog fault. The fault can be masked by setting the MSK_UART_ERR bit in the CNFG_MASK_GEN register. The fault status is cleared by writing a 1 to the UART_WATCHDOG bit. When the fault status is cleare \bar{d}, the switches resume operation according to the values of the PWM registers.

UART Communication Error Handling

In the event that the device receives a bad packet on UART_RX, it asserts the relevant fault status bit in STAT_UART and asserts the FLT output. The UART communications faults can be masked by setting the MSK_UART_ERR bit. Faults are cleared by writing 1 to the STAT_UART bits. The following communications errors result in fault assertion:

- UART Watchdog timeout: UART_RX stops transitioning for more than 4 seconds and EN_WATCHDOG bit is set.
- UART_RX timeout: UART_RX stops transitioning for more than 16 bit lengths after a UAR \bar{T} start bit has been received but before the end of a valid command sequence.
- RX_CRC_ERR: An invalid CRC code is detected on a UART transaction.
- RX_SYNC_PERR: parity error in the SYNC frame
- RX_PL_ERR: parity error in the payload frame
- RX_STOP_ERR: frame is missing the stop bit

Thermal Protection

The IC features an on-chip temperature-protection circuit to prevent the device from overheating.
When the die temperature rises above the thermal-warning threshold $\left(+140^{\circ} \mathrm{C}\right)$, the TH_WARN bit is set, causing the FLT pin to be asserted but no action is taken with the switches. To clear the TH_WARN bit, a 1 must be written to the bit. If the die temperature is still above the threshold, the status bit is immediately set again.
When the die temperature rises above the thermal-shutdown threshold $\left(+165^{\circ} \mathrm{C}\right)$, the TH SHDN bit is set, causing the FLT pin to be asserted and all switches to either be closed (LEDs turned off) or opened (LEDs turned on), depending on the value of the TH_SHDN_ACT register bit. Switches remain static and the FLT pin remains asserted until the fault status is cleared by writing 1 to the TH_SHDN bit. If the die temperature is still above the threshold, the fault status is immediately set again.
When the device recovers from thermal shutdown, it resumes operation from where it was before the thermal shutdown. The TH_WARN and TH_SHDN bits are cleared by writing a 1.

PWM Clock and Synchronous Operation with Multiple Devices

The PWM clock for the IC can be selected from the internal oscillator or from an external clock source driving the CLK pin. The CLK pin is bidirectional, allowing a single device to be the master clock, providing a common clock source to multiple devices. The PWM clock source and CLK pin direction are configured through PWM_CLK[1:0] in the CNFG_GEN (0x03) register. The default value is internal oscillator with the CLK pin disabled. For synchronous operation with multiple devices, use the PWM_CLK_SEL bits in the CNFG_GEN (0x03) register to set the master with internal oscillator and CLK pin output, and the slave devices with external oscillator and CLK pin input.
The PWM dimming frequency is programmable by setting the value of the DIV[1:0] bits in the CNFG_GEN (0x03) register, which sets the divide ratio for both the internal (16.384 MHz) and external clock sources.
The CLK output mode requires a pullup resistor from CLK to VDD because the CLK output is an open-drain output. The pullup strength depends on the desired UART frequency, a $10 \mathrm{k} \Omega$ resistor pullup works for most frequencies. If 500 k baud rate is needed, then $1 \mathrm{k} \Omega$ or $2 \mathrm{k} \Omega$ pullup may be better.

Register Map

MAX25606

ADDRESS	NAME	MSB							LSB
USER COMMANDS									
0×00	NO OP[15:8]				REV_ID[4:0]				
	NO OP[7:0]	-	-	-	CONSTANT_TEST[4:0]				
0×01	SW GO[15:8]				-	-	-	-	-
	SW_GO[7:0]	-	-	-	-	-	-	-	$\begin{gathered} \hline \text { SW_GO } \\ \text { _EN } \end{gathered}$
0×02	CNFG GEN[15:8]				VSTH_456[2:0]			VSTH_123[2:1]	
	CNFG_GEN[7:0]	$\begin{aligned} & \hline \text { VSTH_1 } \\ & 23[0] \end{aligned}$	LED_SLEW[2:0]			DIV[1:0]		PWM_CLK_SEL[1:0]	
0×03	CNFG UART[15:8]				-	-	-	-	-
	CNFG_UART[7:0]	-	-	CID[5:0]					
0x04	CNFG WATCHDOG[15 :8]				$\begin{gathered} \text { EN_WAT } \\ \text { CHDOG } \\ \hline \end{gathered}$	-	-	-	-
	CNFG WATCHDOG[7: 0]	-	-	WD_LED_STATE[5:0]					
0×05	$\frac{\text { CNFG OPEN OVRD[1 }}{5: 8]}$				-	-	-	-	-
	CNFG OPEN OVRD[7:	-	-	OPEN_LED_OVR[5:0]					
0x06	CNFG_GROUPA[15:8]				-	-	-	-	-
	CNFG GROUPA[7:0]	-	-	GROUPA_SEL[5:0]					
0×07	CNFG_GROUPB[15:8]				-	-	-	-	-
	CNFG GROUPB[7:0]	-	-	GROUPB_SEL[5:0]					
0×08	CNFG_MSK_GEN[15:8]				$\begin{aligned} & \text { TH_SHD } \\ & \text { N_ACT } \end{aligned}$	-	-	-	-
	CNFG MSK GEN[7:0]	-	MSK_UA RT_ERR	$\begin{gathered} \text { MSK_OP } \\ \text { EN_TRA } \\ \bar{C} E \end{gathered}$	$\begin{aligned} & \text { MSK_OP } \\ & \text { EN_LED } \end{aligned}$	$\begin{gathered} \hline \text { MSK_SH } \\ \text { ORT_LE } \\ \text { D } \end{gathered}$	$\begin{aligned} & \text { MSK_CP } \\ & _R D \bar{Y} _N \end{aligned}$	MSK_RA DC_ERR	MSK_TH _WARN
0×09	CNFG MSK LED[15:8]				-	-	-	-	-
	CNFG MSK LED[7:0]	-	-	CNFG_MSK_LED[5:0]					
0x0A	STAT GEN[15:8]				-	-	-	$\begin{aligned} & \hline \text { CONFIG } \\ & \text {-NOT_D } \\ & \text { ONE } \end{aligned}$	$\begin{gathered} \text { RADC_E } \\ R^{-} \end{gathered}$
	STAT_GEN[7:0]	$\begin{aligned} & \text { EXT_CL } \\ & \text { K_ERR } \end{aligned}$	UART_E RR	OPEN_T RACE	$\begin{gathered} \text { OPEN_L } \\ \text { ED } \end{gathered}$	$\begin{gathered} \text { SHORT_- } \\ \text { LED } \end{gathered}$	$\underset{\underset{\sim}{C P}}{\substack{\text { CPDY }}}$	$\underset{\mathrm{N}}{\mathrm{TH}}$	$\begin{gathered} \text { TH_WA } \\ \text { RN } \end{gathered}$
0x0B	STAT RADC[15:8]				-	-	-	-	-
	STAT_RADC[7:0]	-	$\begin{gathered} \text { RADC_D } \\ \text { ONE } \end{gathered}$	$\begin{aligned} & \text { R2_OVE } \\ & \text { R_RANG } \\ & \mathrm{E} \end{aligned}$	R1 OVE R_RANG E	$\begin{aligned} & \text { RO_OVE } \\ & \text { R_RANG } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { R2_UND } \\ & \text { ER_RAN } \\ & \bar{G} E \end{aligned}$	RES1_U NDR1_U NDER_R ANGE	$\begin{aligned} & \text { RO_UND } \\ & \text { ER_RAN } \\ & \bar{G} E \end{aligned}$
0x0C	STAT RES CODE[15:8				-	R2_CODE[3:0]			
	STAT RES CODE[7:0]	R1_CODE[3:0]				R0_CODE[3:0]			

ADDRESS	NAME	MSB							LSB
0x0D	STAT_UART[15:8]				-	-	-	-	UART WATCH DOG
	STAT UART[7:0]	$\begin{gathered} \text { RX_TIM } \\ \text { EOUT_E } \\ \text { RR } \end{gathered}$	$\begin{gathered} \text { RX_CRC } \\ \text { _ERR } \end{gathered}$	RX SYN C_PERR	$\begin{aligned} & \text { RX_PL_ } \\ & \text { PERR } \end{aligned}$	RX_SYN C_STOP _ERR	$\begin{gathered} \text { RX_PL_} \\ \text { STOP_E } \\ \text { RR } \end{gathered}$	RX_PL_ START_ ERR	-
0x0E	STAT SHORT LED[15: 8]				-	-	-	-	-
	$\begin{aligned} & \text { STAT SHORT LED[7:0 } \\ & \hline \end{aligned}$	-	-	SHORT_LED_STAT[5:0]					
0x0F	STAT OPEN LED[15:8 l				-	-	-	-	-
	STAT_OPEN LED[7:0]	-	-	OPEN_LED_STAT[5:0]					
0×10	STAT OPEN TRACE[1 5:8]				-	-	-	-	-
	STAT_OPEN_TRACE[7 :0]	-	-	OPEN_TRACE_STAT[5:0]					
0x11	PSFT GRP[15:8]				-	-	-	PSFT_G	OUP[1:0]
	PSFT GRP[7:0]	PSFT[7:0]							
0x12	PSFT 0[15:8]				-	-	-	-	-
	PSFT 0[7:0]	PSFT_0[7:0]							
0x13	PSFT 1[15:8]				-	-	-	-	-
	PSFT 1[7:0]	PSFT_1[7:0]							
0×14	PSFT 2[15:8]				-	-	-	-	-
	PSFT 2[7:0]	PSFT_2[7:0]							
0x15	PSFT 3[15:8]				-	-	-	-	-
	PSFT 3[7:0]	PSFT_3[7:0]							
0x16	PSFT_4[15:8]				-	-	-	-	-
	PSFT 4[7:0]	PSFT_4[7:0]							
0×17	PSFT_5[15:8]				-	-	-	-	-
	PSFT 5[7:0]	PSFT_5[7:0]							
0x18	TDIM_GRP[15:8]				-	-	-	-	-
	TDIM GRP[7:0]	-	-	TDIM_GROUP[1:0]		-	TDIM[2:0]		
0x19	TDIM_2_1_0[15:8]				-	-	TDIM_2[2:0]		
	TDIM 2 1 1 0[7:0]	-	TDIM_1[2:0]			-	TDIM_0[2:0]		
0x1A	TDIM_5_4_3[15:8]				-	-	TDIM_5[2:0]		
	TDIM 54 3[7:0]	-	TDIM_4[2:0]			-		TDIM_3[2:0]	
0x1B	PWM_GRPA_DUTY[15: 8]				FADE_A		DUTY	A[11:8]	
	PWM GRPA DUTY[7:0]	DUTY_A[7:0]							
$0 \times 1 \mathrm{C}$	PWM GRPB DUTY[15: 8]				FADE_B		DUTY	B[11:8]	
	PWM GRPB DUTY[7:0]	DUTY_B[7:0]							
0x1D	PWM0[15:8]				FADE_0	DUTY_0[11:8]			

Register Details

NO OP (0×00)

NO_OP is a read-only register that reads the content of RGRADE, revision ID, and test pattern.

BIT				12	11	10	9	8
Field				REV_ID[4:0]				
Reset				Ob00000				
Access Type				Read Only				
BIT	7	6	5	4	3	2	1	0
Field	-	-	-	CONSTANT_TEST[4:0]				
Reset	-	-	-	Ob10001				
Access Type	-	-	-	Read Only				

BITFIELD	BITS	DESCRIPTION
REV_ID	$12: 8$	Revision Information: Reads back 5-bit hardware revision ID.
CONSTANT_TEST	$4: 0$	Test Pattern: 0x11 is always returned in this location for interface checking.

SW GO (0x01)

SW_GO us a read/write register that enables the PWN signals

BITFIELD	BITS	DESCRIPTION	DECODE
		Switching Enable signal. Enables LED dimming operation and starts dimming counters. If SW_GO_EN = 0, all LED switches are closed and all PWM counters in the LED Controller are reset to 0. If SW_GO_EN = 1, all LED switches operate according to their programmed values and all PWM counters start counting from 0.	Ox0: All LED switches are closed, and all PWM CW_GO_EN counters are reset to 0. 0x1: All LED switches operate according to their programmed values, and all PWM counters start counting from 0.
	0	The SW_GO_EN command should be issued after CP_RDY_N transitions low on STAT_GEN, ensuring CLK is present and CPP voltage is valid.	

CNFG GEN (0×02)

CNFG_GEN is a read/write access register that controls the dimming clock divider ratio, the slew rate of the LED switches, the threshold used for the short-LED fault-detection function, and the functionality of the CLK pin.

BITFIELD	BITS	DESCRIPTION	DECODE
LED_SLEW	6:4	Slew Control for the Internal LED Gate Driver: Updating the LED gate-driver slews can take time, up to a full PWM dimming cycle; therefore, consecutive writes to LED_SLEW should be at least 1 dimming cycle apart in time. In most cases, this register is set only once, prior to setting SW_GO_EN.	0×0 : $10 \mu \mathrm{~s}$ 0x1: $6.67 \mu \mathrm{~s}$ $0 \times 2: 5.0 \mu \mathrm{~s}$ 0×3 : $3.3 \mu \mathrm{~s}$ 0×4 : $2.5 \mu \mathrm{~s}$ 0×5 : $1.5 \mu \mathrm{~s}$ 0×6 : $1.0 \mu \mathrm{~s}$ 0×7 : $0.5 \mu \mathrm{~s}$
DIV	3:2	PWM Dimming-Frequency Select. The PWM dimming clock frequency, fpwm, is divided down from fosc by the chosen divider value. fosc can either be the internal oscillator clock or the external oscillator clock, depending on the PWM_CLK_SEL bit setting.	$\begin{array}{\|l} \text { 0x0: fpwm }=\text { fosc } / 8192 \\ 0 \times 1: \text { fpwm }=\text { fosc } / 16384 \\ 0 \times 2: ~ f p w m=\text { fosc } / 32768 \\ 0 \times 3: \text { fpwm }=\text { fosc } / 65536 \end{array}$
$\begin{aligned} & \text { PWM_CLK_ } \\ & \text { SEL } \end{aligned}$	1:0	Determines internal/external PWM clock and direction of CLK pin.	0x0: Internal OSC, CLK pin disabled (default). 0×1 : Internal OSC, CLK pin output. 0x2: External OSC, CLK pin input.[1-20Mhz clk] 0×3 : External OSC, CLK pin input.[1..20Mhz clk]

CNFG UART (0×03)

CNFG_UART is a read/write access register that controls the cluster ID assignment.

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	-	-	CID[5:0]					
Reset	-	-	Ob000001					
Access Type	-	-	Write, Read					

BITFIELD	BITS	DESCRIPTION
CID	$5: 0$	Cluster Identification: During a cluster call write transaction, the UART accepts the transaction if the received CID[5:0] matches the contents of this register.

CNFG WATCHDOG (0x04)

BIT		12	11	10	9	8
Field		EN_WATC HDOG	-	-	-	-
Reset			-	-	-	-
Access Type		Write, Read	-	-	-	-

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	-	-		$\mathbf{0}$			
Reset	-	-		WD_LED_STATE[5:0]			
Access Type	-	-	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
EN_WATCH	12	When this bit is set and the UART_WATCHDOG bit is set: The active-low fault flag will be asserted. The state of the switches will be set according to the WD_LED_STATE register.	0x0: UART Watchdog timer is disabled 0x1: enable UART Watchdog
WD_LED_ST ATE	$5: 0$	Sets the state of LEDs when UART timeout condition is detected.	0x0: Switch Open 0x1: Switch Closed

CNFG OPEN OVRD (0×05)

OPEN_OVRD is a read/write register that overrides the LED switching control signals. When this feature is disabled, the LED switch operates normally. When this feature is enabled, the LED switch is always forced to a closed position (i.e., the LED duty cycle is zero, regardless of the DUTY or TDIM settings).
The intent is to allow the $\mu \mathrm{P}$ to manually force the switch to stay closed after it has determined the particular LED is permanently opened. This further suppresses fault signals from the switch(es) since LED faults are only detected when the switch opens.

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	-	-	OPEN_LED_OVR[5:0]					
Reset	-	-	0x000					
Access Type	-	-	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
OPEN_LED_ OVR	$5: 0$	Open-LED Override: Program these bits to force the corresponding switch(es) to always be closed. This will override the state of the corresponding DUTY registers.	0x0: Normal $0 \times 1:$ LED switch is always closed.

CNFG GROUPA (0×06)

CNFG_GRPA is a read/write register that allows the user to assign particular LED drivers to a this group. LED drivers assigned to this group respond to qualified transactions on the following registers:

- PSFT_GRP (if PSFT_GROUP==0001)
- TDIM_GROUP (if TDIM_GROUP==0001)
- PWM_GRPA_DUTY

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	-	-	GROUPA_SEL[5:0]					
Reset	-	-	0x000					
Access Type	-	-	Write, Read					
BITFIELD	BITS	DESCRIPTION			DECODE			
$\begin{aligned} & \text { GROUPA_S } \\ & \text { EL } \end{aligned}$	5:0	Set high if assigning a register to GroupA. Example: writing a value of $x 07$ will assign the first 3 switches to Group A.			0×0 : Not assigned 0×1 : Assigned			

CNFG GROUPB (0×07)

CNFG_GRPB is a read/write register that allows the user to assign particular LED drivers to a this group. LED drivers assigned to this group respond to qualified transactions on the following registers:

- PSFT_GRP (if PSFT_GROUP==00010)
- TDIM_GROUP (if TDIM_GROUP==0010)
- PWM_GRPB_DUTY

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	-	-	GROUPB_SEL[5:0]					
Reset	-	-	0x000					
Access Type	-	-	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
GROUPB_S EL	$5: 0$	Set high if assigning a register to GroupB.	0x0: Not assigned $0 \times 1:$ Assigned

CNFG MSK GEN (0×08)

CNFG_MSK is a read/write access register that controls the masking of fault conditions from the acitve-low fault flag output.

BIT		12	11	10	$\mathbf{9}$	$\mathbf{8}$
Field		TH_SHDN_ ACT	-	-	-	-
Reset		Ob0	-	-	-	-
Access Type		Write, Read	-	-	-	-

BIT	7	6	5	4	3	2	1	0
Field	-	MSK_UART _ERR	MSK_OPE N_TRACE	MSK_OPE N_LED	$\begin{gathered} \hline \text { MSK_SHO } \\ \text { RT_LED } \end{gathered}$	$\begin{gathered} \text { MSK_CP_R } \\ D \bar{Y} _N \end{gathered}$	MSK_RAD C_ERR	$\begin{gathered} \hline \text { MSK_TH_ } \\ \text { WARN } \end{gathered}$
Reset	-	Ob0	Ob0	Ob0	0b0	Ob0	Ob0	Ob0
Access Type	-	Write, Read						
BITFIELD	BITS	DESCRIPTION			DECODE			
$\begin{aligned} & \text { TH_SHDN_A } \\ & \text { CT } \end{aligned}$	12	Thermal-Shutdown Action: This bit selects whether to open or close the LED switches when a TH_SHDN is high.			0x0: Closes all LED switches. 0×1 : Opens all LED switches.			
MSK_UART_ ERR	6	Masks SPI_ERR to FAULTB.			0x0: UART_ERR being set high asserts the activelow fault flag output. 0×1 : UART_ERR bit does not assert the active-low fault flag output.			
MSK OPEN _TRACE	5	Masks all open-trace detections to FAULTB.			0x0: Any OPEN_TRACE__ detects assert the active-low fault flag output. 0×1 : Any OPEN_TRACE__ detects do not assert the active-low fault flag output.			
$\begin{aligned} & \text { MSK_OPEN } \\ & \text { _LED } \end{aligned}$	4	Masks all open-LED detections to FAULTB.			0x0: Any OPEN_LED__ detects assert the activelow fault flag output. 0x1: Any OPEN_LED \qquad detects do not assert the active-low fault flag output.			
MSK_SHOR T_LED	3	Masks all STAT_SHORT_LED detections to FAULTB.			0x0: Any STAT_SHORT_LED bits set high assert the active-low fault flag output. 0x1: Any STAT_SHORT_LED bits set high do not assert the active-low fault flag output.			
$\begin{aligned} & \text { MSK_CP_R } \\ & \text { DY N } \end{aligned}$	2	Mask CP_RDY_N to FAULTB.			0×0 : CP_RDY_N asserts the active-low fault flag output. 0×1 : CP_RDY_N does not assert the active-low fault flag output.			
$\begin{aligned} & \hline \text { MSK_RADC } \\ & \text { _ERR } \end{aligned}$	1	Masks SPI_ERR to FAULTB.			0x0: No masking of RADC_ERR. 0×1 : Mask RADC_ERR from generating fault.			
$\begin{aligned} & \text { MSK_TH_W } \\ & \text { ARN } \end{aligned}$	0	Mask-Thermal Warning to FAULTB.			0x0: TH_WARN asserts the active-low fault flag output. 0x1: TH_WARN does not assert the active-low fault flag output.			

CNFG MSK LED (0x09)

CNFG_MSK_LED prevents LED faults from asserting the active-low fault flag output. This allows the $\mu \mathrm{P}$ to instruct the part to ignore faults from a particular LED when that LED is deliberately not populated in the application.

BIT	12	11	10	9	8	
Field		-	-	-	-	-
Reset		-	-	-	-	-
Access Type		-	-	-	-	-

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	-	-		$\mathbf{0}$			
Reset	-	-	CNFG_MSK_LED[5:0]				
Access Type	-	-	Write, Read				

BITFIELD	BITS	DESCRIPTION
CNFG_MSK_LED	$5: 0$	Set bit(s) high to mask OPEN_LED, SHORT_LED, and OPEN_TRACE faults from those LEDs asserting the active-low fault flag output.

STAT GEN ($0 \times 0 \mathrm{~A}$)

STAT_GEN is a read-only access register that provides general operations and warnings. The active-low fault flag output is asserted whenever any of these bits is high, unless the corresponding MASK bit is set.

BITFIELD	BITS	DESCRIPTION	DECODE
OPEN_TRA CE	5	OPEN_TRACE is asserted if any OPEN_TRACE_STAT bit is high.	0x0: All LED drivers operating normally. $0 \times 1:$ At least one LED driver has open-trace detected.
OPEN_LED	4	OPEN_LED is asserted if any OPEN_LEDD_STAT bit is high.	0x0: All LED drivers operating normally. 0x1: At least one LED driver has open detected.
SHORT_LED	3	SHORT_LED is asserted if any SHORT_LED_STAT bit is high.	0x0: All LED drivers operating normally. $0 \times 1:$ At least one LED driver has short detected.
CP_RDY_N	2	CP_RDY_N is a read-only bit that indicates the charge-pump voltage is below the operating threshold.	0x0: CP operating normally. $0 \times 1:$ CP is below VCPP_OK threshold
TH_SHDN	1	Thermal Shutdown. Latched, write 1 clears. When set, the behavior of the switches will be controlled by TH_SHDN_ACT UART bit.	0x0: Normal Operation $0 \times 1: ~ D e v i c e ~ h a s ~ e x c e e d e d ~ t h e ~ T h e r m a l ~ S h u t d o w n ~$ temperature threshold.
TH_WARN	0	Thermal Warning. Latched, write 1 to clear.	0x0: Normal operation $0 \times 1:$ Device has exceeded the thermal-warning temperature threshold.

STAT RADC (0x0B)

BITFIELD	BITS	DESCRIPTION	DECODE
R0_UNDER_ RANGE	0	Status bit which indicates the A0 programming resistor is below the minimum code value.	0x0: Normal operation $0 \times 1:$ Resistor0 under range, or a short detetcted.

STAT RES CODE (0x0C)

A2, A1, and A0 resistor code values. these resistor values are measured during power up and the corresponding 4 bit code is stored in this register.

BITFIELD	BITS	DESCRIPTION
R2_CODE	$11: 8$	4 bit code for the A2 resistor
R1_CODE	$7: 4$	4 bit code for the A1 resistor. bits 4 and 5 are the MSBs of the UART device ID
R0_CODE	$3: 0$	4 bit code for the A0 resistor. this code represents the 4 least significant bits of the UART device ID.

STAT UART (0x0D)

BIT				12		11	10	9	8
Field				-		-	-	-	UART_WAT CHDOG
Reset				-		-	-	-	
Access Type				-		-	-	-	Write 1 to Clear, Read
BIT	7	6	5	4		3	2	1	0
Field	$\begin{gathered} \text { RX_TIMEO } \\ \text { UT__ERR } \end{gathered}$	$\underset{R R}{\text { RX_CRC_E }}$	$\begin{gathered} \text { RX_SYNC_ } \\ \text { PERR } \end{gathered}$	$\underset{R R}{R X}$		SYNC P ERR	$\begin{gathered} \text { RX_PL_ST } \\ \text { OP_ERR } \end{gathered}$	$\begin{aligned} & \text { RX_PL_ST } \\ & \text { ART_ERR } \end{aligned}$	-
Reset	Ob0	Ob0	Ob0	Ob0		Ob0	Ob0	Ob0	-
Access Type	Write 1 to Clear, Read		Write 1 to Clear, Read	Write 1 to Clear, Read	-				
BITFIELD	BITS	DESCRIPTION				DECODE			
UART_WAT CHDOG	8	The UART Watchdog Timer will assert whenever there has been no activity on the UART_RX pin for at least 4 seconds.				0x0: UART WD not expired 0×1 : UART WD has expired			

BITFIELD	BITS	DESCRIPTION	DECODE
RX_TIMEOU T_ERR	7	This bit shall be asserted if there are no UART_RX transitions for more than 16 bit lengths during a UART packet. The bit length shall be determined by the SYNC frame of each packet.	0x0: Normal operation. 0x1: UART Rx times out.
RX_CRC_ER R	6	CRC Error Indicator. Read only, clear-on- read	0x0: Normal operation. $0 \times 1: ~ C R C ~ E r r o r: ~ A t ~ l e a s t ~ o n e ~ U A R T ~ t r a n s a c t i o n ~$ rejected due to a failed CRC check.
RX_SYNC_P ERR	5	RX Sync Error Indicator. Read only, clear-on- read	0x0: Normal operation. 0x1: RX Sync Frame Parity Error detected.
RX_PL_PER R	4	RX payload parity Error Indicator. Read only, clear-on-read	0x0: Normal operation. 0x1: UART Rx payload parity error detected.
RX_SYNC_S TOP_ERR	3	RX sync frame stop bit Error Indicator. Read only, clear-on-read	0x0: Normal operation. $0 \times 1:$ Rx Sync Frame STOP bit error detected
RX_PL_STO P_ERR	2	RX payload frame stop bit Error Indicator. Read only, clear-on-read	0x0: Normal operation. $0 \times 1:$ Rx Payload Frame STOP bit error
RX_PL_STA RT_ERR	1	RX payload frame start bit Error Indicator. Read only, clear-on-read	0x0: Normal operation. $0 \times 1:$ Rx Payload Frame START bit error

STAT SHORT LED (0x0E)

STAT_SHORT_LED is a read-only, write 1 to clear, access register that provides short-detect information on the 12 LED output drivers.

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	-	-	SHORT_LED_STAT[5:0]					
Reset	-	-	0x000					
Access Type	-	-	Write 1 to Clear, Read					

BITFIELD	BITS	DESCRIPTION
SHORT_LED_STAT	$5: 0$	Indicates an LED short has been detected.

STAT OPEN LED (0x0F)

STAT_OPEN is a read-only, write 1 to clear, access register that provides open-detect information on the 12 LED output drivers.

BIT		12	11	10	9	8
Field		-	-	-	-	-
Reset		-	-	-	-	-
Access Type		-	-	-	-	-

BIT	7	6	5	4	3	2	1	0
Field	-	-	OPEN_LED_STAT[5:0]					
Reset	-	-	0x000					
Access Type	-	-	Write 1 to Clear, Read					
BITFIELD	BITS	DESCRIPTION			DECODE			
$\begin{aligned} & \text { OPEN_LED_ } \\ & \text { STAT } \end{aligned}$	5:0	Indicates that an open-LED condition has been detected.			0x0: Normal 0×1 : Open LED			

STAT OPEN TRACE (0×10)

STAT_OPEN_TRACE is a read-only, write 1 to clear, register that provides open-trace fault information on the 12 LED output drivers.

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	-	-	OPEN_TRACE_STAT[5:0]					
Reset	-	-	0x000					
Access Type	-	-	Write 1 to Clear, Read					
BITFIELD	BITS	DESCRIPTION			DECODE			
OPEN_TRA CE_STAT	5:0	Indicates an open-trace has been detected.						

PSFT GRP (0x11)

PSFT_GRP is a read/write register that allows the user to assign the same phase shift to one or more LED drivers.
The contents of PSFT are written to the desired group specified by PSFT_GROUP.

Example:

If PSFT_GROUP == Group A, PSFT == 0001, and LED11, LED9, and LED6 are assigned to Group A (through CNFG_GRPA), then PSFT_11, PSFT_9, and PSFT_6 will contain 0001 after the transaction is executed.

BIT				12	11	10	9	8
Field				-	-	-	PSFT_GROUP[1:0]	
Reset				-	-	-	0x1	
Access Type				-	-	-	Write, Read	
BIT	7	6	5	4	3	2	1	0
Field	PSFT[7:0]							
Reset	0x0							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
PSFT_GROUP	$9: 8$	Group Select: bit 0: Group A selected bit 1: Group B selected
Multiple groups can be selected at a time.		
Note: 00 is not a valid selection, the transaction is not executed and the 4-bit		
value is unchanged.		

PSFT $0(0 \times 12)$

PSFT_0 is a read/write register that controls the phase shift for LED drivers 0.

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	PSFT_0[7:0]							
Reset	0x0							
Access Type	Write, Read							

BITFIELD	BITS		DESCRIPTION
PSFT_0	$7: 0$	LED 0 Phase Select.	

PSFT 1 (0×13)

PSFT_1 is a read/write register that controls the phase shift for LED drivers 1.

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	PSFT_1[7:0]							
Reset	0x43							
Access Type	Write, Read							

BITFIELD	BITS		DESCRIPTION
PSFT_1	$7: 0$	LED 0 Phase Select.	

PSFT $2(0 \times 14)$

PSFT_2 is a read/write register that controls the phase shift for LED drivers 2.

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	PSFT_2[7:0]							
Reset	0x85							
Access Type	Write, Read							

BITFIELD	BITS		DESCRIPTION
PSFT_2	$7: 0$	LED 0 Phase Select.	

PSFT 3 (0×15)

PSFT_3 is a read/write register that controls the phase shift for LED drivers 3.

PSFT 4 (0×16)

PSFT_4 is a read/write register that controls the phase shift for LED drivers 4.

PSFT 5 (0×17)

PSFT_5 is a read/write register that controls the phase shift for LED drivers 5.

BIT				12	11	10	9	8
Field				-	-	-	-	-
Reset				-	-	-	-	-
Access Type				-	-	-	-	-
BIT	7	6	5	4	3	2	1	0
Field	PSFT_5[7:0]							
Reset	0x213							
Access Type	Write, Read							

BITFIELD	BITS		DESCRIPTION
PSFT_5	$7: 0$	LED 0 Phase Select.	

TDIM GRP (0x18)

TDIM_GRP is a read/write register that allows the user to assign the same dimming period to one or more LED drivers. The contents of TDIM are written to the desired group specified by TDIM_GROUP.

Example:

If TDIM_GROUP == Group A, PSFT == 001, and LED12, LED9, and LED6 are assigned to Group A (through CNFG_GRPA), then TDIM_12, TDIM_9, and TDIM_6 will contain 001 after the transaction is executed.

BITFIELD	BITS	DESCRIPTION	DECODE
TDIM	2:0	Dimming Period Select	0×0 : update PWM duty cycle every 1 PWM period 0×1 : update PWM duty cycle every 2 PWM periods 0×2 : update PWM duty cycle every 4 PWM periods 0x3: update PWM duty cycle every 8 PWM periods 0x4: update PWM duty cycle every 16 PWM periods 0x5: update PWM duty cycle every 32 PWM periods 0x6: update PWM duty cycle every 32 PWM periods 0x7: update PWM duty cycle every 32 PWM periods 1 PWM period $=8192$ clock cycles by default (PWM period configured by bits [3:2] of register address 0x02)

TDIM $210(0 \times 19)$

TDIM_2_1_0 is a read/write register that controls the dimming period for LED drivers 2, 1 , and 0 .

6-Switch Matrix Manager for Automotive Lighting

BITFIELD	BITS	DESCRIPTION	DECODE
TDIM_1	6:4	LED 1 Dimming Period Select	0x0: Update PWM duty cycle every 1 PWM period. 0x1: Update PWM duty cycle every 2 PWM periods. 0x2: Update PWM duty cycle every 4 PWM periods. 0x3: Update PWM duty cycle every 8 PWM periods. 0x4: Update PWM duty cycle every 16 PWM periods. 0x5: Update PWM duty cycle every 32 PWM periods. 0x6: Update PWM duty cycle every 32 PWM periods. 0x7: Update PWM duty cycle every 32 PWM periods. 1 PWM period = 8192 clock cycles by default (PWM period configured by bits [3:2] of register address 0×02)
TDIM_0	2:0	LED 0 Dimming Period Select	0x0: Update PWM duty cycle every 1 PWM period. 0×1 : Update PWM duty cycle every 2 PWM periods. 0x2: Update PWM duty cycle every 4 PWM periods. 0x3: Update PWM duty cycle every 8 PWM periods. 0x4: Update PWM duty cycle every 16 PWM periods. 0×5 : Update PWM duty cycle every 32 PWM periods. 0x6: Update PWM duty cycle every 32 PWM periods. 0x7: Update PWM duty cycle every 32 PWM periods. 1 PWM period $=8192$ clock cycles by default (PWM period configured by bits [3:2] of register address 0×02)

TDIM 543 ($0 \times 1 \mathrm{~A}$)

TDIM_5_4_3 is a read/write register that controls the dimming period for LED drivers 5, 4, and 3.

BITFIELD	BITS	DESCRIPTION	DECODE
TDIM_5	10:8	LED 5 Dimming Period Select	0x0: Update PWM duty cycle every 1 PWM period. 0×1 : Update PWM duty cycle every 2 PWM periods. 0x2: Update PWM duty cycle every 4 PWM periods. 0x3: Update PWM duty cycle every 8 PWM periods. 0x4: Update PWM duty cycle every 16 PWM periods. 0×5 : Update PWM duty cycle every 32 PWM periods. 0x6: Update PWM duty cycle every 32 PWM periods. 0x7: Update PWM duty cycle every 32 PWM periods. 1 PWM period $=8192$ clock cycles by default (PWM period configured by bits [3:2] of register address 0×02)
TDIM_4	6:4	LED 4 Dimming Period Select	0x0: Update PWM duty cycle every 1 PWM period. 0×1 : Update PWM duty cycle every 2 PWM periods. 0x2: Update PWM duty cycle every 4 PWM periods. 0x3: Update PWM duty cycle every 8 PWM periods. 0x4: Update PWM duty cycle every 16 PWM periods. 0×5 : Update PWM duty cycle every 32 PWM periods. 0x6: Update PWM duty cycle every 32 PWM periods. 0x7: Update PWM duty cycle every 32 PWM periods. 1 PWM period $=8192$ clock cycles by default (PWM period configured by bits [3:2] of register address 0×02)
TDIM_3	2:0	LED 3 Dimming Period Select	0x0: Update PWM duty cycle every 1 PWM period. 0×1 : Update PWM duty cycle every 2 PWM periods. 0x2: Update PWM duty cycle every 4 PWM periods. 0x3: Update PWM duty cycle every 8 PWM periods. 0x4: Update PWM duty cycle every 16 PWM periods. 0x5: Update PWM duty cycle every 32 PWM periods. 0x6: Update PWM duty cycle every 32 PWM periods. 0x7: Update PWM duty cycle every 32 PWM periods. 1 PWM period $=8192$ clock cycles by default (PWM period configured by bits [3:2] of register address 0×02)

PWM GRPA DUTY (0x1B)

PWM_GRPA_DUTY is a read/write register that allows the user to assign the same duty cycle and enable/disable PWM
dimming to one or more LED drivers.
The contents of DUTY_A are written to LEDs assigned to Group A.

Example:

If DUTY_A $==0 \times 0 A A$ and LED11, LED8, and LED5 are assigned to Group A (through CNFG_GRPA), then DUTY_11, DUTY_8, and DUTY_5 will contain 0x0AA after the transaction is executed.

BIT				12	11	10	9	8
Field				FADE_A	DUTY_A[11:8]			
Reset				Ob0	0x000			
Access Type				Write, Read	Write, Read			
BIT	7	6	5	4	3	2	1	0
Field	DUTY_A[7:0]							
Reset	0x000							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
FADE_A	12	Group A PWM Dimming with Fade Enable
		Group A Duty-Cycle Selection: $0 \times 000=$ Off DUTY_A
	$11: 0$	\ldots
		Oxfff $=100 \%$ duty cycle

PWM GRPB DUTY ($0 \times 1 \mathrm{C}$)

PWM_GRPB_DUTY is a read/write register that allows the user to assign the same duty cycle and enable/disable PWM dimming to one or more LED drivers.
The contents of DUTY_B are written to LEDs assigned to Group B.

Example:

If DUTY_B == 0x0AA and LED11, LED9, and LED6 are assigned to Group B (through CNFG_GRPB), then DUTY_11, DUTY 9 , and DUTY 6 will contain 0x0AA after the transaction is executed.

BIT				12	11	10	9	8
Field				FADE_B	DUTY_B[11:8]			
Reset				0b0	0x000			
Access Type				Write, Read	Write, Read			
BIT	7	6	5	4	3	2	1	0
Field	DUTY_B[7:0]							
Reset	0x000							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
FADE_B	12	Group B PWM Dimming with Fade Enable

BITFIELD	BITS	DESCRIPTION
		Group B Duty-Cycle Selection: 0x000 $=$ Off DUTY_B
	$11: 0$	0x001 $=1 / 4095$ duty cycle \ldots 0xfff $=100 \%$ duty cycle

PWMO (0x1D)

PWM0 is a read/write register that configures the LED0 duty cycle and enables/disables PWM dimming.

BIT				12	11	10	9	8
Field				FADE_0	DUTY_0[11:8]			
Reset				Ob0	0x000			
Access Type				Write, Read	Write, Read			
BIT	7	6	5	4	3	2	1	0
Field	DUTY_0[7:0]							
Reset	0x000							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
FADE_0	12	LED0 PWM Dimming with Fade Enable
		LED0 Duty-Cycle Selection: 0x000 $=$ Off DUTY_0
	$11: 0$	$0 \times 001=1 / 4095$ duty cycle \ldots $0 x f f ~$$=100 \%$ duty cycle

PWM1 (0x1E)

PWM1 is a read/write register that configures the LED1 duty cycle and enables/disables PWM dimming.

BIT				12	11	10	9	8
Field				FADE_1	DUTY_1[11:8]			
Reset				Ob0	0x000			
Access Type				Write, Read	Write, Read			
BIT	7	6	5	4	3	2	1	0
Field	DUTY_1[7:0]							
Reset	0x000							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
FADE_1	12	LED1 PWM Dimming with Fade Enable
		LED1 Duty-Cycle Selection:
DUTY_1	$11: 0$	$0 \times 000=0$ Off $0 \times 001=1 / 4095$ duty cycle \ldots
		$0 x f f=100 \%$ duty cycle

PWM2 (0x1F)

PWM2 is a read/write register that configures the LED2 duty cycle and enables/disables PWM dimming.

BIT				12	11	10	9	8
Field				FADE_2	DUTY_2[11:8]			
Reset				Ob0	0x000			
Access Type				Write, Read	Write, Read			
BIT	7	6	5	4	3	2	1	0
Field	DUTY_2[7:0]							
Reset	0x000							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
FADE_2	12	LED2 PWM Dimming with Fade Enable
		LED2 Duty-Cycle Selection:
DUTY_2	$11: 0$	0x000 $=$ Off $0 x 001=1 / 4095$ duty cycle \ldots $0 x f f ~$$=100 \%$ duty cycle

PWM3 (0×20)

PWM3 is a read/write register that configures the LED3 duty cycle and enables/disables PWM dimming.

BIT				12	11	10	9	8
Field				FADE_3	DUTY_3[11:8]			
Reset				Ob0	0x000			
Access Type				Write, Read	Write, Read			
BIT	7	6	5	4	3	2	1	0
Field	DUTY_3[7:0]							
Reset	0x000							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
FADE_3	12	LED3 PWM Dimming with Fade Enable
		LED3 Duty-Cycle Selection: DUTY_3
	$11: 0$	0x000 $=$ Off $=1 / 4095$ duty cycle \ldots $0 x f f ~$$=100 \%$ duty cycle

PWM4 (0x21)

PWM4 is a read/write register that configures the LED4 duty cycle and enables/disables PWM dimming.

BIT				12	11	10	9	8
Field				FADE_4	DUTY_4[11:8]			
Reset				Ob0	0x000			
Access Type				Write, Read	Write, Read			
BIT	7	6	5	4	3	2	1	0
Field	DUTY_4[7:0]							
Reset	0x000							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
FADE_4	12	LED4 PWM Dimming with Fade Enable
		LED4 Duty-Cycle Selection:
DUTY_4	$11: 0$	0x000 $=$ off $0 x 001=1 / 4095$ duty cycle \ldots
		Oxff $=100 \%$ duty cycle

PWM5 (0x22)

PWM5 is a read/write register that configures the LED5 duty cycle and enables/disables PWM dimming.

BIT				12	11	10	9	8
Field				FADE_5	DUTY_5[11:8]			
Reset				Ob0	0x000			
Access Type				Write, Read	Write, Read			
BIT	7	6	5	4	3	2	1	0
Field	DUTY_5[7:0]							
Reset	0x000							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
FADE_5	12	LED5 PWM Dimming with Fade Enable
		LED5 Duty-Cycle Selection: 0x000 $=$ Off DUTY_5
	$11: 0$	0x001 $=1 / 4095$ duty cycle $0 x f f ~$$=100 \%$ duty cycle

Applications Information

Configuration

The first step when setting up the MAX25606 is to program the configuration register 0x02. This register controls the switch slew rates, clock setting, and short thresholds. These registers can only be programmed when the SW_GO_EN bit is set to 0 . Do not attempt to program these registers when SW_GO_EN is set to 1 .

Synchronized PWM Phase

The clock which controls the PWM phase is reset when the SW_GO_EN bit is set to 0 . the PWM phase clock starts again when the SW_GO_EN bit is set to 1 . Therefore, using the global/cluster call to send a UART packet to multiple devices at the same time, the SW_GO_EN bit can be set to 1 to ensure each device starts the PWM phase clock at the same instant.

Recommended LED Drivers

For high-performance applications, it is recommended to pair the MAX25606 with an LED driver which has excellent transient response to respond to the dynamic voltage changing that occurs each time a matrix manager switch is opened or closed. Example LED drivers include the MAX20078, MAX20096, MAX20097, and the MAX25601. These LED drivers utilize Maxim's F^{3} buck LED driver architecture to achieve excellent transient response, which limits the LED current overshoot and undershoot during matrix manager switch transitions.
For applications with slower or less frequent switch transitions, a general purpose LED driver such as the MAX25600 or MAX25611 may be used. For these applications using a buck-boost or SEPIC LED driver, the transient response is not as fast as a buck LED driver. Therefore, the matrix manager slew rate should be increased to reduce the LED current transient spikes during switch transitions.

Thermal Considerations

Heat is primarily transferred from the IC to the PCB through the exposed pad. Connect the exposed pad to a large solid ground plane. The programmed slew rate impacts the switching power dissipated inside the IC. Faster slew rates reduce the switching power loss, and slower slew rates increase the switching power loss. The programmed PWM frequency also affects the switching power loss. Slower PWM frequencies reduce the switching power loss, and faster PWM frequencies increase the switching power loss.
Conduction loss depends on LED PWM duty cycle. Higher LED PWM duty cycles result in lower conduction loss inside the IC and higher conduction loss in the LEDs. Lower LED PWM duty cycles result in higher conduction loss inside the IC and lower conduction loss in the LEDs.

Layout Considerations

1. Connect the IN, VDD, CPP/CPN, and DR6 decoupling caps as close as possible to the IC.
2. Connect the exposed pad to a large, solid ground plane. The exposed pad is the primary path for heat to escape the device.
Refer to the evaluation kit for an example PCB layout.

Typical Application Circuits

MAX25606 in 6-Channel Matrix Lighting Application

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX25606ATP/VY +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TQFN-EP* $($ SW $)$
MAX25606AUP/V +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TSSOP-EP*

N denotes an automotive-qualified part.

+ Denotes a lead(Pb)-free/RoHS-compliant package.
* EP = Exposed pad.
$(S W)=$ Side wettable.

6-Switch Matrix Manager for Automotive Lighting

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$6 / 21$	Release for Market Intro	-

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 MX877RTR ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 MPQ7220GF-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P

