
Abstract

General Description The MAX2654/MAX2655/MAX2656 high third-order intercept point (IP3), low-noise amplifiers (LNAs) are designed for applications in GPS, PCS, WLL, and satellite phone systems. The MAX2654/MAX2655/MAX2656 incorporate on-chip internal output matching to 50Ω, eliminating the need for external matching components. A shutdown feature in the MAX2654/MAX2655 reduces operating current to $0.1 \mu \mathrm{~A}$, eliminating the need for an external supply switch. The MAX2654 operates in the GPS frequency of 1575 MHz with 15.1 dB of gain, 1.5 dB noise figure, and only consumes 5.8 mA . The MAX2655 is designed with high-input IP3 to improve operation in cellular applications where the cellular power amplifier leaks into the GPS receiver. The MAX2656 is designed for PCS phone applications with 13.5 dB of gain in high-gain mode and 0.8 dB of gain in low-gain mode (selected by a logic control) and 1.9 dB noise figure. The IP3 of MAX2655/MAX2656 is adjustable by a single external bias resistor (RBIAS), allowing supply current to be optimized for a specific application. The MAX2654/MAX2655/MAX2656 operate from +2.7 V to +5.5 V single supply and are available in the miniature 6-pin SC70 package.

Applications
GPS Receivers
GPS Receivers in Cell Phones
DCS/PCS Cell Phones
Satellite Phones
Wireless Local Loop
Pin Configuration

Features

- Low Noise Figure

MAX2654: 1.5dB at 1575MHz
MAX2655: 1.45 dB at 1575 MHz
MAX2656: 1.9dB at 1960MHz

- High Gain

MAX2654: 15.1dB at 1575 MHz
MAX2655: 14.1 dB at 1575 MHz
MAX2656: 13.5dB at 1960MHz

- 12.7dB Gain Step (MAX2656 only)
- Integrated 50Ω Output Matching
- Variable IP3 Set by One Bias Resistor (MAX2655/MAX2656 only)
- 0.1 $\mu \mathrm{A}$ Shutdown Mode (MAX2654/MAX2655 only)
- +2.7V to +5.5V Single-Supply Operation
- Ultra-Small 6-Pin SC70 Package

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	SOT TOP- MARK
MAX2654EXT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SC70-6	AAI
MAX2655EXT- T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SC} 70-6$	AAJ
MAX2656EXT-T	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$	$6 \mathrm{SC} 70-6$	AAK

Typical Operating Circuit

PART	FREQUENCY	L1(nH)	C1(pF)	C2(pF)
MAX2654	1575	5.6	6	1.6
MAX2655	1575	5.6	1800	1.5
MAX2656	1960	4.7	1800	1.2

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

ABSOLUTE MAXIMUM RATINGS

$V_{C c}$ to GND -0.3 V to +6 V RF Input Power $\ldots+5 \mathrm{dBm}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
6 -Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad

Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Maximum Junction Temperature \qquad $+150^{\circ} \mathrm{C}$ Storage Temperature \qquad Lead Temperature (soldering, 10s) ... ${ }^{\circ} \mathrm{C}$
\qquad $+150^{\circ} \mathrm{C}$.$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{BIAS}}=511 \Omega \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. No RF signal applied. RFIN is AC-coupled and terminated to 50Ω. RFOUT is unconnected. Typical values are at $\mathrm{V}_{C C}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNIT
Supply Voltage			2.7		5.5	V
Operating Supply Current (MAX2654 only)	$V_{\text {RFOUT }}=\mathrm{V}_{\text {CC }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5.8	8.2	mA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			9.2	
	$V_{\text {RFOUT }}=$ GND	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			2.1	
Operating Supply Current (MAX2655 only)	$\begin{aligned} & V_{\text {RFOUT }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	RBIAS $=511 \Omega \pm 1 \%$		8.3	10	mA
		RBIAS $=698 \Omega \pm 1 \%$		5.9		
		RBIAS $=357 \Omega \pm 1 \%$		10.1		
		$\begin{aligned} & \text { RBIAS }=511 \Omega \pm 1 \%, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			11.1	
	$V_{\text {RFOUT }}=$ GND	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			2.2	
Operating Supply Current (MAX2656 only)	$\begin{aligned} & \text { VRFOUT }=\text { GND } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	RBIAS $=511 \Omega \pm 1 \%$		11.5	15.2	mA
		RBIAS $=715 \Omega \pm 1 \%$		8.5		
		$\begin{aligned} & \text { RBIAS }=511 \Omega \pm 1 \%, \\ & T_{A}=+85^{\circ} \mathrm{C} \end{aligned}$		13.6		
	$V_{\text {RFOUT }}=\mathrm{V}_{\text {CC }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		12.3		mA
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		14.6		
Input Logic High at VRFOUT	(Note 2)		2			V
Input Logic Low at VRFOUT	(Note 3)				0.6	V
Input Logic High Current at $\mathrm{V}_{\text {RFOUT }}$ (Note 4)	MAX2654/MAX2655				15.6	$\mu \mathrm{A}$
	MAX2656				71	
Input Logic Low Current at $\mathrm{V}_{\text {RFOUT }}$ (Note 5)	MAX2654/MAX2655				1	$\mu \mathrm{A}$
	MAX2656				-24	

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

AC ELECTRICAL CHARACTERISTICS (MAX2654)

(MAX2654 Evaluation Kit, $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{PIN}=-30 \mathrm{dBm}, \mathrm{fiN}_{\mathrm{I}}=1575 \mathrm{MHz}, \mathrm{V}_{\mathrm{RFO}} \mathrm{Cut}=\mathrm{V}_{\mathrm{CC}}$ through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Frequency Range (Note 7)		1400		1700	MHz
Gain	(Note 8)	12.7	15.1		dB
Gain Variation Over Temperature	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.15	1	dB
Input Third-Order Intercept Point (Note 9)			-7.2		dBm
Input 1dB Compression Point			-18		dBm
Noise Figure (Note 10)			1.5	1.8	dB
Input Return Loss			9.7		dB
Output Return Loss			8.4		dB
Reverse Isolation			30		dB

AC ELECTRICAL CHARACTERISTICS (MAX2655)

(MAX2655 Evaluation Kit, $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{PIN}=-30 \mathrm{dBm}, \mathrm{f} \operatorname{IN}=1575 \mathrm{MHz}$, $\mathrm{V}_{\text {RFOUT }}=\mathrm{V}_{\mathrm{CC}}$ through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{R}_{\mathrm{BI}} \mathrm{AS}=511 \Omega \pm 1 \%$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Frequency Range (Note 7)		1400		1700	MHz
Gain	(Note 8)	12	14.1		dB
Gain Variation Over Temperature	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.6	1.1	dB
Input Third-Order Intercept Point (Note 9)	RBIAS $=511 \Omega \pm 1 \%$		2.8		dBm
	RBIAS $=698 \Omega \pm 1 \%$		2.2		
	RBIAS $=357 \Omega \pm 1 \%$		3.8		
Input 1dB Compression Point			-12.2		dBm
Noise Figure (Note 10)			1.45	1.9	dB
Input Return Loss			16.1		dB
Output Return Loss			15.5		dB
Reverse Isolation			32		dB

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

AC ELECTRICAL CHARACTERISTICS (MAX2656)

(MAX2656 Evaluation Kit, $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{PIN}=-30 \mathrm{dBm}, \mathrm{fIN}=1960 \mathrm{MHz}$, $\mathrm{V}_{\text {RFOUT }}=$ GND through a $12 \mathrm{k} \Omega$ resistor, RBIAS $=511 \Omega \pm 1 \%, \mathrm{~T}_{\mathrm{A}}$ $=+25^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT
Operating Frequency Range (Note 7)		1800	2000	MHz
Gain, High-Gain Mode	(Note 11)	1213.5		dB
Gain, Low-Gain Mode	(Note 12)	0.8		dB
Gain Variation Over Temperature	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.3	1.2	dB
Gain Step		12.7		dB
Input Third-Order Intercept Point (Note 13)	RBIAS $=511 \Omega \pm 1 \%$	1.5		dBm
	RBIAS $=715 \Omega \pm 1 \%$	-3		
	Low-gain mode (Note 12)	7.2		
Input 1dB Compression Point	High-gain mode (Note 11)	-7		dBm
	Low-gain mode (Note 12)	-1.2		
Noise Figure (Note 10)	High-gain mode (Note 11)	1.9	2.4	dB
	Low-gain mode (Note 12)	10.8		
Input Return Loss	High-gain mode (Note 11)	14.4		dB
	Low-gain mode (Note 12)	19.3		
Output Return Loss	High-gain mode (Note 11)	10.7		dB
	Low-gain mode (Note 12)	7.3		
Reverse Isolation	High-gain mode (Note 11)	28		dB
	Low-gain mode (Note 12)	25		
Gain Step Response Time		3.2		$\mu \mathrm{s}$

Note 1: Devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Minimum and maximum values are guaranteed by design and characterization over temperature and supply voltages to ± 6 sigma.
Note 2: Minimum DC voltage through a $10 \mathrm{k} \Omega$ resistor that sets the MAX2654/MAX2655 to operate in normal mode and MAX2656 in low-gain mode.
Note 3: Maximum DC voltage through a 10k Ω resistor that sets the MAX2654/MAX2655 to operate in shutdown mode and MAX2656 in high-gain mode.
Note 4: DC current required when $V_{\text {RFOUT }}$ is connected to $V_{C C}$ through a $10 \mathrm{k} \Omega$ resistor.
Note 5: DC current required when VRFOUT is connected to GND through a $10 k \Omega$ resistor.
Note 6: Guaranteed by design and characterization to ± 3 sigma.
Note 7: The part has been characterized at the specified frequency range. Operation outside of this range is possible, but not guaranteed.
Note 8: Production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 9: Measured with two input tones, $f_{1}=1570 \mathrm{MHz}, f_{2}=1580 \mathrm{MHz}$, both at -30 dBm per tone.
Note 10: Excludes PC board losses of 0.2 dB for MAX2654/MAX2655 and 0.25 dB for MAX2656.
Note 11: High-gain mode is set up by connecting RFOUT to GND through a $12 \mathrm{k} \Omega$ resistor.
Note 12: Low-gain mode is set up by connecting RFOUT to V_{Cc} through a $12 \mathrm{k} \Omega$ resistor.
Note 13: Measured with two input tones, $f_{1}=1955 \mathrm{MHz}, \mathrm{f}_{2}=1965 \mathrm{MHz}$, both at -30 dBm per tone.

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

Typical Operating Characteristics
(PIN $=-30 \mathrm{dBm}$, input and output are terminated to $50 \Omega, \mathrm{~V}_{\mathrm{CC}}=+3 \mathrm{~V}$, high-gain and low-gain modes are applicable only to the MAX2656, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

Typical Operating Characteristics (continued)

(PIN $=-30 \mathrm{dBm}$, input and output are terminated to $50 \Omega, \mathrm{~V}_{\mathrm{CC}}=+3 \mathrm{~V}$, high-gain and low-gain modes are applicable only to the MAX2656, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX2654

MAX2655
SUPPLY CURRENT vs. SUPPLY VOLTAGE

MAX2654

MAX2654
$P_{1 d B}$ vs. TEMPERATURE

MAX2655
SUPPLY CURRENT vs. SUPPLY VOLTAGE

MAX2654 REVERSE ISOLATION vs. FREQUENCY

MAX2654
SHUTDOWN TIME

MAX2655
SUPPLY CURRENT vs. SUPPLY VOLTAGE

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

Typical Operating Characteristics (continued)

($P_{I N}=-30 d B m$, input and output are terminated to $50 \Omega, V_{C C}=+3 \mathrm{~V}$, high-gain and low-gain modes are applicable only to the MAX2656, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX2655

MAX2655
GAIN vs. RBIAS

MAX2655
SHUTDOWN CURRENT vs. TEMPERATURE

MAX2655

1575MHz/1900MHz Variable-IP3
 Low-Noise Amplifiers

Typical Operating Characteristics (continued)

(PIN $=-30 \mathrm{dBm}$, input and output are terminated to $50 \Omega, \mathrm{~V}_{\mathrm{CC}}=+3 \mathrm{~V}$, high-gain and low-gain modes are applicable only to the MAX2656, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX2655

MAX2656

MAX2655
INPUT/OUTPUT RETURN LOSS vs. FREQUENCY

MAX2655

MAX2656

MAX2655
REVERSE ISOLATION vs. FREQUENCY

MAX2655
$P_{1 d B}$ vs. RBIAS

MAX2656
SUPPLY CURRENT vs. SUPPLY VOLTAGE

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

Typical Operating Characteristics (continued)
(PIN $=-30 \mathrm{dBm}$, input and output are terminated to $50 \Omega, \mathrm{~V}_{\mathrm{CC}}=+3 \mathrm{~V}$, high-gain and low-gain modes are applicable only to the MAX2656, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

Typical Operating Characteristics (continued)

(PIN $=-30 \mathrm{dBm}$, input and output are terminated to $50 \Omega, \mathrm{~V}_{\mathrm{CC}}=+3 \mathrm{~V}$, high-gain and low-gain modes are applicable only to the MAX2656, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX2656
GAIN vs. RBIAS

MAX2656
INPUT/OUTPUT RETURN LOSS vs. FREQUENCY

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

Typical Operating Characteristics (continued)
(PIN $=-30 \mathrm{dBm}$, input and output are terminated to $50 \Omega, \mathrm{~V}_{\mathrm{CC}}=+3 \mathrm{~V}$, high-gain and low-gain modes are applicable only to the MAX2656, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

PIN		NAME	
MAX2654	MAX2655/ MAX2656		
1	-	GND	Ground. Connect to the PC board ground plane through a 0.017in x 0.035in line.
2,5	2,5	GND	Ground. Connect to the PC board ground plane with as low an inductance path as possible.
-	1	BIAS	Bias Control. Connect a resistor RBIAS from BIAS to GND. RBIAS sets IP3 and supply current.
3	3	RFIN	Amplifier Input. Requires a DC-blocking capacitor and external matching components.
4	4	VCC	Supply Voltage. Bypass to ground with an appropriate capacitor as close to the IC as possible. Refer to MAX2654/MAX2655/MAX2656 EV kits for capacitor values.
6	6	RFOUT	RF Output. Incorporates an internal DC-blocking capacitor. RFOUT is internally matched to 50 2. DC bias on this pin selects gain mode (MAX2656) or shutdown mode (MAX2654/MAX2655) (see Applications Information).

Detailed Description
The MAX2654/MAX2655/MAX2656 are low-noise amplifiers designed for applications in GPS receivers, satellite and PCS phones. The MAX2655/MAX2656 feature variable IP3s, adjusted by a single external bias resistor. Another feature of the MAX2654/MAX2655 is a power shutdown control mode, eliminating the need for an external supply switch. The MAX2656 features a high- and low-gain control mode selected by an external logic control.

Input and Output Ports

The MAX2654/MAX2655/MAX2656 incorporate on-chip matching networks to 50Ω at the output ports, eliminating the need for external matching components. (For MAX2655, a shunt inductor is recommended for best output return loss. Refer to the MAX2655 EV kit schematic.) The MAX2654/MAX2655/MAX2656 require simple matching networks at the input ports. The values of these matching components are recommended in the Typical Operating Circuit.

Variable IP3
The IP3 of MAX2655 and MAX2656 is adjusted through an external resistor (RBIAS). Tables 1 and 2 summarize the values of RBIAS for different IP3s for MAX2655 and MAX2656.

Table 1. RBIAS vs. IP3 for MAX2655

$\mathbf{R}_{\mathbf{B I A S}}(\boldsymbol{\Omega})$	IP3 (dBm)	ICC (mA)
698	2.2	5.8
357	3.8	10.1

Table 2. RBIAS vs. IP3 for MAX2656

R $_{\text {BIAS }}(\boldsymbol{\Omega} \mathbf{)}$	IP3 (dBm)	ICC (mA)
715	-3	8.5
511	1.5	11.5

Gain-Step Control (MAX2656)
The DC bias voltage at RFOUT of the MAX2656 serves as a gain-step control input. When the applied DC voltage at RFOUT through a $10 \mathrm{k} \Omega$ resistor is less than +0.6 V , the device is in high-gain mode. When the applied DC voltage is greater than +2.0 V , the device gain is attenuated by 13 dB . A standard logic output can be applied as shown in the Typical Operating Circuit.

Shutdown-Enable (MAX2654/MAX2655)
The DC bias voltage at RFOUT of the MAX2654/ MAX2655 serves as a shutdown enable input. When the applied DC voltage at RFOUT through a $10 \mathrm{k} \Omega$ resistor is less than +0.6 V , the device is in shutdown mode. When the DC voltage is greater than +2 V , the device is enabled.

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

Applications Information

Input Matching

For optimum performance, input matching is required. The MAX2654/MAX2655/MAX2656 require a simple LC matching network. The Typical Operating Circuit shows the recommended input matching networks. These values are optimized for best simultaneous gain, noise figure, and return loss performance. S-Parameter data can be found on the Maxim website at www.maxim-ic.com.

Layout Issues

A properly designed PC board is essential to any RFmicrowave circuit. Use controlled impedance lines on all high-frequency inputs and outputs. Bypass VCC with decoupling capacitors located close to the device. For
long $V_{C C}$ lines, it may be necessary to add decoupling capacitors. Locate these additional capacitors further away from the device package. Proper grounding of the GND pins is essential. If the PC board uses a topside RF ground, connect it directly to all GND pins. For a board where the ground plane is not on the component layer, connect the GND pins to the board with a multiple vias close to the package.
For MAX2654, connect Pin1 to the PC board ground plane through a 0.017in $\times 0.035$ in line.

Chip Information

TRANSISTOR COUNT: 135
(Same for MAX2654, MAX2655, MAX2656)

1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

14 \qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Amplifier category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15\#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMCAUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310

