Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

General Description

The MAX2685's low-noise amplifier (LNA) and downconverter mixer comprise the major blocks of an RF front-end receiver. Optimized for 900 MHz operation, the device's low noise figure, high gain, and high linearity make it ideal for cellular, cordless, and wireless data applications. A low supply current of 8.5 mA (high-gain mode) and 3.8 mA (low-gain mode) plus a low operating supply voltage range of +2.7 V to +5.5 V make it suitable for use in 3-cell NiCd or 1-cell lithium-ion (Li+) battery applications. A low-power shutdown mode further extends battery life by reducing supply current below $0.1 \mu \mathrm{~A}$.
The MAX2685 includes an LNA, LNA bypass switch, downconverter mixer, and local-oscillator (LO) buffer. The LNA has a low noise figure of 1.4 dB , a high gain of 15 dB , and an input third-order intercept point (IP3) of -4 dBm . The mixer has a noise figure of 13 dB , a gain of 6 dB , and an input IP3 of +7 dBm . In addition, an LNA bypass switch allows two levels of gain, reducing power consumption when high gain is not needed.
The downconverter mixer has a single-ended RF input port and differential IF output ports. Differential operation of the IF ports offers improved even-order harmonic rejection and increased immunity to noise. An LO buffer allows the LO port to be driven with only -8 dBm of LO power. The MAX2685 is offered in a space-saving 16pin QSOP package.

Pin Configuration

- 800 MHz to 1000 MHz RF Frequency Range
- +2.7V to +5.5V Single-Supply Operation
- Integrated LNA + Mixer + LO Buffer
- Logic-Controlled LNA Bypass Switch Reduces Supply Current
- LNA Performance (High/Low Gain)
800MHz to 1000MHz RF Frequency Range
+2.7V to +5.5V Single-Supply Operation
Integrated LNA + Mixer + LO Buffer
Logic-Controlled LNA Bypass Switch Reduces
Supply Current
LNA Performance (High/Low Gain)
Gain: +15dB/-12dB
NF: 1.4dB/12dB
Input IP3: -4dBm/+16dBm
Mixer Performance (High/Low Gain)
Gain: 6dB/4.6dB
NF: 13dB/12dB
Input IP3: +7dBm/-1.5dBm
Supply Current
8.5mA (High Gain)
3.8mA (Low Gain)
<0.1 1 A Supply Current in Shutdown Mode
0.8 1 Receiver Enable Time
Gain. +15dB/-12dB
NF. 1.4dB/2dB
Input IP3: -4dBm/+16dBm
Mixer Performance (High/Low Gain)
Gain: 6dB/4.6dB
NF: 13dB/12dB
Input IP3: +7dBm/-1.5dBm
- Supply Current
8.5mA (High Gain)
3.8mA (Low Gain)
- 0.8μ s Receiver Enable Time

Features

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX2685EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP

Functional Diagram

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

GND	-0.3V to +6V
LNAIN Input Power (50 s source)............................... +10 dBm	
LO Input Power (50 ${ }^{\text {s source)+10dBm }}$	
MIXIN Input Power (50 source)+10dBm	
IFOUT+, IFOUT- to GND-0.3V to +6V	
LNAOUT to GND ...-0.3V to +6V	
AIN, SHDN to G	Vcc + 0.3V)

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 16-Pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 667 mW	
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=+2 \mathrm{~V}, \mathrm{~V}$ GAIN $=+2 \mathrm{~V}, \mathrm{LNAIN}=\mathrm{LNAOUT}=\mathrm{MIXIN}=\mathrm{LO}=$ unconnected, IFOUT $+=\mathrm{IFOUT}-=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}$ $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX
UNITS				
Supply Voltage Range		2.7	5.5	V
Operating Supply Current	GAIN $=$ VCC (Note 1)	8.5	14.1	mA
	GAIN $=$ GND (Note 1)	3.8	6.4	
Shutdown Supply Current	$\overline{S H D N}=$ GND (Note 1)	0.1	1.0	$\mu \mathrm{~A}$
Logic Input Voltage High	GAIN, $\overline{\text { SHDN }}$	2.0		V
Logic Input Voltage Low	GAIN $\overline{\text { SHDN }}$		0.5	V
Logic Input Current	V $\overline{S H D N}=$ VGAIN $=0$ to $5.5 \mathrm{~V}($ Note 1)	± 0.01	± 1	$\mu \mathrm{~A}$

AC ELECTRICAL CHARACTERISTICS

(MAX2685 EV kit, $V_{C C}=V \overline{S H D N}=+3 V, f_{L N A I N}=f_{M I X I N}=880 \mathrm{MHz}, f_{L O}=960 \mathrm{MHz}, \operatorname{PLNAIN}=-30 \mathrm{dBm}$, PLO $=-8 \mathrm{dBm}, \mathrm{P}_{\mathrm{MIIXIN}}=-25 \mathrm{dBm}$, differential IFOUT operation, $Z_{0}=50 \Omega, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LOW-NOISE AMPLIFIER (LNA)					
RF Frequency Range (Note 2)		800		1000	MHz
LNA Gain	GAIN $=$ VCC (Note 1)	13	15	16.2	dB
	GAIN = GND (Note 1)	-14	-12	-10.3	
LNA Gain Variation over Temperature	GAIN $=\mathrm{V}_{\text {CC }}, \mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Note 3)		0.9	1.6	dB
LNA Noise Figure	GAIN $=\mathrm{V}_{\text {CC }}$		1.4		dB
	GAIN = GND		12.2		
LNA Input IP3	GAIN $=$ VCC (Note 4)		-4.1		dBm
	GAIN = GND (Note 5)		+16.2		
LNA Input 1dB Compression	GAIN $=$ VCC		-18.4		dBm
LNAOUT Port Return Loss	GAIN $=$ VCC		-18.6		dB
	GAIN = GND		-11.3		
DOWNCONVERTER MIXER					
RF Frequency Range (Note 2)		800		1000	MHz
Mixer Conversion Gain	GAIN = VCC (Note 1)	4.7	6.1	7.0	dB
	GAIN = GND (Note 1)	2.5	4.6	6.0	

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

AC ELECTRICAL CHARACTERISTICS (continued)

 differential IFOUT operation, $\mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
Mixer Conversion Gain Variation over Temperature	GAIN $=\mathrm{VCC}^{\text {, }}$ TA $=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}($ Note 3)	1	2	dB
Mixer Noise Figure (SSB)	GAIN $=$ VCC	13		dB
	GAIN = GND	12.1		
Mixer Input IP3 (Note 6)	GAIN $=$ VCC	7		dBm
	GAIN = GND	-1.5		
LO Port Return Loss		11		dB
LO-to-LNAIN Isolation	$\overline{\text { SHDN }}=\mathrm{V}_{\text {cc }}$ or GND	53		dB
LO-to-MIXIN Isolation		31		dB
LNAOUT-to-MIXIN Isolation		28		dB
OVERALL SYSTEM				
Receiver Enable Time	(Note 7)	0.8		$\mu \mathrm{s}$

Note 1: Performance at temperatures greater than or equal to $+25^{\circ} \mathrm{C}$ are guaranteed by production test; performance at temperatures less than $+25^{\circ} \mathrm{C}$ are guaranteed by design and characterization.
Note 2: This is the recommended operating frequency range.
Note 3: Maximum and minimum limits are guaranteed by design and device characterization and are not production tested.
Note 4: Two tones at 880 MHz and $880.1 \mathrm{MHz},-30 \mathrm{dBm}$ per tone.
Note 5: Two tones at 880 MHz and $880.1 \mathrm{MHz},-10 \mathrm{dBm}$ per tone.
Note 6: Two tones at 880 MHz and $880.1 \mathrm{MHz},-25 \mathrm{dBm}$ per tone.
Note 7: Time from $\overline{\mathrm{SHDN}}=$ high, until the cascaded receive gain is within 1 dB of its final value. Measured with 47 pF blocking capacitors on LNAIN and LNAOUT. Matching network removed from IFOUT output.

Typical Operating Characteristics
$\left(\right.$ MAX2685 EV kit, $V C C=V \overline{S H D N}=+3 V, f L N A I N=f_{M I X I N}=880 \mathrm{MHz}, f L O=960 M H z$, PLNAIN $=-30 d B m$, PLO $=-8 d B m$, PMIXIN $=-25 d B m$, differential IFOUT operation, $Z_{0}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

Typical Operating Characteristics (continued)

 differential IFOUT operation, $Z_{0}=50 \Omega, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LNA REVERSE ISOLATION vs. FREQUENCY

LNA S11 vs. FREQUENCY (800MHz to 1000MHz UNMATCHED)

LNA GAIN vs. FREQUENCY

LNA INPUT RETURN LOSS vs. FREQUENCY

MIXER GAIN vs. SUPPLY VOLTAGE

LNA NOISE FIGURE vs. FREQUENCY

LNA OUTPUT RETURN LOSS vs. FREQUENCY

MIXER INPUT IP3 vs. SUPPLY VOLTAGE

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

Typical Operating Characteristics (continued)

$\left(\right.$ MAX2685 EV kit, $V_{C C}=V \overline{S H D N}=+3 V, f L N A I N=f_{M I X I N}=880 \mathrm{MHz}, f_{L O}=960 \mathrm{MHz}$, PLNAIN $=-30 \mathrm{dBm}$, PLO $=-8 \mathrm{dBm}, \mathrm{P}_{\mathrm{MIIII}}=-25 \mathrm{dBm}$, differential IFOUT operation, $Z_{o}=50 \Omega, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

PIN	NAME	FUNCTION
$1,3,8$, $11,12,14$	GND	Ground. Connect to ground plane with a low-inductance connection.
2	LNAIN	RF Input to LNA and LNA Bypass Switch. Requires an external matching network and a series DC-blocking capacitor.
4	GAIN	Gain Control Logic-Level Input. Drive high to enable the LNA, open the LNA bypass switch, and increase the receiver's gain. Drive low to disable the LNA, close the LNA bypass switch, and reduce the receiver's gain.
5,15	VCC	Supply Voltage. Bypass Vcc to GND at each pin with a 47pF capacitor as close to the pin as possible.
6	$\overline{\text { SHDN }}$	Shutdown Control Logic-Level Input. Drive high or connect to VcC for normal operation. Drive low to place the device in low-power shutdown mode.
7	LO	Local-Oscillator Input to Downconverter Mixer. Requires a series DC-blocking capacitor and an imped- ance-setting resistor (typically 75 Ω to ground).
9	IFOUT-	Inverting Side to Downconverter Mixer's Differential Open-Collector IF Output. Requires a pull-up induc- tor to VCC for proper biasing, as well as a matching network to ensure optimum output power.
10	IFOUT+	Noninverting Side of Downconverter Mixer's Differential Open-Collector IF Output. Requires a pull-up inductor to VCC for proper biasing, as well as a matching network to ensure optimum output power.
13	MIXIN	RF Input to Downconverter Mixer. Requires an external matching network and series DC-blocking capacitor.
16	LNAOUT	LNA Output. Internally matched to 50 Ω. LNAOUT has an internal blocking capacitor.

Figure 1. Typical Operating Circuit

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

Detailed Description

The MAX2685 consists of five major components: a low-noise amplifier (LNA), an LNA bypass switch, a downconverter mixer, a local-oscillator (LO) buffer, and a power-management block.

Low-Noise Amplifier (LNA)

The LNA is a wideband, single-ended cascode amplifier that operates over a wide range of frequencies. The input of the LNA (LNAIN) requires an appropriate matching network and a DC-blocking capacitor. The typical operating circuit shown in Figure 1 is optimized for frequencies around 880 MHz , requiring only a $0.1 \mu \mathrm{~F}$ capacitor in series with a 12 nH inductor. See Table 1 for the LNA "S" parameters for matching to other frequencies.

The output of the LNA (LNAOUT) is internally biased to Vcc. It is internally matched to 50Ω and incorporates an internal DC-blocking capacitor.

LNA Bypass Switch and Gain Control

When a large input signal is present, enable the LNA bypass function to increase linearity and reduce supply current. Set GAIN low to enable the LNA bypass function.

Receive Mixer The downconverter mixer is a wideband, single-balanced design with a low noise figure and high linearity. The RF signal at the MIXIN port is mixed with the signal at the LO port, and is downconverted to an IF frequency at the differential IF port

RF Input

The MIXIN input requires a simple external matching network and a series DC-blocking capacitor. See Figure 1 for a matching network example, optimized for 880 MHz operation. Table 2 lists mixer "S" parameters for matching to other frequencies.

Table 1. LNA Typical S-Parameters ($\mathrm{Vcc}=+\mathbf{V}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

| $\begin{aligned} & \text { FREQUENCY } \\ & (\mathrm{MHz}) \end{aligned}$ | \|S11|
 MAG | S11 PHASE (degrees) | $\begin{aligned} & \text { \|S21\| } \\ & \text { MAG } \end{aligned}$ | S21 PHASE (degrees) | \|S12|
 MAG | S12 PHASE (degrees) | $\begin{aligned} & \text { \|S22\| } \\ & \text { MAG } \end{aligned}$ | $\begin{gathered} \text { S22 } \\ \text { PHASE } \end{gathered}$ (degrees) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High-Gain Mode (GAIN = VCC) | | | | | | | | |
| 800 | 0.761 | -64.5 | 4.98 | 177.9 | 0.018 | -163.7 | 0.376 | -107.3 |
| 840 | 0.753 | -68.6 | 5.06 | 167.2 | 0.022 | -167.1 | 0.264 | -107.0 |
| 880 | 0.747 | -73.2 | 5.07 | 156.6 | 0.026 | -171.3 | 0.172 | -94.6 |
| 920 | 0.733 | -78.0 | 4.91 | 146.6 | 0.030 | -175.7 | 0.149 | -62.9 |
| 960 | 0.719 | -82.8 | 4.68 | 137.7 | 0.035 | 178.0 | 0.200 | -42.4 |
| 1000 | 0.693 | -87.5 | 4.40 | 130.3 | 0.039 | 171.0 | 0.263 | -38.8 |
| Low-Gain Mode (GAIN = GND) | | | | | | | | |
| 800 | 0.625 | -45.6 | 0.188 | 73.0 | 0.191 | 71.9 | 0.483 | -91.3 |
| 840 | 0.621 | -48.1 | 0.195 | 65.5 | 0.198 | 64.2 | 0.423 | -91.3 |
| 880 | 0.619 | -50.9 | 0.199 | 58.1 | 0.201 | 56.7 | 0.370 | -89.9 |
| 920 | 0.611 | -53.3 | 0.200 | 51.6 | 0.202 | 50.3 | 0.337 | -86.1 |
| 960 | 0.608 | -55.5 | 0.200 | 46.1 | 0.201 | 44.7 | 0.322 | -80.9 |
| 1000 | 0.607 | -57.5 | 0.200 | 41.2 | 0.200 | 40.0 | 0.317 | -76.7 |

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

1 T. Table 2. Mixer Typical S-Parameters ($\mathrm{V} \mathrm{CC}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

| RF FREQUENCY (MHz) | $\begin{aligned} & \text { S11 } \\ & \text { MAG } \end{aligned}$ | \|S11|
 PHASE
 (degrees) | IF FREQUENCY (MHz) | ```\|S22| MAG (IFOUT+ Port Only)``` | ```S22 PHASE (IFOUT+ Port Only) (degrees)``` |
| :---: | :---: | :---: | :---: | :---: | :---: |
| High-Gain Mode (GAIN = VCC) | | | | | |
| 800 | 0.355 | 152.7 | 10 | 0.996 | -0.4 |
| 840 | 0.352 | 153.7 | 40 | 0.994 | -1.8 |
| 880 | 0.351 | 154.5 | 80 | 0.993 | -3.2 |
| 920 | 0.349 | 155.8 | 110 | 0.989 | -4.2 |
| 960 | 0.352 | 156.2 | 170 | 0.988 | -6.2 |
| 1000 | 0.353 | 156.9 | 240 | 0.983 | -8.0 |
| Low-Gain Mode (GAIN = GND) | | | | | |
| 800 | 0.275 | 142.8 | 10 | 0.996 | -0.5 |
| 840 | 0.268 | 144.1 | 40 | 0.995 | -1.8 |
| 880 | 0.262 | 145.5 | 80 | 0.993 | -3.2 |
| 920 | 0.255 | 147.7 | 110 | 0.989 | -4.2 |
| 960 | 0.254 | 149.0 | 170 | 0.987 | -6.2 |
| 1000 | 0.245 | 156.9 | 240 | 0.982 | -7.9 |

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

Abstract

Local-Oscillator Input The LO port is the high-impedance input of the localoscillator buffer. It requires a series DC-blocking capacitor and a shunt resistor to ground to set the input impedance. See the Typical Operating Characteristics for a graph of LO Port Return Loss vs. Frequency.

\section*{IF Output Port}

The mixer's downconverted output appears on the differential IFOUT+ and IFOUT- pins. The differential output can be converted to a single-ended output, as shown in the MAX2685 evaluation kit (EV kit). Refer to the Detailed Description in the MAX2685 EV kit data sheet.

Shutdown

Drive $\overline{\text { SHDN }}$ low to disable all device functions and place the MAX2685 in low-power shutdown mode. Drive $\overline{\text { SHDN }}$ high or connect it to VCC to enable all device functions.

Applications Information

Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Note the IC's high-frequency inputs and outputs, and be sure to decouple the DC supply and control pins

For power-supply traces and connections, a star topology works well. Each Vcc node in the circuit has its own path to the central VCC node and a decoupling capacitor that provides a low impedance at the RF frequency of interest. The central Vcc also has a large decoupling capacitor. This provides good isolation between the different sections of the MAX2685.

Chip Information
TRANSISTOR COUNT: 295

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Amplifier category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126SX HMC342 HMC405 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA181 SMA32 SMA411 SMA531 SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016 MMZ25332B4T1 AMC-143SMA MMZ09332BT1

