Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

General Description

The MAX270/MAX271 are digitally-programmed, dual second-order continuous-time lowpass filters. Their typical dynamic range of 96 dB surpasses most switched capacitor filters which require additional filtering to remove clock noise. The MAX270/MAX271 are ideal for anti-aliasing and DAC smoothing applications and can be cascaded for higher-order responses.
The two filter sections are independently programmable by either microprocessor ($\mu \mathrm{P}$) control or pin strapping. Cutoff frequencies in the 1 kHz to 25 kHz range can be selected.
The MAX270 has an on-board, uncommitted op amp, while the MAX271 has an internal track-and-hold (T/H).

Applications
Lowpass Filtering
Anti-Aliasing Filter
Output Smoothing
Low-Noise Applications
Anti-Aliasing and Track-and-Hold (MAX271)

Features

- Continuous-Time Filtering - No Clock Required
- Dual 2nd-Order Lowpass Filters
- Sections Independently Programmable: 1kHz to 25kHz
- 96dB Dynamic Range
- No External Components
- Cascadable for Higher Order
- Low-Power Shutdown Mode
- Track-and-Hold (MAX271)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX270CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 PDIP
MAX270CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO
MAX270EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 PDIP
MAX270EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO
MAX271CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 PDIP
MAX271CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO
MAX271ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 PDIP
MAX271EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO

Devices are available in a lead(Pb)-free/RoHS-compliant package. Specify lead-free by adding a plus (+) to the part number when ordering.

Pin Configurations
TOP VIEW

Pin Configurations continued at end of data sheet.

MAX270/MAX271

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

ABSOLUTE MAXIMUM RATINGS

$V+$ to V-	to +17 V
V+ to GND	-0.3V to +8.5 V
V- to GND.	. 0.3 V to -8.5 V
Input Voltage to GND, Any Input Pin(V)	to ($\mathrm{V}++0.3 \mathrm{~V}$)
Duration of Output Short Circuit to GND.	Continuous
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
MAX270	
PDIP (derate $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	...889mW
SO (W) (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	800 mW
MAX271	
PDIP (derate $13.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	.. 1067mV

SO (W) (derate 11.7mW/ ${ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................. 941 mw	
perating Temperature Range	
MAX27_C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX27_E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range......................... $65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$	
Soldering Temperature (reflow)	
Lead(Pb)-free.	$0^{\circ} \mathrm{C}$
Containing lead(Pb)	+240

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DYNAMIC FILTER CHARACTERISTICS (MAX270)						
Total Harmonic Distortion	THD	fC code $=44(2.01 \mathrm{kHz}$ typ), $\mathrm{VIN}=3.5 \mathrm{~V}$ P-P at 390.625 Hz (Notes 2 and 3)			-70	dB
Signal Noise Plus Distortion	SINAD			73		
Spurious-Free Dynamic Range	SFDR		70			
UNCOMMITTED AMPLIFIER (MAX270)						
Slew Rate				1.2		V/us
Bandwidth				2		MHz
TRACK AND HOLD (MAX271)						
Hold Settling Time		To 0.1\% (Note 4)		500		ns
Acquisition Time		To 0.1\% (Note 5)		1.8		$\mu \mathrm{s}$
Hold Step				1		mV
Droop Rate		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		30		$\mu \mathrm{V} / \mathrm{\mu s}$
Offset Voltage at T/H OUT		Includes filter offset	-6		+6	mV
T/H OUT Disabled Output Leakage Current		TA = TMIN to TMAX, VT/H = OV (Track Mode)	-10		+10	$\mu \mathrm{A}$
Total Harmonic Distortion	THD	fc code $=44$ (2.01kHz typ), VIN $=3.5 \mathrm{~V}$ P-p at			-70	
Spurious-Free Dynamic Range	SFDR	390.625 Hz , sampling rate $=50 \mathrm{kHz}$ (Notes 2, 6, 7)	70			dB
DIGITAL INPUTS						
Digital Input High Voltage		TA = TMIN to TMAX (Note 8)	2.4			V
Digital Input Low Voltage					0.8	
Digital Input Current		$T_{A}=T_{M I N}$ to $T_{M A X}$, digital input held at $\pm 5 \mathrm{~V}$, includes MODE (MAX271)(Note 8)	-1		+1	$\mu \mathrm{A}$
POWER REQUIREMENTS						
Supply Voltage Range				$\begin{gathered} \pm 2.375 \\ \text { to } \pm 8 \end{gathered}$		V
Supply Current		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to TMAX (Note 9)			6.5	mA
Shutdown Supply Current		$\mathrm{T}_{\text {A }}=$ TMin to TMAX (Note 10)			15	$\mu \mathrm{A}$
Power-Supply Rejection Ratio at 1 kHz	PSRR	ff_{C} code $=0\left(1 \mathrm{kHz}\right.$ typ), $\mathrm{V}_{+}=5 \mathrm{~V}_{\mathrm{DC}}+$ 10 mV -P at 1 kHz		30		dB

Note 1: All internal amplifiers limited to 2 MHz bandwidth.
Note 2: Only filter A tested for these parameters.
Note 3: Spurious-Free Dynamic Range is the ratio of the fundamental to the largest of any harmonic or noise spur in dB.
Note 4: Includes T/H propagation delays. With $5 \mathrm{k} \Omega$, parallel 100 pF load.
Note 5: $\pm 2 \mathrm{~V}$ input step settling 0.1% with $5 \mathrm{k} \Omega$ parallel 100 pF load.
Note 6: $\overline{\mathrm{T}} / \mathrm{H}$ pin toggled at sampling rate, 50% duty cycle.
Note 7: THD and SFDR specifications for T/H include contributions from filter.
Note 8: \quad Digital pins include $\overline{S H D N}, \overline{W R}, \overline{\mathrm{CS}}, \mathrm{AO}, \mathrm{DO}-\mathrm{D6}$ (MAX270) and $\overline{\mathrm{SHDN}}, \mathrm{T} / \mathrm{H}, \mathrm{A} / \bar{B}, \overline{\mathrm{WR}}, \mathrm{T} / \mathrm{H}$ EN, $\overline{\mathrm{CS}}, \mathrm{AO}, \mathrm{A} 1, \mathrm{D} 0-\mathrm{D} 6, \overline{\mathrm{~T}} / \mathrm{H}$ (MAX271).
Note 9: Input of uncommitted op amp disconnected with a $5 \mathrm{k} \Omega$ feedback resistor from input to output.
Note 10: $\overline{W R}, \overline{C S}, A 0, D 0-D 6$ held at $+5 \mathrm{~V} ; \mathrm{V} \overline{S H D N}=0 V(M A X 270) . \overline{W R}, \overline{C S}, A 0, A 1, D 0-D 6, \bar{T} / H, T / H, A / B, T / H, M O D E$ held at $+5 \mathrm{~V} ; \mathrm{V} \overline{\mathrm{SHDN}}=0 \mathrm{~V}($ MAX271).

MAX270/MAX271

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

TIMING CHARACTERISTICS (Figure 2)

($\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Setup	t_{WS}			MAX
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Hold	t_{WH}			0
$\overline{\mathrm{WR}}$ Pulse Width	t_{SV}		100	ns
Address-Setup Time	t_{AS}		30	ns
Address-Hold Time	t_{AH}		10	ns
Data-Setup Time	t_{DS}		30	ns
Data-Hold time	t_{DH}		10	ns

Note 11: All input control signals specified with $\mathrm{tr}_{\mathrm{r}}=\mathrm{tf}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to 90% of $+5 \mathrm{~V})$ and timed from a +1.6 V voltage level.

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

FILTER TOTAL HARMONIC DISTORTION PLUS NOISE vs.INPUT FREQUENCY

fin (Hz)	$\mathbf{f} \mathbf{C}$ CODE	$\mathbf{f} \mathbf{c}$ (Hz) (TYP)	THD PLUS NOISE (TYP)
190	0	1 k	-78
390	44	2.01 k	-73
1367	100	7.01 k	-67
4875	127	$25 k$	-66

$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} ; \mathrm{VIN}_{\mathrm{IN}}=3.5 \mathrm{VP-P} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

FILTER TOTAL HARMONIC DISTORTION PLUS NOISE vs. INPUT AMPLITUDE

MAX271 FILTER PLUS TRACK-AND-HOLD SPURIOUS-FREE DYNAMIC RANGE vs. INPUT FREQUENCY

$\mathbf{f}_{\mathbf{\prime}}$ (Hz)	fc CODE	fc (Hz) (TYP)	SFDR (dB)
195	0	1 k	73.5
781	72	4.01 k	69.5
1562.5	105	8.08 k	66
3906	124	19.4 k	61.5

$\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} ; \mathrm{VIN}^{2}=3.5 \mathrm{~V}$ P-P;
T/H SWWITCHED AT $50 \mathrm{kHz}, 50 \%$ DUTY CYCLE; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

MAX271 FILTER PLUS TRACK-AND-HOLD vs. INPUT AMPLITUDE

MAX270/MAX271

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

Detailed Description

Figures 1a, 1b, and 1c show the MAX270/MAX271 functional diagrams. Both the MAX270 and MAX271 contain two independent, second-order, Sallen-Key, lowpass filter sections, A and B to provide a frequency vs. gain rolloff of approximately $40 \mathrm{~dB} /$ decade. These are not switched-capacitor filters, but have a continuous-time design similar to discrete active filters built around op amps. The MAX270/MAX271 eliminate clock noise and aliasing problems which limit low-noise performance of switched-capacitor filters; resulting dynamic range is over 96dB.

Each filter section contains two banks of programmable capacitors, controlled by an internal 7-bit memory, which set filter cutoff frequencies (fc) from 1 kHz to 25 kHz . The filters provide two program modes. In $\mu \mathrm{P}$ mode, cutoff frequencies are programmed by writing 7-bit data to one of two memory addresses (one for each filter section). Alternately, a pin-strap programming mode programs both filter sections simultaneously. In this mode, both memory latches are transparent (not addressable), and data pins D0-D6 may be pin-strapped (hard-wired) to set a common fc for both filter sections.

The filters are trimmed at the wafer level, setting 0 for a maximum of 0.15 dB passband peaking for fC programmed to 1 kHz . Maximum passband peaking at other codes is typically less than 0.15 dB . Filter Q is not userprogrammable.
The MAX270 includes an uncommitted op amp (noninverting input grounded); the MAX271 has an on-chip T/H that tracks and holds the output of either filter section (selectable). The held output is provided at T/H OUT. T/H functions are controlled by writing control bits to internal registers (in $\mu \mathrm{P}$ mode) or by control pins directly (in pinstrap mode).

The MAX270 and MAX271 provide a low quiescent current shutdown mode controlled by the $\overline{\text { SHDN }}$ pin, which turns off internal amplifiers and disconnects all outputs, reducing quiescent operating current to less than $15 \mu \mathrm{~A}$. When the MAX271 is in $\mu \mathrm{P}$ mode, shutdown mode is selected by writing control bits to memory (the $\overline{\text { SHDN }}$ pin is disabled).

Pin Description
MAX270

PIN	NAME	FUNCTION
1	OP OUT	Uncommitted Op Amp Output
2	V+	Positive Supply Voltage
3	OUTA	Filter A Output
4	$\overline{\text { SHDN }}$	Shutdown Control. Low level disconnects OUTA, OUTB, and OP OUT and places device into shutdown mode.
5	INA	Filter A Input
6	V-	Negative Supply Voltage
7	INB	Filter B Input
8	OUTB	Filter B Output
9	GND	Ground
10	$\overline{\text { WR }}$	Write Control Input. A low level writes data D0-D6 to program memory addressed by A0. High level latches data.
11	CS	Chip-Select Input. Must be low for $\overline{\text { WR }}$ input to be recognized.
12	AO	Three-Level Address Input Logic High: Addresses filter A Logic Low: Addresses filter B Connect to V-: Pin-strap mode
$13-$	D0-D6	7-Bit Data Inputs. Allows programming of 128 cutoff frequencies in a 1kHz to 25kHz range.
19	OP IN	Uncommitted Op Amp Input
20	Unt	
1		

Note: All digital input levels are TTL and CMOS compatible, unless otherwise noted.

PIN	NAME	FUNCTION, FP MODE (MODE = GND OR V-)	FUNCTION, FP MODE (MODE = GND OR V+)
1	T/H OUT	Track-and-Hold Output	
2	V+	Positive Supply Voltage	
3	OUTA	Filler A Signal Output	
4	$\overline{\text { SHDN }}$	-	$\overline{\text { SHUTDOWN }}$ Control. A low level disconnects outputs and places device into shutdown mode
5	INA	Filter A Signal Input	
6	V-	Negative Supply Voltage	
7	INB	Filter B Signal Input	
8	MODE	Selects $\mu \mathrm{P}$ mode when connected to GND or V- and pin-strap mode when connected to V+.	
9	OUTB	Filter B Signal Output	
10	GND	Ground	
11	T/H A/ \bar{B}	-	Track-and-Hold Input Control. A high/low level internally connects OUTNOUTB to input of Track-and-Hold
12	$\overline{\mathrm{WR}}$	WRITE Control Input. A low level writes data D0-D6 program memory addressed by A1, A0 (or performs function as described for address inputs). High level latches data.	-
13	T/H EN	X	Track-and-Hold Output Control. Low level disconnects T/H OUT. Connect pin high for normal operation
14	$\overline{\mathrm{CS}}$	$\overline{\text { Chip }} \overline{\text { Select }}$ Input. Must be low for $\overline{W R}$ input to be recognized.	-
15, 16	A1, A0	Address and $\mu \mathrm{P}$ Control Inputs. 0,0 Programs ${ }^{f} \mathrm{C}$, filter A 0,1 Programs ${ }_{\mathrm{f}}^{\mathrm{C}}$, filter B 1,0 Controls T/H functions: D0 performs T/H En pin function D1 performs $T / H A / B$ pin function. 1,1 Controls device shutdown: DO performs $\overline{\text { SHDN }}$ pin function Note: The $\overline{W R}$ pin must be strobed low to initiate a program/function (Figure 2).	-
17-23	D0-D6	7-bit Data Inputs. Allows programming of 128 cutoff frequencies (also performs control functions as described above).	7-bit Data Inputs. Program memory latches are transparent in this mode. Connect pins high or low to program filters A and B simultaneously to the same fc.
24	$\overline{\mathrm{T}} / \mathrm{H}$	Track-and-Hold Control. Low level causes T/H OUT to track selected filter output. Filter output level held at T/H OUT synchronous with $\overline{\mathrm{T}} / \mathrm{H}$ rising transition.	

$X=$ Pin has no function in this mode.
Note: All digital input levels are TTL and CMOS compatible, unless otherwise noted.

MAX270/MAX271

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

Figure 1a. MAX270 Block Diagram

Figure 1b. MAX271 Block Diagram- μ P Mode

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

*PIN HAS NO FUNCTION IN PIN-STRAP MODE.
TO GND OR V-
Figure 1c. MAX271 Block Diagram—Pin-Strap Mode

Filter Programming

 Cutoff Frequencyfc is the frequency of 3 dB attenuation in the filter response.
Table 1 shows how data pins D0-D6 allow programming of 128 cutoff frequencies from 1 kHz to 25 kHz .
The equations for calculating f_{C} from the programmed code are as follows:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{C}}=\frac{87.5}{87.5-\mathrm{CODE}} \times 1 \mathrm{kHz} \\
& \mathrm{f}_{\mathrm{C}}=\frac{262.5}{137.5-\mathrm{CODE}} \times 1 \mathrm{kHz} \\
& \begin{array}{l}
\text { for codes } 0-63 \\
(\mathrm{f} \mathrm{C}=1 \mathrm{kHz} \text { to } 3.57 \mathrm{kHz})
\end{array} \\
& \begin{array}{l}
\text { for codes } 64-127 \\
\left(\mathrm{f}_{\mathrm{C}}=3.57 \mathrm{kHz} \text { to } 25 \mathrm{kHz}\right)
\end{array}
\end{aligned}
$$

where CODE is the data on pins D0-D6 (0-127). D6 is the most significant bit (MSB).
Actual cutoff frequencies are subject to some error for each programmed code. Highest accuracy occurs at CODE $=0$ where filters are trimmed for a 1 kHz cutoff frequency. At higher codes, CODE vs. fC errors increase; the frequency error at CODE $=127$ \{highest code) remains typically within $\pm 9.5 \%$. This means that the actual filter cutoff frequency, when programmed to CODE $=127$, falls between 22.63 kHz and 27.38 kHz .

MAX270/MAX271

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

Table 1. Programmed Cutoff Frequency Codes (typ)

PROGRAMMED CODE	$\mathrm{fc}(\mathrm{kHz})$	PROGRAMMED CODE	$\mathrm{f}_{\mathrm{C}}(\mathrm{kHz})$	PROGRAMMED CODE	fc (kHz)	PROGRAMMED CODE	$\mathrm{fc}(\mathrm{kHz})$
0	1.000	32	1.576	64	3.571	96	6.325
1	1.011	33	1.605	65	3.620	97	6.481
2	1.023	34	1.635	66	3.671	98	6.645
3	1.035	35	1.666	67	3.723	99	6.818
4	1.047	36	1.699	68	3.777	100	7.008
5	1.060	37	1.732	69	3.832	101	7.191
6	1.073	38	1.767	70	3.888	102	7.394
7	1.087	39	1.804	71	3.947	103	7.608
8	1.100	40	1.842	72	4.007	104	7.835
9	1.114	41	1.881	73	4.069	105	8.076
10	1.129	42	1.923	74	4.133	106	8.333
11	1.143	43	1.966	75	4.200	107	8.606
12	1.158	44	2.011	76	4.268	108	8.898
13	1.174	45	2.058	77	4.338	109	9.210
14	1.190	46	2.108	78	4.411	110	9.545
15	1.206	47	2.160	79	4.487	111	9.905
16	1.223	48	2.215	80	4.565	112	10.294
17	1.241	49	2.272	81	4.646	113	10.714
18	11.259	50	2.333	82	4.729	114	11.170
19	1.277	51	2.397	83	4.816	115	11.666
20	1.296	52	2.464	84	4.906	116	12.209
21	1.315	53	2.536	85	5.000	117	12.804
22	1.335	54	2.611	86	5.097	118	13.461
23	1.356	55	2.692	87	5.198	119	14.189
24	1.378	56	2.777	88	5.303	120	15.000
25	1.400	57	2.868	89	5.412	121	15.909
26	1.422	58	2.966	90	5.526	122	16.935
27	1.446	59	3.070	91	5.645	123	18.103
28	1.470	60	3.181	92	5.769	124	19.444
29	1.495	61	3.301	93	5.898	125	21.000
30	1.521	62	3.431	94	6.034	126	22.826
31	1.548	63	3.571	95	6.176	127	25.000

Programmed code is the data on pins D0-D6 (0-127). D6 is the MSB.

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

MAX270 Control Interlace
The AO pin is a three-level input that selects the memory addresses for updating cutoff frequency data in $\mu \mathrm{P}$ mode:

A0	SELECTS
Logic Low	Filter B
Logic High	Filter A

Figure 2 shows $\mu \mathrm{P}$-mode interface timing.
Connecting AO to the negative supply selects pin-strap mode. Pin-strap mode allows filter programming with no timing requirements. Internal memory latches are disabled, permitting filters A and B to be programmed directly to fc data strapped on DO-D6. This mode disables $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ controls, and filters A and B are programmed to the same fc.
A low level on the $\overline{\text { SHDN }}$ pin shuts down all amplifiers and disconnects OUTA, OUTB, and OP OUT. Current consumption drops to less than $15 \mu \mathrm{~A}$ in this mode.

MAX271 Control Interlace

Connecting the MODE pin to GND or V - selects the $\mu \mathrm{P}$ mode. In this mode, addressable program memory controls filter cutoff frequency programming and all T/H functions, except T/H. See the Figure 2 for timing characteristics. Table 2 describes available functions:

Figure 2. MAX270/MAX271 Digital Timing Diagram
In $\mu \mathrm{P}$ mode, $\overline{\mathrm{SHDN}}, \mathrm{T} / \mathrm{H} \mathrm{A} / \overline{\mathrm{B}}$, and T/H EN pins are disabled. T/H remains enabled and performs the T / H tracking/holding function.
Tying MODE to $\mathrm{V}+$ selects pin-strap mode. In this mode, both memory latches are transparent, and data on D0-D6 controls the fc of filters A and 8 directly (filters A and 8 are programmed to the same fc). Pin strap D0-D6 for operation without $\mu \mathrm{P} . \mathrm{A} 0, \mathrm{~A} 1, \overline{\mathrm{CS}}$, and $\overline{\mathrm{WR}}$ are disabled.

Table 2. MAX271 $\mu \mathrm{P}$-Mode Interface

A1	A0	06	05	04	03	02	01	D0	FUNCTION
0	0	7-bit fC data							Selects filter A
0	1	7-bit fC data							Selects filter B
1	0	X	X	X	X	X	X	0	T/H OUT disabled
1	0	X	X	X	X	X	X	1	T/H OUT enabled
1	0	X	X	X	X	X	0	X	Selects OUTB as input to T/H
1	0	X	X	X	X	X	1	X	Selects OUTA as input to T/H
1	1	X	X	X	X	X	X	0	Filter shutdown mode. All outputs floated, $15 \mu \mathrm{~A}$ max supply current
1	1	X	X	X	X	X	X	1	Removes filter from shutdown mode

[^0]
MAX270/MAX271

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

Digital Threshold Levels

All digital inputs are TTL and CMOS compatible, unless otherwise stated. Inputs are CMOS gates with less than $1 \mu \mathrm{~A}$ leakage current and 8 pF capacitance loading. Typical logic voltage thresholds are a function of the $\mathrm{V}+$ supply voltage as shown below (voltages are referenced to GND).

$\mathbf{V}+\mathbf{(V)}$	LOGIC THRESHOLD VOLTAGE (V)
8	+2.4
7	+2.3
6	+2.0
5	+1.75
4	+1.5
2.5	+1.0

Note: For +5 V single-supply operation, where incoming logic signals are referenced to V-, typical logic thresholds are +3.5 V . Therefore, a CMOS (rail-to-rail) logic interface is recommended.

Filter Performance
All MAX270/MAX271 internal amplifier and output stages for filter sections. uncommitted op amp, and T/H are identical. The outputs are designed to drive $5 \mathrm{k} \Omega$ in parallel with a maximum capacitance of 100 pF . At higher load levels, the output swing becomes asymmetric. All outputs can be short circuited to GND for an indefinite duration.

The MAX270/MAX271 operating frequency range is limited to approximately 2 MHz by the bandwidth of the internal amplifiers.

Filter Noise
Wideband filter noise over a 50 kHz bandwidth is $12 \mu V_{\text {RMS }}$ and $38 \mu V_{\text {RMS }}$ per section for fc programmed to 1 kHz and 25 kHz , respectively. A dynamic range of over 96dB results.

Filter Input Impedance
At DC, the input impedance at INA and INB is equal to the DC input impedance of the amplifier, which is about $5 \mathrm{M} \Omega$. At higher frequencies, internal capacitors contribute to an effective input impedance that may fall as low as $100 \mathrm{k} \Omega$ at 25 kHz .

MAX271 Track-and-Hold
The MAX271 T/H is functionally equivalent to a switched 200pF capacitor buffered by a unity-gain amplifier (Figures 1 b and 1c). When the T / H pin is driven low, the output of filter A or filter B (whichever is selected via control interface) internally connects to the amplifier, and T/H OUT follows the filter output. The offset at T/H OUT ($\pm 6 \mathrm{mV}$ max) is the combined offset of the filter amplifier and the T/H buffer. When $\overline{\mathrm{T}} / \mathrm{H}$ is pulled high, the switch disconnects the filter signal from the T / H. The T / H capacitor holds the stored charge, and that voltage is buffered at T/H OUT.
A low level at T/H EN disconnects T/H OUT, enabling multiplexed operation (Figure 3). T/H A/B selects between OUTA and OUTB as the T/H input. In FP mode, the T/H EN and T/H OUT functions are controlled by writing control bits to program memory, with T/H EN and T/H OUT pins disabled.

See the Typical Operating Characteristics graphs for T/H dynamic accuracy.

Figure 3. MAX271 Multiplexed Operation

MAX270/MAX271

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

Applications Information

Power-Supply Configurations

The MAX270/MAX271 power supplies must be properly bypassed. Best performance is achieved if $\mathrm{V}+$ and V - are bypassed to GND with $4.7 \mu \mathrm{~F}$ electrolytic (tantalum is preferred) and $0.1 \mu \mathrm{~F}$ ceramic capacitors in parallel. These should be as close as possible to the chip supply pins.
Single supplies in the range of 4.75 V to 16 V may be used to power the MAX270/MAX271 as shown in Figure 4. Digital logic may be referenced to V- (system ground), but will not maintain TTL compatibility. CMOS (rail-torail) logic recommended. For $\mu \mathrm{P}$-mode operation with a
single supply, the MAX270 A0 pin must be configure with a voltage divider (Figure 4).
Lowest quiescent current in shutdown mode is achieved when AO is either at $V+$ or V-.

Independent fcegramming Without a $\boldsymbol{\mu}$ P

Figure 6 shows how filter sections A and B may be programmed to different cutoff frequencies without the use of a $\mu \mathrm{P}$. The MAX690 $\mu \mathrm{P}$ supervisory circuit provides the proper programming sequence when the circuit is powered up by controlling the 74 HC 373 data buffer and the MAX270 addressing pin to load independent fC data for filters A and B.

Figure 4. Power-Supply Configurations

MAX270/MAX271

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

Figure 5. Cascading Filter Sections

Figure 6. Independent fc Programming without a μP

MAX270/MAX271

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filter

Pin Configurations (continued)

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
20 PDIP	$\mathrm{P} 20-2$	$\underline{21-0043}$	-
$20 \mathrm{SO}(\mathrm{W})$	$\mathrm{W} 20-3$	$\underline{\underline{21-0042}}$	$\underline{\underline{90-0108}}$
24 PDIP	$\mathrm{N} 24-3$	$\underline{21-0043}$	-
$24 \mathrm{SO}(\mathrm{W})$	$\mathrm{W} 24-2$	$\underline{21-0042}$	$\underline{\underline{90-0182}}$

MAX270/MAX271

Digitally-Programmed, Dual
2nd-Order Continuous Lowpass Filter
Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$4 / 91$	Initial release	-
1	$8 / 91$	Revised Electrical Characteristics	2
2	$1 / 12$	Revised Ordering Information and Absolute Maximum Ratings.	1,2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Active Filters category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
VEMI256A-SD2-G4-08 HMC894LP5ETR HMC896LP4ETR HMC891LP5ETR MAX281AEWE+ MAX280EPA+ MAX274AENG+
LTC1064-3CSW\#PBF LTC1060ACN\#PBF LTC1069-1IS8\#PBF LTC1164CSW\#PBF LTC1164-6CSW\#PBF LTC1064-2CSW\#PBF
LTC1064-1CSW\#PBF LTC1569CS8-7\#PBF LTC1164ACSW\#PBF LTC1067-50CS\#PBF LTC1164-6CN\#PBF LTC1059CN\#PBF
LTC1069-1CN8\#PBF LTC1069-7IS8\#PBF LTC1069-6CS8\#PBF LTC1562IG-2\#PBF LTC1164-5CSW\#PBF LTC1566-1CS8\#PBF
LTC1064-7CN\#PBF LTC1063CN8\#PBF LTC1062CN8\#PBF LTC6603IUF\#PBF LTC1565-31CS8\#PBF LTC1061ACN\#PBF
LTC1061CN\#PBF LTC1264CN\#PBF LTC1562AIG\#PBF LTC1164-7CSW\#PBF LTC1064-3CN\#PBF HMC890ALP5E HMC892ALP5E
HMC891ALP5E HMC882ALP5E HMC881ALP5E ADMV8432ACPZ HMC1023LP5E HMC1044LP3E HMC881LP5ETR
HMC882LP5ETR HMC1000LP5ETR HMC900LP5E LTC1068IN\#PBF LTC1566-1IS8\#PBF

[^0]: $X=$ Don't care

