5V, 1Mbps, Low Supply Current CAN Transceivers

\qquad General Description
The MAX3058/MAX3059 interface between the controller area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. They are primarily intended for printer and telecom backplane applications requiring data rates up to 1 Mbps . These devices provide differential transmit capability to the bus and differential receive capability to the CAN controller.
The MAX3058 output common-mode range is from -7V to +12 V . The MAX3059 output common-mode range is from OV to Vcc. The MAX3059 contains an internal switch termination resistor that makes it ideal for JetLink applications.
The MAX3058 features four different modes of operation: high speed, slope control, standby, and shutdown. The MAX3059 features three different modes of operation: high speed, slope control, and shutdown. Highspeed mode allows data rates up to 1 Mbps . In slope-control mode, the slew rate may be optimized for data rates up to 500 kbps , so the effects of EMI are reduced, and unshielded twisted or parallel cable can be used. In standby mode, the transmitters are shut off and the receivers are put into low-current mode. In shutdown mode, the transmitter and receiver are switched off.
The MAX3058/MAX3059 are available in an 8-pin SO package and are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Applications

Printers JetLink
Industrial Control Networks
Telecom Backplane
Consumer Applications

Features

- Four Operating Modes

High-Speed Operation Up to 1Mbps Slope-Control Mode to Reduce EMI (40kbps to 500kbps)
Low-Current Shutdown Mode
Standby Mode (MAX3058 Only)

- Thermal Shutdown
- Current Limiting
- ESD Protection
$\pm 12 \mathrm{kV}$ Human Body Model

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3058ASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX3059ASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO

Selector Guide

PART	TERMINATION RESISTOR	STANDBY
MAX3058ASA	No	Yes
MAX3059ASA	Yes	No

Pin Configurations

Typical Operating Circuit appears at end of data sheet.

5V, 1 Mbps, Low Supply Current CAN Transceivers

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right.$)
8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots470 \mathrm{~mW}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $+300^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 s)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Is	Dominant		40	70	mA
		Recessive		2	5	
Quiescent Current Standby Mode	IQ	Standby, MAX3058		15	80	$\mu \mathrm{A}$
Shutdown Current	ISHDN	$V_{\text {SHDN }}=\mathrm{V}_{\text {CC }}, \mathrm{MAX3058}$			5	$\mu \mathrm{A}$
		$V_{\text {TERM }}=\mathrm{V}_{\text {RS }}=\mathrm{V}_{\text {CC }}, \mathrm{MAX} 3059$			10	
		$\mathrm{V}_{\text {TERM }}=0 \mathrm{~V}, \mathrm{~V}_{\text {RS }}=\mathrm{V}_{\text {CC }}, \mathrm{MAX} 3059$			150	
Thermal-Shutdown Threshold	VTSH			160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis				25		${ }^{\circ} \mathrm{C}$
TXD INPUT LEVELS						
High-Level Input Voltage	V_{IH}		2			V
Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$				0.8	V
Input Capacitance	CIN	(Note 3)		5	20	pF
Pullup Resistor	RINTXD		50		100	k ת
TERM INPUT LEVELS (MAX3059)						
High-Level Input Voltage	$V_{\text {TRH }}$		2			V
Low-Level Input Voltage	$V_{\text {TRL }}$				0.8	V
TERM Pullup Resistor	RPU		50		100	k Ω
CANH, CANL TRANSMITTER						
Recessive Bus Voltage	VCANH, $V_{\text {CANL }}$	$V_{\text {TXD }}=V_{C C}$, no load	2		3	V
		$V_{T X D}=V_{C C}$, no load, $V_{R S}=V_{C C}$ (standby mode), MAX3058	-100		+100	mV
CANH Output Voltage	VCANH	$\mathrm{V}_{\text {TXD }}=0 \mathrm{~V}$	2.75		$\begin{aligned} & V_{C C}- \\ & 0.8 \mathrm{~V} \end{aligned}$	V
CANL Output Voltage	VCANL	$V_{T X D}=0 V$	0.5		2.25	V
Differential Output (VCANH - VCAnL)	$\Delta V_{\text {CANH }}$, $V_{\text {CANL }}$	$V_{\text {TXD }}=0 \mathrm{~V}, \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 5 \%$	1.5		3	V
		$\mathrm{V}_{T X D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$	1.5		3.2	
		$V_{\text {TXD }}=0 V, R_{L}=45 \Omega$	1.2		3	
		$\mathrm{V}_{\text {TXD }}=\mathrm{V}_{\text {CC }}$, no load	-500		+50	mV

5V, 1 Mbps, Low Supply Current CAN Transceivers

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CANH Short-Circuit Current	ICANHSC	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CANH }} \leq 0 \mathrm{~V}, \mathrm{MAX3058}$	-200		-30	mA
		$V_{\text {CANH }}=0 \mathrm{~V}$, MAX3059	-200		-30	
CANL Short-Circuit Current	ICANLSC	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\text {CANL }} \leq 12 \mathrm{~V}$, MAX3058	30		200	mA
		VCANL $=$ VCC, MAX3059	30		200	
Termination Resistor	RTERM	$V_{\text {TERM }}=\mathrm{V}_{\text {CC }}, \mathrm{MAX3059}$	108	120	132	Ω
RXD OUTPUT LEVELS						
RXD High-Output Voltage Level	VOH	$\mathrm{I}=-100 \mu \mathrm{~A}$	$\begin{aligned} & 0.8 \times \\ & V_{C C} \end{aligned}$		VCC	V
RXD Low-Output Voltage Level	VOL	$\mathrm{I}=1.6 \mathrm{~mA}$			0.4	V
DC BUS RECEIVER (Note 2)						
Differential Input Voltage (Recessive)	V DIFF	MAX3058	-17		+0.5	V
		MAX3058, VRS = VCC (standby mode)	-17		+0.5	
		MAX3059	- $\mathrm{V}_{C C}$		+0.5	
Differential Input Voltage (Dominant)	V DIFF	MAX3058	0.9		17	V
		MAX3058, V ${ }_{\text {RS }}=\mathrm{V}_{\text {CC }}$ (standby mode)	1.1		17	
		MAX3059	0.9		VCC	
Differential Input Hysteresis	VDIFF(HYST)			100		mV
CANH and CANL Input Resistance	RI		5		25	k Ω
Differential Input Resistance	RDIFF		10		100	$\mathrm{k} \Omega$
MODE SELECTION (RS)						
Input Voltage for High Speed	VSLP				$\begin{aligned} & 0.3 x \\ & V_{C C} \end{aligned}$	V
Input Voltage for Standby	VSTBY	MAX3058	$\begin{gathered} 0.75 x \\ V_{C C} \end{gathered}$			V
	VSHDN	MAX3059				
Slope-Control Mode Voltage	VSLOPE	RRS $=25 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$	$\begin{aligned} & 0.4 x \\ & V_{C C} \end{aligned}$		$\begin{aligned} & 0.6 x \\ & V_{C C} \end{aligned}$	V
Slope-Control Mode Current	ISLOPE	RRS $=25 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$	-10		-200	$\mu \mathrm{A}$
High-Speed Mode Current	IHS	$\mathrm{V}_{\mathrm{RS}}=0 \mathrm{~V}$			-500	$\mu \mathrm{A}$
SHUTDOWN (MAX3058)						
SHDN Input Voltage High	VSHDNH		2			V
SHDN Input Voltage Low	$V_{\text {SHDNL }}$				0.8	V
SHDN Pulldown Resistor	Rindhdn		50		100	$\mathrm{k} \Omega$

5V, 1 Mbps, Low Supply Current CAN Transceivers

TIMING CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Delay TXD to Bus Active, Figure 1	toNTXD	$\mathrm{V}_{\mathrm{RS}}=0 \mathrm{~V}$ ($\leq 1 \mathrm{Mbps}$)		50	ns
		RRS $=25 \mathrm{k} \Omega$ ($\leq 500 \mathrm{kbps}$)	125		
		RRS $=100 \mathrm{k} \Omega$ ($\leq 125 \mathrm{kbps}$)	450		
		RRS $=200 \mathrm{k} \Omega(\leq 62.5 \mathrm{kbps})$	700		
Delay TXD to Bus Inactive, Figure 1	tOFFTXD	$\mathrm{V}_{\mathrm{RS}}=0 \mathrm{~V}(\leq 1 \mathrm{Mbps})$		70	ns
		RRS $=25 \mathrm{k} \Omega$ ($\leq 500 \mathrm{kbps}$)	180		
		RRS $=100 \mathrm{k} \Omega$ ($\leq 125 \mathrm{kbps}$)	500		
		RRS $=200 \mathrm{k} \Omega(\leq 62.5 \mathrm{kbps})$	1000		
Delay Bus to Receiver Active, Figure 1	tonRXD	$\mathrm{V}_{\mathrm{RS}}=0 \mathrm{~V}$ ($\leq 1 \mathrm{Mbps}$)		80	ns
		RRS $=25 \mathrm{k} \Omega$ ($\leq 500 \mathrm{kbps}$)	150		
		RRS $=100 \mathrm{k} \Omega$ ($\leq 125 \mathrm{kbps}$)	500		
		RRS $=200 \mathrm{k} \Omega(\leq 62.5 \mathrm{kbps})$	800		
Delay Bus to Receiver Inactive, Figure 1	toFFRXD	$\mathrm{V}_{\mathrm{RS}}=0 \mathrm{~V}(\leq 1 \mathrm{Mbps})$		100	ns
		RRS $=25 \mathrm{k} \Omega$ ($\leq 500 \mathrm{kbps}$)	210		
		RRS $=100 \mathrm{k} \Omega$ ($\leq 125 \mathrm{kbps}$)	500		
		RRS $=200 \mathrm{k} \Omega$ ($\leq 62.5 \mathrm{kbps}$)	1100		
Differential Output Slew Rate	SR	$\mathrm{V}_{\mathrm{RS}}=0 \mathrm{~V}$ ($\leq 1 \mathrm{Mbps}$)	100		V/us
		RRS $=25 \mathrm{k} \Omega$ ($\leq 500 \mathrm{kbps}$)	7		
		RRS $=100 \mathrm{k} \Omega$ ($\leq 125 \mathrm{kbps}$)	1.6		
		RRS $=200 \mathrm{k} \Omega(\leq 62.5 \mathrm{kbps})$	0.8		
Bus Dominant to RXD Active	tDRXDL	$\mathrm{V}_{\text {RS }}>0.8 \times \mathrm{V}_{\mathrm{CC}}$ (standby), MAX3058, Figure 2		1	$\mu \mathrm{s}$
Standby to Receiver Active	tSBRXDL	BUS dominant, MAX3058, Figure 2		4	$\mu \mathrm{s}$
SHDN to Bus Inactive	toffshdn	TXD = GND, MAX3058, Figure 3 (Note 4)		1	$\mu \mathrm{s}$
SHDN to Receiver Active	tonshdn	BUS dominant, MAX3058, Figure 3 (Note 5)		4	$\mu \mathrm{s}$
RS to Bus Inactive	toffshdn	TXD = GND, MAX3059, Figure 3 (Note 4)		1	$\mu \mathrm{s}$
RS to Receiver Active	tonshDN	BUS dominant, MAX3059, Figure 3 (Note 5)		4	$\mu \mathrm{s}$
TERM to Resistor Switched On	tonRT	$\mathrm{V}_{\mathrm{RS}}=\mathrm{V}_{\mathrm{CC}}$ (part in shutdown), MAX3059, Figure 4		400	ns
TERM to Resistor Switched Off	toffrt	$\mathrm{V}_{\mathrm{RS}}=\mathrm{V}_{\mathrm{CC}}$ (part in shutdown), MAX3059, Figure 4		400	ns
ESD Protection		Human Body Model	12		$\pm \mathrm{kV}$

Note 1: All currents into device are positive; all currents out of the device are negative. All voltages are referenced to device ground, unless otherwise noted.
Note 2: $\left(\mathrm{V}_{\mathrm{TXD}}=\mathrm{V}_{\mathrm{CC}} ; \mathrm{CANH}\right.$ and CANL externally driven; $-7 \mathrm{~V}<\mathrm{V}_{\mathrm{CANH}}, \mathrm{V}_{\mathrm{CANL}}<12 \mathrm{~V}$ for $\mathrm{MAX} 3058 ; 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CANH}}, \mathrm{V}_{\mathrm{CANL}}<\mathrm{V}_{\mathrm{CC}}$ for MAX3059, unless otherwise specified).
Note 3: Specification guaranteed by design, not production tested.
Note 4: No other devices on the BUS.
Note 5: BUS externally driven.

5V, 1Mbps, Low Supply Current CAN Transceivers

Timing Diagrams

Figure 1. Timing Diagram

Figure 3. Timing Diagram for Shutdown Signal

Figure 2. Timing Diagram for Standby Signal (MAX3058)

Figure 4. Test Circuit and Diagram for TERM Timing (MAX3059)

5V, 1 Mbps, Low Supply Current CAN Transceivers

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified. $)$
MAX3059

SUPPLY CURRENT vs. TEMPERATURE IN SHUTDOWN MODE (TERM = GND)

MAX3058
SUPPLY CURRENT
vs. TEMPERATURE IN SHUTDOWN

RECEIVER OUTPUT LOW
vs. OUTPUT CURRENT

5V, 1 Mbps, Low Supply Current CAN Transceivers

Typical Operating Characteristics (continued)

$\left(V_{C C}=+5 \mathrm{~V}, R_{L}=60 \Omega, C_{L}=100 \mathrm{pF}, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

driver propagation delay (rs = GND)

200ns/div

LOOPBACK PROPAGATION DELAY
vs. RRS

5V, 1 Mbps, Low Supply Current CAN Transceivers

PIN		NAME	FUNCTION
MAX3058	MAX3059		
1	1	TXD	Transmit Data Input. TXD is a CMOS/TTL-compatible input from a CAN controller. TXD has an internal $75 \mathrm{k} \Omega$ pullup resistor.
2	2	GND	Ground
3	3	VCC	Supply Voltage. Bypass $\mathrm{V}_{C C}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
4	4	RXD	Receive Data Output. RXD is a CMOS/TTL-compatible output.
5	-	SHDN	Shutdown Input, CMOS/TTL-Compatible Input. Drive SHDN high to put the IC into shutdown mode. SHDN has an internal $75 \mathrm{k} \Omega$ pulldown resistor to GND.
6	6	CANL	CAN Bus Line Low
7	7	CANH	CAN Bus Line High
8	8	RS	Mode Select Input. Drive RS low or connect to GND for high-speed operation. Connect a resistor between RS and GND to control output slope. For the MAX3058, drive RS high to put into standby mode. (see Mode Selection section). For the MAX3059, drive RS above $0.75 \times \mathrm{V}_{\mathrm{Cc}}$ to select shutdown mode.
-	5	TERM	Terminate Input, CMOS/TTL Compatible. Drive TERM high or leave floating to terminate the device with a 120Ω across the CANH and CANL. Drive TERM low to disconnect this resistor. TERM has an internal $75 \mathrm{k} \Omega$ pullup resistor to V_{CC}.

Functional Diagram

5V, 1 Mbps, Low Supply Current CAN Transceivers

Detailed Description

The MAX3058/MAX3059 interface between the protocol controller and the physical wires of the bus lines in a CAN. They are primarily intended for printer and telecom backplane applications requiring data rates up to 1 Mbps . These devices provide differential transmit capability to the bus and differential receive capability to the CAN controller.
The MAX3058 output common-mode range is from -7 V to +12 V . The MAX3059 output common-mode range is from OV to Vcc. The MAX3059 contains an internal switch termination resistor that makes it ideal for JetLink applications.
The MAX3058 features four different modes of operation: high-speed, slope control, standby, and shutdown. The MAX3059 features three different modes of operation: high speed, slope control, and shutdown. High-speed mode allows data rates up to 1Mbps. In slope-control mode, the slew rate may be optimized for data rates up to 500 kbps , so the effects of EMI are reduced, and unshielded twisted or parallel cable can
be used. In standby mode, the transmitters are shut off and the receivers are put into low-current mode. In shutdown mode, the transmitter and receiver are switched off.
The transceivers operate from a single +5 V supply and draw 40 mA of supply current in dominant state and 2 mA in recessive state. In standby mode, supply current is reduced to $15 \mu \mathrm{~A}$. In shutdown mode, supply current is $1 \mu \mathrm{~A}$ for the MAX3058 and $5 \mu \mathrm{~A}$ for the MAX3059.
CANH and CANL are output short-circuit current limited and are protected against excessive power dissipation by thermal-shutdown circuitry that places the driver outputs into a high-impedance state.

Transmitter

The transmitter converts a single-ended input (TXD) from the CAN controller to differential outputs for the bus lines (CANH, CANL). The truth table for the transmitter and receiver is given in Tables 1 and 2.

Table 1. Transmitter and Receiver Truth Table for MAX3058 When Not Connected to the Bus

TXD	RS	SHDN	CANH	CANL	BUS STATE	RXD
Low	$V_{R S}<0.75 \times V_{C C}$	Low	High	Low	Dominant	
High or float	$V_{R S}<0.75 \times V_{C C}$	Low	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to $V_{C C} / 2$	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to $V_{C C} / 2$	Recessive	High
X	$V_{R S}>0.75 \times V_{C C}$	Low	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to GND	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to GND	Recessive	High
X	X	High	Floating	Floating	Floating	High

Table 2. Transmitter and Receiver Truth Table for MAX3059 When Not Connected to the Bus

TXD	RS	TERM	CANH	CANL	BUS STATE	RXD
Low	$\mathrm{V}_{\mathrm{RS}}<0.75 \times \mathrm{V}_{\mathrm{CC}}$	Low	High	Low	Dominant	Low
Low	$\mathrm{V}_{\mathrm{RS}}<0.75 \times \mathrm{V}_{\mathrm{CC}}$	High	High	Low	Dominant	Low
			120Ω terminating resistor across			
High or float	$\mathrm{V}_{\mathrm{RS}}<0.75 \times \mathrm{V}_{\mathrm{CC}}$	Low	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{Cc}} / 2$	Recessive	High
High or float	$\mathrm{V}_{\mathrm{RS}}<0.75 \times \mathrm{V}_{\mathrm{CC}}$	High	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to Vcc/2	Recessive	High
			120Ω terminating resistor across			
X	$V_{\text {RS }}>0.75 \times \mathrm{V}_{\text {cC }}$	Low	Floating	Floating	Floating	High
X	$V_{\text {RS }}>0.75 \times \mathrm{V}_{\mathrm{CC}}$	High	Floating	Floating	Floating	High
			120Ω terminating resistor across			

5V, 1 Mbps, Low Supply Current CAN Transceivers

Abstract

Receiver The receiver reads differential input from the bus lines (CANH, CANL) and transfers this data as a singleended output (RXD) to the CAN controller. It consists of a comparator that senses the difference $\Delta V=$ (CANH CANL) with respect to an internal threshold of 0.7 V . If this difference is positive (i.e., $\Delta \mathrm{V}>0.7$), a logic low is present at $R X D$. If negative (i.e., $\Delta V<0.7 \mathrm{~V}$), a logic high is present. The receiver always echoes the CAN BUS data. The CANH and CANL common-mode range is -7 V to +12 V for the MAX3058, and OV to Vcc for the MAX3059. RXD is logic high when CANH and CANL are either shorted, or terminated and undriven.

\section*{Mode Selection High-Speed Mode}

Connect RS to ground to set the MAX3058/MAX3059 to high-speed mode. When operating in high-speed mode, the MAX3058/MAX3059 can achieve transmission rates of up to 1 Mbps . In high-speed mode, use shielded twisted-pair cable to avoid EMI problems.

Slope-Control Mode

Connect a resistor from RS to ground to select slopecontrol mode (Table 3). In slope-control mode, CANH and CANL slew rates are controlled by the resistor connected to the RS pin. Maximum transmission speeds are controlled by RRS, and range from 40kbps to 500kbps. Controlling the rise and fall slopes reduces EMI and allows the use of an unshielded twisted pair or a parallel pair of wires as bus lines. The transfer function for selecting the resistor value is given by:
$R_{R S}(k \Omega) \approx 12,500 /($ maximum speed in kbps)
See the Slew Rate vs. RRS graph in the Typical Operating Characteristics.

Standby Mode

If a logic-high level is applied to RS, the MAX3058 enters a low-current standby mode. In this mode, the transmitter is switched off and the receiver is switched to a low-current/low-speed state. If dominant bits are detected, RXD switches to low level. The microcontroller should react to this condition by switching the transceiver back to normal operation.
When the MAX3058 enters standby mode, RXD goes high for $4 \mu \mathrm{~s}$ (max) regardless of the BUS state. However, after $4 \mu \mathrm{~s}, \mathrm{RXD}$ goes low only when the BUS is dominant; otherwise, RXD remains high (when the BUS is recessive). For proper measurement of standby to receiver active time (tSBRXDL), the BUS should be in a dominant state (see Figure 2).

Shutdown Mode

Drive SHDN high to enter shutdown mode on the MAX3058. Connect SHDN to ground or leave it floating for normal operation. On the MAX3059, drive RS high to enter shutdown.

TERM
Drive TERM high (to V_{Cc}) or leave it floating to terminate the MAX3059 with 120Ω resistor connected across the CANH and CANL. Connect TERM to ground to disconnect this resistor.

Thermal Shutdown
If the junction temperature exceeds $+160^{\circ} \mathrm{C}$, the device is switched off. The hysteresis is approximately $25^{\circ} \mathrm{C}$, disabling thermal shutdown once the temperature drops to $+135^{\circ} \mathrm{C}$. In thermal shutdown, CANH and CANL go recessive and all IC functions are disabled.

Table 3. Mode Selection Truth Table

CONDITION FORCED AT PIN RS	MODE	RESULTING CURRENT AT RS $(\boldsymbol{\mu A})$	
$V_{R S}<0.3 \times V_{C C}$	High speed	$\\|_{R S} \mid<500$	
$0.4 \times V_{C C}<V_{R S}<0.6 \times V_{C C}$	Slope control	$10 \mu A<\\|_{R S}<200$	
$V_{R S}>0.75 \times V_{C C}$	Standby $(M A X 3058)$	$\\|_{R S}<10$	
$V_{R S}>0.75 \times V_{C C}$	Shutdown (MAX3059)	$\\|_{R S}<10$	

5V, 1Mbps, Low Supply Current CAN Transceivers

Applications Information

Reduced EMI and Reflections
In slope-control mode, the CANH and CANL outputs are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables.
In multidrop CAN applications, it is important to maintain a direct point-to-point wiring scheme. A single pair of wires should connect each element of the CAN bus, and the two ends of the bus should be terminated with 120Ω resistors. A star configuration should never be used.
Any deviation from the point-to-point wiring scheme creates a stub. The high-speed edge of the CAN data on a stub can create reflections back down the bus. These reflections can cause data errors by eroding the noise margin of the system.

Although stubs are unavoidable in a multidrop system, care should be taken to keep these stubs as small as possible, especially in high-speed mode. In slope-control mode, the requirements are not as rigorous, but stub length should still be minimized.

Power Supply and Bypassing
The MAX3058/MAX3059 require no special layout considerations beyond common practices. Bypass $V_{C C}$ to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor mounted close to the IC with short lead lengths and wide trace widths.

Chip Information
TRANSISTOR COUNT: 1024 PROCESS: BiCMOS

5V, 1 Mbps, Low Supply Current CAN Transceivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for CAN Interface IC category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
416694H IL41050TA-1E TJA1042T1J TJA1042T31J SN65LBC031DG4 TJA1050T/CM, 118 MAX13051ESA+T SJA1000T/N1.118 MCP2561FD-EP LTM2889IY-5\#PBF IA82527PQF44AR2 ADM3053BRWZ-REEL7 ADM3051CRZ-REEL7 IA82527PLC44AR2 LT3960JMSE\#TRPBF LT3960JMSE\#PBF TJA1040TCM,118 SIT1050TK SIT1040TK MCP25625-ESS MAX3053ESA+T MAX3057ASA+T MCP2515T-I/ST NCV7341D21R2G MC33897CTEFR2 MAX3056ASD+ MAX3054ASD+ MAX3055ASD+ MAX3051ESA+T MAX13054ESA+ MCP2510-E/SO MCP2510-I/P MCP2510-I/SO MCP2515-I/P MCP2515-I/SO MCP2515-I/ST MCP2515T-I/SO MCP2551-E/P MCP2551-E/SN MCP2551-I/P MCP2551-I/SN MCP2561-E/P MCP2561-H/SN MCP2561T-ESN MCP2562FD-E/SN MCP2562T-ESN MCP2515-E/ML PCA82C250T/YM,118 PCA82C251T/YM,118 SJA1000T/N1,118

