Precision, 16-Channel/Dual 8-Channel, High-Performance, CMOS Analog Multiplexers

General Description

The MAX306/MAX307 precision, monolithic, CMOS analog multiplexers (muxes) offer low on-resistance (less than 100Ω), which is matched to within 5Ω between channels and remains flat over the specified analog signal range (7Ω, max). They also offer low leakage over temperature ($\mathrm{l}_{\mathrm{NO}(\mathrm{OFF})}$ less than 2.5 nA at $+85^{\circ} \mathrm{C}$) and fast switching speeds (tTRANs less than 250ns). The MAX306 is a single-ended 1-of-16 device, and the MAX307 is a differential 2-of-8 device.

The MAX306/MAX307 are fabricated with Maxim's improved 44V silicon-gate process. Design improvements yield extremely low charge injection (less than 10pC) and guarantee electrostatic discharge (ESD) protection greater than 2000 V .

These muxes operate with a single +5 V to +30 V supply, or bipolar $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ supplies, while retaining TTL/ CMOS-logic input compatibility and fast switching. CMOS inputs provide reduced input loading. These improved parts are plug-in upgrades for the industrystandard DG406, DG407, DG506A, and DG507A.

Applications

- Sample-and-Hold Circuits
- Test Equipment
- Military Radios
- Heads-Up Displays
- Guidance and Control Systems
- Communications Systems
- Battery-Operated Systems PBX, PABX
- Audio Signal Routing

Benefits and Features

- Guaranteed On-Resistance Match Between Channels, < 5Ω Max
- Low On-Resistance, < 100Ω Max
- Guaranteed Flat On-Resistance Over Specified Signal Range, 7Ω Max
- Guaranteed Charge Injection, < 10pC
- $I_{\text {NO(OFF) }}$ Leakage $<2.5 \mathrm{nA}$ at $+85^{\circ} \mathrm{C}$
- $\mathrm{I}_{\mathrm{COM}(\mathrm{OFF})}$ Leakage $<20 \mathrm{nA}$ at $+85^{\circ} \mathrm{C}$
- ESD Protection > 2000V
- Plug-In Upgrade for Industry-Standard DG406/DG407/DG506A/DG507A
- Single-Supply Operation (+5V to +30 V) Bipolar-Supply Operation ($\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$)
- Low Power Consumption, $<1.25 \mathrm{~mW}$
- Rail-to-Rail Signal Handling
- TTL/CMOS-Logic Compatible

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX306CPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 PDIP
MAX306CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX306C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX306EPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 PDIP
MAX306EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX306EQI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 PLCC
MAX306EUI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP
MAX306MJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 CERDIP

Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.

Pin Configurations/Functional Diagrams/Truth Tables

$\mathbf{A 3}$	A2	A1	A0	EN	ON Switch
\mathbf{X}	X	X	X	0	None
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

MAX306

LOGIC " 0 " $\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$, LOGIC " 1 " $=\mathrm{V}_{\mathrm{AH}} \geq \mathbf{2 . 4 V}$

Pin Configurations/Functional Diagrams/Truth Tables continued at end of data sheet.

Absolute Maximum Ratings

Operating Temperature Ranges
MAX30_C_ _ ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX30_E_ _ .. $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX30_MJI .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)
PDIP, Wide SO, TSSOP lead(Pb)-free $260^{\circ} \mathrm{C}$
PDIP, Wide SO, TSSOP containing lead(Pb)............. $240^{\circ} \mathrm{C}$
PLCC lead(Pb)-free .. $+245^{\circ} \mathrm{C}$
PLCC containing lead (Pb)...................................... $225^{\circ} \mathrm{C}$
CERDIP .. $240^{\circ} \mathrm{C}$

Note 1: Signals on NO, COM, A0, A1, A2, A3, or EN exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS				MIN	$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS	
SWITCH										
Analog Signal Range	V_{NO}, $\mathrm{V}_{\mathrm{COM}}$	(Note 3)				-15		+15	V	
On-Resistance	RON	$\begin{aligned} & I_{\mathrm{NO}}=-1.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}= \pm 10 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			60	100	Ω	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				125		
On-Resistance Matching Between Channels	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}}=-1.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}(\text { Note } 4) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1.5	5	Ω	
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$	$\mathrm{T}_{\text {MAX }}$			8		
On-Resistance Flatness	$\mathrm{R}_{\text {FLAT }}$	$\begin{aligned} & I_{\mathrm{NO}}=-1.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}= \pm 5 \mathrm{~V} \text { or } 0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1.8	7	Ω	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				10		
NO Off-Leakage Current (Note 5)	$\mathrm{I}_{\text {NO(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=+10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.5	+0.01	+0.5	nA	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	C, E	-2.5		+2.5		
				M	-5.0		+5.0			
COM Off-Leakage Current (Note 5)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=+10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \end{aligned}$	MAX306		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.75	+0.02	+0.75	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	C, E	-20		+20		
				to $T_{\text {MAX }}$	M	-40		+40		
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=+10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \end{aligned}$	MAX307	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.75	+0.02	+0.75		
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	C, E	-10		+10		
					M	-20		+20		

Electrical Characteristics—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

Electrical Characteristics—Single Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
NO Off-Capacitance	$\mathrm{C}_{\text {NO(OFF) }}$	$\begin{aligned} & \mathrm{f}_{\mathrm{SW}}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \text { Figure } 8 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		pF
COM Off-Capacitance	$\mathrm{C}_{\text {COM (OFF) }}$	$\begin{aligned} & \mathrm{f} S \mathrm{~W}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \end{aligned}$ Figure 8	MAX306 MAX307	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		130 65		pF
COM On-Capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\begin{aligned} & \mathrm{f}_{\mathrm{SW}}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \end{aligned}$ Figure 8	MAX306 MAX307	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		140 70		pF
SWITCH								
Analog Signal Range	V_{NO}, $\mathrm{V}_{\mathrm{COM}}$	(Note 3)			0		12	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}}=-1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} \text { or } 10 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		120	175	Ω
DYNAMIC								
Transition Time (Note 3)	${ }^{\text {t }}$ RANS	$\begin{aligned} & \mathrm{V}_{\mathrm{NO} 1}=8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO8}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \end{aligned}$ Figure 2		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		130	450	ns
Enable Turn-On Time (Note 3)	${ }^{\text {ton(EN }}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{INL}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO} 1}=5 \mathrm{~V}, \end{aligned}$ Figure 3		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		105	600	ns
Enable Turn-Off Time (Note 3)	$\mathrm{t}_{\text {OFF (EN) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{INL}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO} 1}=5 \mathrm{~V}, \end{aligned}$ Figure 3		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		80	300	ns
Charge Injection (Note 3)	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	10	pC

Note 2: The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: $\Delta R_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(M A X)}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$. On-resistance match between channels and flatness are guaranteed only with specified voltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured at the extremes of the specified analog signal range.
Note 5: Leakage parameters are 100% tested at the maximum-rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
Note 6: Off-isolation $=20 \log \mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}$, where $\mathrm{V}_{\mathrm{COM}}=$ output and $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

MAX306 PIN	NAME	FUNCTION
1	V+	Positive Supply Voltage Input
$2,3,13$	N.C.	No Connection. Not internally connected.
$4-11$	NO16-NO9	Analog Inputs-bidirectional
12	GND	Ground
$14-17$	A3-A0	Address Inputs
18	EN	Enable Inputs
$19-26$	NO1-NO8	Analog Inputs-bidirectional
27	V-	Negative Supply Voltage Input
28	COM	Output-bidirectional

Applications Information

Operation with Supply Voltages Other than $\pm 15 \mathrm{~V}$

Using supply voltages other than $\pm 15 \mathrm{~V}$ will reduce the analog signal range. The MAX306/MAX307 switches operate with $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ bipolar supplies or with a +5 V to +30 V single supply; connect V - to GND when operating with a single supply. Also, both device types can operate with unbalanced supplies such as +24 V and -5 V . The Typical Operating Characteristics graphs show typical onresistance with $20 \mathrm{~V}, 15 \mathrm{~V}, 10 \mathrm{~V}$, and 5 V supplies. (Switching times increase for 5 V operation, up to a maximum of $10 \mu \mathrm{~s}$.)

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence $V+$ on first, then V-, followed by either the logic inputs, NO or COM. If power-supply sequencing is not possible, add two small-signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to 1 V above

MAX307 PIN	NAME	FUNCTION
1	V+	Positive Supply Voltage Input
2	COMB	Output B-bidirectional
$3,13,14$	N.C.	No Connection. Not internally connected.
$4-11$	NO8B-NO1B	Analog Inputs-bidirectional
12	GND	Ground
$15,16,17$	A2, A1, A0	Address Inputs
18	EN	Enable Input
$19-26$	NO1A-NO8A	Analog Inputs-bidirectional
27	V-	Negative Supply Voltage Input
28	COMA	Output A-bidirectional

V+ and 1 V below V -, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between $\mathrm{V}+$ and V should not exceed +44 V .

Figure 1. Overvoltage Protection Using External Blocking Diodes

Test Circuits/Timing Diagrams

Figure 2. Transition Time

Figure 3. Enable Switching Time

Test Circuits/Timing Diagrams (continued)

Figure 4. Break-Before-Make Interval

Figure 5. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 6. Off-Isolation

Figure 8. NO/COM Capacitance

Pin Configurations/Functional Diagrams/Truth Tables (continued)

N.C. $=$ NO INTERNAL CONNECTION

MAX306 16-CHANNEL SINGLE-ENDED MULTIPLEXER

Pin Configurations/Functional Diagrams/Truth Tables (continued)

N.C. $=$ NO INTERNAL CONNECTION

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX307CPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 PDIP
MAX307CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX307C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX307EPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 PDIP
MAX307EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX307EQI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 PLCC
MAX307EUI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP
MAX307MJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 CERDIP
MAX307MWI/PR	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Wide SO
MAX307MWI/PR-T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Wide SO

*Contact factory for dice specifications.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
28 PDIP	P28+3	$\underline{21-0044}$	-
28 Wide SO	$\mathrm{W} 28+6$	$\underline{21-0042}$	$90-0109$
28 PLCC	Q28+4	$\underline{21-0049}$	$90-0235$
28 CDIP	J28-2	$\underline{\underline{21-0046}}$	-
28 TSSOP	$\mathrm{U} 28+2$	$\underline{\underline{21-0066}}$	$90-0171$

Revision History

$\left.\begin{array}{|c|c|l|c|}\hline \begin{array}{c}\text { REVISION } \\ \text { NUMBER }\end{array} & \begin{array}{c}\text { REVISION } \\ \text { DATE }\end{array} & & \text { DESCRIPTION }\end{array} \begin{array}{c}\text { PAGES } \\ \text { CHANGED }\end{array}\right]$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ HEF4053BT. 653 PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZRL7

