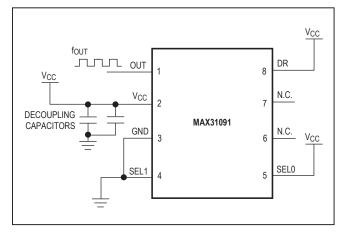
MAX31091

Automotive Temperature Range Spread-Spectrum EconOscillator™


General Description

The MAX31091 is a low-cost clock generator that is factory trimmed to output frequencies from 200kHz to 66.6MHz with a nominal accuracy of $\pm 0.25\%$. The device can also produce a center-spread-spectrum output with pin-selectable dither magnitude and rate. Assembled in an 8-pin μ MAX® package, the MAX31091 is designed to operate with a 3.0V to 3.6V power supply over the automotive temperature range (-40°C to +125°C).

Applications

- Automotive Infotainment
- Navigation
- Advanced Driver Assistance System (ADAS)
- Engine Control Unit (ECU) Instrumentation
- Automotive

Typical Operating Circuit

Benefits and Features

- Spread-Spectrum Clock Output from 200kHz to 66.6MHz
- -40°C to +125°C Operating Temperature Range
- ±1.75% Accuracy Across Temperature
- Factory Trimmed
- Center-Dithered Spread-Spectrum Output
- Pin-Selectable Center-Dither Magnitude of 0%, ±1%, ±2%, or ±4%
- Pin-Selectable Dither Rate
- 3.0V to 3.6V Supply Operation
- Lead(Pb)-Free, 8-Pin µMAX Package
- AEC-Q100 Qualified

Custom Frequency Options

Contact factory for available custom frequency options.

Ordering Information appears at end of data sheet.

EconOscillator is a trademark and μMAX is a registered trademark of Maxim Integrated Products, Inc.

MAX31091

Automotive Temperature Range Spread-Spectrum EconOscillator™

Absolute Maximum Ratings

Voltage Range on V _{CC} Relative to Ground0.5V to +4.0V
Voltage Range on DR, SEL0, SEL1
Relative to Ground0.5V to (V _{CC} + 0.5V)*
Continuous Power Dissipation (T _A = +70°C)
μMAX (derate 4.8mW/°C above +70°C)390mW

Operating Temperature Range40°C to	+125°C
Storage Temperature Range55°C to	+125°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

8 μΜΑΧ

PACKAGE CODE	U8+4
Outline Number	21-0036
Land Pattern Number	90-0092
Thermal Resistance, Multi-Layer Board:	
Junction to Ambient (θ _{JA})	206°C/W
Junction to Case (θ _{JC})	42°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

www.maximintegrated.com Maxim Integrated | 2

^{*}This voltage must not exceed 4.0V.

Recommended Operating Conditions

 $(T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V _{CC}	(Note 1)	3.0	3.3	3.6	V
High-Level Input Voltage (SEL0, SEL1, DR)	V _{IH}		0.7 x V _{CC}		V _{CC} + 0.3	V
Low-Level Input Voltage (SEL0, SEL1, DR)	V _{IL}		-0.3		0.3 x V _{CC}	V

DC Electrical Characteristics

(V_{CC} = +3.0V to +3.6V, T_A = -40°C to +125°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
High-Level Output Voltage (OUT)	V _{OH}	I _{OH} = -4mA, V _{CC} = 3.0V	2.4			٧
Low-Level Output Voltage (OUT)	V _{OL}	I _{OL} = 4mA			0.4	V
High-Level Input Current (SEL0, SEL1, DR)	I _{IH}	V _{CC} = 3.6V			1	μΑ
Low-Level Input Current (SEL0, SEL1, DR)	I _{IL}	V _{IL} = 0V	-1			μΑ
Supply Current (Active)	Icc	(Note 2)			16	mA

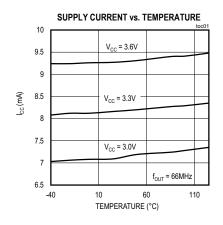
AC Electrical Characteristics

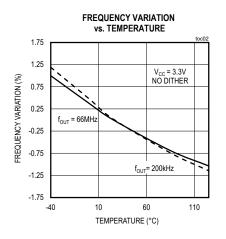
(V_{CC} = +3.0V to +3.6V, T_A = -40°C to +125°C, unless otherwise noted.)

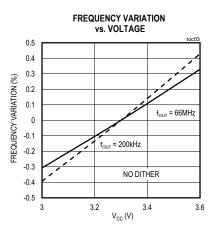
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Frequency Range	fout	(Note 3)	0.200		66.6	MHz
		V _{CC} = 3.3V, T _A = +25°C	-0.25	0	+0.25	
Output Center Frequency Tolerance	Δf_{OUT}	Across T _A and V _{CC} = 3.3V	-1.75		+1.75	%
Tolerance		0°C to +70°C and V _{CC} = 3.3V	-1.2		+1.2	
Power-Up Time	t _{PU}	(Note 4)			0.1	ms
Load Capacitance	CL			15	50	pF
Duty Cycle		< 33.3MHz (Note 3)		50		- %
		≥ 33.3MHz (Note 3)	40		60	70
Jitter (RMS), 50MHz				0.3		%

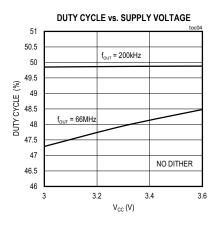
Note 1: All voltages are referenced to ground. Currents entering the IC are specified positive and currents exiting the IC are negative.

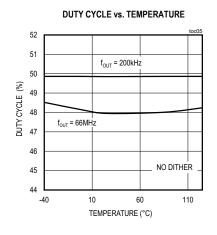
Note 2: Supply current measured with C_L = 15pF, V_{CC} = 3.6V, T_A = +25°C, f_{OUT} = 66.6MHz, no dither.

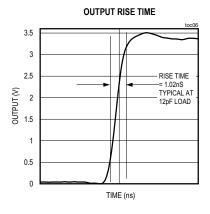

Note 3: No dither.

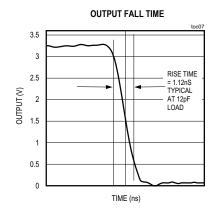

Note 4: Guaranteed by design.

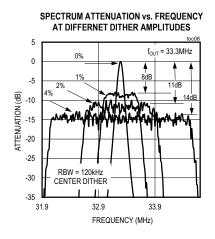

Note 5: For aging characteristics, contact factory.

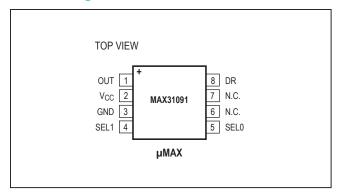

Typical Operating Characteristics (continued)


 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

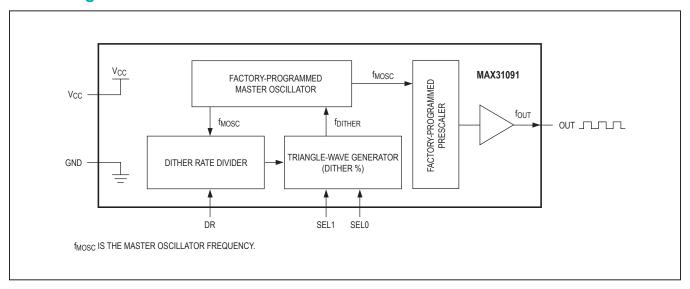








Automotive Temperature Range Spread-Spectrum EconOscillator™


Pin Configuration

Pin Description

PIN	NAME	FUNCTION	
1	OUT	Spread-Spectrum Clock Output	
2	VCC	Supply Voltage	
3	GND	Ground	
4	SEL1	Spread-Spectrum Dither Magnitude Select Inputs. Selects dither magnitud	
5	SEL0	(see Table 1).	
6, 7	N.C.	No Connection	
8	DR	Spread-Spectrum Dither Rate Selector. Selects dither rate (see Table 2).	

Block Diagram

www.maximintegrated.com Maxim Integrated | 5

Detailed Description

The MAX31091 clock generator is capable of output frequencies from 200kHz to 66.6MHz over the full automotive temperature range (-40°C to +125°C). The device can also produce a spread-spectrum (dithered) square-wave output using four pin-selectable dither percentages. The device also features two selectable dither rates.

The MAX31091 is shipped from the factory-programmed to a customer-specified frequency.

Spread Spectrum

The MAX31091 can reduce radiated emission peaks. The dither percentage is controlled by the state of the SEL0 and SEL1 pins. The output frequency can be dithered at 0%, $\pm 1\%$, $\pm 2\%$, and $\pm 4\%$, centered around the programmed frequency.

The two select pins SEL0 and SEL1 provide a means of selecting the dither magnitudes as follows:

A triangle-wave generator injects a control signal into the master oscillator to dither its output. The dither rate is a function of the output frequency, f_{OUT} , as well as the setting of the DR pin (see the equation below). Figure 1 shows a plot of the output frequency vs. time.

DITHER RATE =
$$\frac{f_{OUT}}{2^n}$$

where n is defined in $\underline{\text{Table 2}}$ as a function of output frequency. For example, for an output frequency of 27.0MHz, the dither rate would be 13.2kHz for DR = 1 and 6.6kHz for DR = 0.

Power-Up

Upon the application of power, the MAX31091 output is held in the low state until t_{PU} has elapsed. This removes any possibility of erroneous output transitions during initial power-up.

Table 1. Dither Magnitude

SEL1	SEL0	DITHER MAGNITUDE (%)
LOGIC LEVEL	LOGIC LEVEL	MAX31091AUA
0	0	No dither
0	1	Q1
1	0	Q2
1	1	Q4

Table 2. Value of n w.r.t. Output Frequency

	QUENCY f _{OUT}	r	1
f _{OUT} (min)	f _{OUT} (max)	DR = LOGIC LEVEL 1	DR = LOGIC LEVEL 0
0.200	0.260	4	5
0.261	0.521	5	6
0.522	1.042	6	7
1.043	2.083	7	8
2.084	4.167	8	9
4.168	8.333	9	10
8.334	16.667	10	11
16.668	33.333	11	12
33.334	66.667	12	13

MAX31091 Frequency Spreading Profile as a Function of Dither %

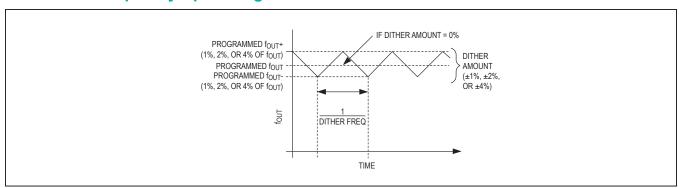


Figure 1. Center Dithered

Automotive Temperature Range Spread-Spectrum EconOscillator™

Applications Information

Power-Supply Decoupling

To achieve best results, it is highly recommended that decoupling capacitors are used on the IC power-supply pins. Typical values of decoupling capacitors are $0.01\mu F$ and $0.1\mu F$. Use a high-quality, ceramic, surface-mount capacitor, and mount it as close as possible to the V_{CC} and GND pins of the IC to minimize lead inductance.

Chip Information

SUBSTRATE CONNECTED TO GROUND

Ordering Information

PART	TEMP RANGE	SPREAD SPECTRUM	OUTPUT FREQUENCY (MHz)	PIN-PACKAGE
MAX31091AUA/V+033	-40°C to +125°C	Center	33.3	8 µMAX
MAX31091AUA/V+T033	-40°C to +125°C	Center	33.3	8 µMAX
MAX31091AUA/V+066	-40°C to +125°C	Center	66.6	8 µMAX
MAX31091AUA/V+T066	-40°C to +125°C	Center	66.6	8 µMAX
MAX31091AUA/V+172	-40°C to +125°C	Center	1.7	8 µMAX
MAX31091AUA/V+T172	-40°C to +125°C	Center	1.7	8 µMAX
MAX31091AUA/V+200	-40°C to +125°C	Center	0.20	8 µMAX
MAX31091AUA/V+T200	-40°C to +125°C	Center	0.20	8 µMAX
MAX31091AUA/V+330	-40°C to +125°C	Center	33.0	8 µMAX
MAX31091AUA/V+T330	-40°C to +125°C	Center	33.0	8 µMAX
MAX31091AUA/V+192	-40°C to +125°C	Center	1.9	8 µMAX
MAX31091AUA/V+T192	-40°C to +125°C	Center	1.9	8 µMAX
MAX31091AUA/V+400	-40°C to +125°C	Center	0.4	8 µMAX
MAX31091AUA/V+T400	-40°C to +125°C	Center	0.4	8 µMAX
MAX31091AUA/V+027	-40°C to +125°C	Center	27	8 µMAX
MAX31091AUA/V+T027	-40°C to +125°C	Center	27	8 µMAX

[/]V denotes an automotive qualified part.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
8 µMAX	U8+4	21-0036	90-0092

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

MAX31091

Automotive Temperature Range Spread-Spectrum EconOscillator™

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
0	3/14	Initial release	_
1	9/17	Added AEC-Q100 statement to <i>Benefits and Features</i> section, updated <i>General Description</i> and updated <i>Ordering Information</i> table	1, 7
2	11/18	Updated Applications, Absolute Maximum Ratings, and Ordering Information, added Package Information section	1, 2, 7

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7
PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 MAX24188ETK2 ZL30152GGG2 5L1503000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE PI6C557-03AQEX 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2
ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG
9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TCR ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1 DSC557-0334FI1 DSC557-0343FI1