Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Abstract

General Description The MAX312F/MAX313F/MAX314F are quad, single-pole/single-throw (SPST), fault-protected analog switches. They are pin compatible with the industry-standard nonprotected MAX312/MAX313/MAX314. These switches feature fault-protected inputs and Rail-to-Rail ${ }^{\circledR}$ signalhandling capability. All analog signal terminals are protected from overvoltage faults up to $\pm 36 \mathrm{~V}$ with power on and up to $\pm 40 \mathrm{~V}$ with power off. During a fault condition, the COM_, NO_, or NC_ terminal becomes an open circuit and only microamperes of leakage current flow from the source. On-resistance is 10Ω (max) and is matched between switches to 0.5Ω (max) at $+25^{\circ} \mathrm{C}$. The MAX312F has four normally closed (NC) switches. The MAX313F has four normally open (NO) switches. The MAX314F has two NC and two NO switches. These CMOS switches operate with dual power supplies ranging from $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ or a single supply between +9 V and +36 V . All digital inputs have +0.8 V and +2.4 V logic thresholds, ensuring both TTL and CMOS logic compatibility when using $\pm 15 \mathrm{~V}$ or a single +12 V supply. For supply voltages of $\pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V , refer to the MAX4711/MAX4712/MAX4713 data sheet.

Applications
Communications Systems
Signal Routing
Test Equipment
Data Acquisition
Industrial and Process Control Systems
Avionics
Redundant/Backup Systems
ATE
Hot Swap

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Functional Diagram appears at end of data sheet.
Pin Configurations continued at end of data sheet.

Features

- No Power-Supply Sequencing Required
- Rail-to-Rail Signal Handling
- All Switches Off with Power Off
- All Switches Off when V+ is Off and V- is On
- $\pm 40 \mathrm{~V}$ Fault Protection with Power Off
- $\pm 36 \mathrm{~V}$ Fault Protection with $\pm 15 \mathrm{~V}$ Supplies
- Control Line Fault Protection from $\mathrm{V}-\mathbf{- 0 . 3 V}$ to $\mathrm{V}-+40 \mathrm{~V}$
- Pin Compatible with Industry-Standard DG411/DG412/DG413
- 600ns (typ) Fault Response Time
- 10Ω (max) Ron with $\pm 15 \mathrm{~V}$ Supplies
- $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ Dual Supplies
- +9V to +36V Single Supply
- TTL- and CMOS-Compatible Logic Inputs with $\pm 15 \mathrm{~V}$ or Single +9 V to +15 V Supplies

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX312FESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SO
MAX312FEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP

Ordering Information continued at end of data sheet.
Pin Configurations
TOP VIEW

N.C. = NOT CONNECTED. SWITCHES SHOWN FOR LOGIC O INPUT. ALL SWITCHES ARE OFF WITH POWER REMOVED.

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND.)	
$\mathrm{V}+$..-0.3V to +44 V	
V-	-44V to +0.3V
V+ to V-...-0.3V to +44 V	
IN - .. (V- - 0.3V) to (V- + 40V)	
NO_, NC_ to COM_ (Note 1) -40V to +40V	
COM_, NO_, NC_ Voltage with	
Power On (Note 1).	-36 V to +36V
COM_, NO_, NC_ Voltage with	
Power Off (Note 1)... -40V to +	
Peak Current COM_, NO_, NC_ (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cyc	± 300

nuous Current (any other terminal)	$\pm 30 \mathrm{~mA}$
Continuous Current (COM_, NO_, NC_) $\pm 100 \mathrm{~mA}$	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
16-Pin SO (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............... 696 mW	
16-Pin Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

Note 1: COM_, NO_, and NC_ pins are fault protected. Signals on COM_, NO_, and NC_ exceeding -36V to +36 V may damage the device during power-on conditions. When the power is off, the maximum range is -40 V to +40 V .

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS— $\pm 15 \mathrm{~V}$ Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V} I \mathrm{~L}=+0.8 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range	VCOM_, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$		E	V-		V+	V
On-Resistance	Ron	$\begin{aligned} & \text { ICOM_ }=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}}^{-}, \\ & \mathrm{V}_{N C_{-}}= \pm 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		8	10	Ω
			E			13	
On-Resistance Match Between Channels (Note 4)	$\triangle \mathrm{RON}$	$\begin{aligned} & \text { ICOM_ }=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}}= \pm \pm 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.05	0.5	Ω
			E			0.75	
On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & \mathrm{I} \mathrm{COM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-},}, \mathrm{V}_{\mathrm{NC}_{-}}= \pm 5 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.25	1	Ω
			E			1.25	
NO_, NC_ Off-Leakage Current (Note 6)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mid \mathrm{V}_{\mathrm{COM}}^{-} \\ & = \pm 10 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\text {NC- }}=\mp 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		+1	nA
			E	-60		+60	
COM_ Off-Leakage Current (Note 6)	ICOM_(OFF)	$\begin{aligned} & \mathrm{VCOM}_{-}= \pm 10 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\text {NC_ }}=\mp 10 \mathrm{~V} \\ & \hline \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		+1	nA
			E	-60		+60	
COM_ On-Leakage Current (Note 6)	ICOM_(ON)	$\mathrm{V}_{\text {COM }}= \pm 10 \mathrm{~V} \text {; }$ $\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC }}= \pm 10 \mathrm{~V}$ or floating	$+25^{\circ} \mathrm{C}$	-2		+2	nA
			E	-60		+60	
FAULT							
Fault-Protected Analog Signal Range	VCOM, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$	$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$	E	-36		+36	V
		$\mathrm{V}+=0 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$	E	-36		+36	
		$\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V}$	E	-40		+40	
NO_ or NC_ Off-Leakage Current (Note 6)	INO_(OFF), INC_(OFF)	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}= \pm 36 \mathrm{~V} ; \mathrm{V}_{+}=+15 \mathrm{~V}$, OV; V - $=-15 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			E	-10		+10	
COM_ Off-Leakage Current (Note 6)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\text {COM }}= \pm 36 \mathrm{~V} ; \mathrm{V}_{+}=+15 \mathrm{~V}, 0 \mathrm{~V} ; \\ & \mathrm{V}-=-15 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			E	-10		+10	

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

ELECTRICAL CHARACTERISTICS— $\pm 15 \mathrm{~V}$ Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
NO_ or NC_ Leakage Current (Note 6)	INO_, INC_	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}= \pm 40 \mathrm{~V} ; \mathrm{V}_{+}=\mathrm{V}-=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			E	-10		+10	
COM_ Leakage Current (Note 6)	ICOM_	$\mathrm{V}_{\text {COM }}= \pm 40 \mathrm{~V} ; \mathrm{V}_{+}=\mathrm{V}-=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			E	-10		+10	
Fault-Trip Threshold			E	V- - 0.4		$\mathrm{V}++0.4$	V
\pm Fault Response Time	tres	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}= \pm 36 \mathrm{~V} ; \mathrm{RL}_{\text {L }}=300 \Omega$	E		600		ns
\pm Fault Recovery Time	trec	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC- }}= \pm 36 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=300 \Omega$	E		1		$\mu \mathrm{s}$
SWITCH DYNAMICS							
Turn-On Time	ton	V_{NO} or $\mathrm{VNC}_{-}= \pm 10 \mathrm{~V}, \mathrm{RL}=300 \Omega$, $C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		115	225	ns
			E			275	
Turn-Off Time	tofF	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_- }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		70	185	ns
			E			235	
Break-Before-Make Time Delay (MAX314F Only) (Note 7)	${ }_{\text {tBBM }}$	$V_{N O_{-}}$or $V_{N C_{-}}= \pm 10 \mathrm{~V}, R_{L}=100 \Omega$, $C_{L}=10 p F$, Figure 3	$+25^{\circ} \mathrm{C}$	5	45		ns
			E	2			
Charge Injection	Q	$V_{G E N}=0 V, R_{G E N}=0 \Omega, C_{L}=1 \mathrm{nF},$ Figure 4	$+25^{\circ} \mathrm{C}$		70		pC
NO_ or NC_ Off-Capacitance	$\mathrm{CN}_{\text {_ }}$ (OFF)	$f=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		20		pF
COM_ Off-Capacitance	CCOM_(OFF)	$f=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		20		pF
COM_ On-Capacitance	CCOM_(ON)	$f=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		43		pF
Off-Isolation (Note 8)	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=50 \Omega, C_{L}=15 \mathrm{pF}, \\ & P_{\text {IN }}=0 \mathrm{dBm} \text {, Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-55		dB
Channel-to-Channel Crosstalk (Note 9)	$V_{C T}$	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=50 \Omega, C_{L}=15 \mathrm{pF}, \\ & \mathrm{PIN}^{2}=0 \mathrm{dBm} \text {, Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-104		dB
LOGIC INPUT							
Input Logic High	V_{IH}		E	2.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$		E			0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or $\mathrm{V}+$	E	-1		+1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+, V-		E	± 4.5		± 20	V
V+ Supply Current	$1+$	All $\mathrm{V}_{1 \mathrm{~N}_{-}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		340	500	$\mu \mathrm{A}$
			E			700	
		All $\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or $\mathrm{V}+$, $\mathrm{V}_{\text {COM }}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		140	250	
			E			350	

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

ELECTRICAL CHARACTERISTICS— $\pm 15 \mathrm{~V}$ Dual Supplies (continued)
$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN TYP	MAX	UNITS
V- Supply Current	I-	All $\mathrm{V}_{1 \mathrm{~N}_{-}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	140	200	$\mu \mathrm{A}$
			E		300	
		All $\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or $\mathrm{V}+$, $\mathrm{V}_{\text {COM }}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	140	250	
			E		350	
GND Supply Current	IGND	All $\mathrm{V}_{1 \mathrm{~N}_{-}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	200	300	$\mu \mathrm{A}$
			E		400	
		All $\mathrm{VIN}_{-}=0 \mathrm{~V}$ or $\mathrm{V}+$, $\mathrm{V}_{\text {COM }}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	0	1	
			E		10	

ELECTRICAL CHARACTERISTICS—Single +12V Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range	VCOM_, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$		E	0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{ICOM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}_{-}}=+10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		16	25	Ω
			E			30	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RoN}$	$\begin{aligned} & \mathrm{ICOM}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}_{-}}=+10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.4	1.5	Ω
			E			2	
On-Resistance Flatness	RFLAT(ON)	$\begin{aligned} & \mathrm{I} \mathrm{COM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-},}, \mathrm{V}_{\mathrm{NC}_{-}}=+2 \mathrm{~V},+6 \mathrm{~V},+10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		3	6	Ω
			E			7	
NO_, NC_ Off-Leakage Current (Note 6)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-} \\ & =+1 \mathrm{~V},+10 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}_{-}}=+10 \mathrm{~V},+1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		+1	nA
			E	-60		+60	
COM_ Off-Leakage Current (Note 6)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-} \\ & =+1 \mathrm{~V},+10 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}_{-}}=+10 \mathrm{~V},+1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		+1	nA
			E	-60		+60	
COM_ On-Leakage Current (Note 6)	ICOM_(ON)	$\begin{aligned} & \mathrm{VCOM}_{\mathrm{CO}}=+1 \mathrm{~V},+10 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=+1 \mathrm{~V},+10 \mathrm{~V} \text {, } \\ & \text { or floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2		+2	nA
			E	-60		+60	
FAULT							
Fault-Protected Analog Signal Range	VCOM_, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$	$\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	E	-36		+36	V
		$\mathrm{V}+=\mathrm{V}$ - $=0 \mathrm{~V}$	E	-40		+40	
NO_ or NC_ Off-Leakage Current (Note 6)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}_{-}}= \pm 36 \mathrm{~V} ; \mathrm{V}_{+}=+12 \mathrm{~V} ; \\ & \mathrm{V}-=0 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			E	-10		+10	
COM_ Off-Leakage Current (Note 6)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}= \pm 36 \mathrm{~V} ; \mathrm{V}_{+}=+12 \mathrm{~V} ; \\ & \mathrm{V}-=0 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			E	-10		+10	
NO_ or NC_ Leakage Current (Note 6)	INO_, ${ }^{\text {INC_ }}$	$\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V} ; \mathrm{V}_{\text {NO_}}, \mathrm{V}_{\text {NC_ }}= \pm 40 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			E	-10		+10	

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
COM_ Leakage Current (Note 6)	ICOM_	$\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V} ; \mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}= \pm 40 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			E	-10		+10	
Fault Response Time	tres	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_- }}=+36 \mathrm{~V}$; $\mathrm{RL}_{\mathrm{L}}=300 \Omega$	E	200			ns
Fault Recovery Time	trec	$\mathrm{V}_{\text {NO_}}, \mathrm{V}_{\text {NC_ }}=+36 \mathrm{~V}$; $\mathrm{RL}_{\mathrm{L}}=300 \Omega$	E	1			$\mu \mathrm{s}$
SWITCH DYNAMICS							
Turn-On Time	ton	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_- }}=+10 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		140	325	ns
			E			425	
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}{ }_{-}=+10 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		75	175	ns
			E			225	
Break-Before-Make Time Delay (MAX314F Only) (Note 6)	tBBM	$V_{N O} O_{-}$or $V_{N C_{-}}=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, $C_{L}=10 p F$, Figure 3	$+25^{\circ} \mathrm{C}$	10	65		ns
			E	5			
Charge Injection	Q	$V_{G E N}=0 V, R_{G E N}=0 \Omega, C_{L}=1 \mathrm{nF},$ Figure 4	$+25^{\circ} \mathrm{C}$		-10		pC
LOGIC INPUT							
Input Logic High	V_{IH}		E	2.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$		E			0.8	V
Input Leakage Current (Note 6)	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or V_{+}	E	-1		+1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+		E	+9		+36	V
V+ Supply Current	I+	All $\mathrm{VIN}_{-}=+5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=+6 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		160	300	$\mu \mathrm{A}$
			E			400	
		All $\mathrm{V}_{\mathrm{IN}_{-}}=0 \mathrm{~V}$ or $\mathrm{V}_{+}, \mathrm{V}_{\text {COM }}=+6 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		70	150	
			E			250	

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: Electrical specifications at $-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.
Note 4: $\Delta \operatorname{RON}_{\mathrm{ON}}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance over the specified analog signal range.
Note 6: Single-supply leakage parameters are guaranteed by testing with dual supplies at the maximum rated temperature.
Note 7: Guaranteed by design.
Note 8: Off-isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{NC}}$ or $\mathrm{V}_{\mathrm{NO}}=$ output, $\mathrm{V}_{\mathrm{COM}}=$ input to off switch.
Note 9: Between any two switches.

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ON/OFF-LEAKAGE CURRENT vs. TEMPERATURE

LOGIC-LEVEL THRESHOLD VOLTAGE

ON-RESISTANCE vs. VcOM AND TEMPERATURE
(DUAL SUPPLIES) AND TEMPERATURE (SINGLE SUPPLY)

SUPPLY CURRENT vs. TEMPERATURE
vs. SUPPLY VOLTAGE

ON-RESISTANCE vs. VCOM (SINGLE SUPPLY)

CHARGE INJECTION vs. VCOM

TURN-ON/TURN-OFF TIME
vs. SUPPLY VOLTAGE (DUAL SUPPLIES)

Quad，Rail－to－Rail，Fault－Protected， SPST Analog Switches

Typical Operating Characteristics（continued）

（ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Typical Operating Characteristics (continued)

($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

fault recovery time (Positive input)

FAULT RECOVERY TIME (NEGATIVE INPUT)

FAULT RESPONSE TIME (NEGATIVE INPUT)

Quad，Rail－to－Rail，Fault－Protected， SPST Analog Switches

PIN			NAME	FUNCTION
MAX312F	MAX313F	MAX314F		
1，16，9， 8	1，16，9， 8	1，16，9， 8	IN1，IN2，IN3，IN4	Logic－Control Digital Inputs
$2,15,10,7$	2，15，10， 7	2，15，10， 7	COM1，COM2，COM3， COM4	Analog Switch Common Terminals
3，14，11， 6	－	－	NC1，NC2，NC3，NC4	Analog Switch Normally Closed Terminals
－	3，14，11， 6	－	NO1，NO2，NO3，NO4	Analog Switch Normally Open Terminals
－	－	3， 6	NO1，NO4	Analog Switch Normally Open Terminals
－	－	14， 11	NC2，NC3	Analog Switch Normally Closed Terminals
4	4	4	V－	Negative－Supply Voltage Input．Connect to GND for single－ supply operation．Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to GND．
5	5	5	GND	Ground．Connect to digital ground．
12	12	12	N．C．	No Connection．Not internally connected．
13	13	13	V＋	Positive－Supply Voltage Input．Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to GND．

Detailed Description

The MAX312F／MAX313F／MAX314F are fault－protected CMOS analog switches with unique operation and construction．These switches differ considerably from traditional fault－protection switches，with several advan－ tages．First，they are constructed with two parallel FETs，allowing very low on－resistance when the switch is on．Second，they allow signals on the NO＿or NC＿ pins that are within，or slightly beyond，the supply rails to be passed through the switch to the COM＿terminal （or vice versa），allowing true rail－to－rail signal operation． Third，the MAX312F／MAX313F／MAX314F have the same fault－protection performance on any of the NO＿，NC＿， or COM＿switch inputs．Operation is identical for both fault polarities．The fault protection extends to $\pm 36 \mathrm{~V}$ from GND with $\pm 15 \mathrm{~V}$ supplies．
During a fault condition，the particular overvoltage input （COM＿，NO＿，NC＿）pin becomes high impedance regardless of the switch state or load resistance．When power is removed，the fault protection is still in effect．In this case，the COM＿，NO＿，or NC＿terminals are a virtu－ al open circuit．The fault can be up to $\pm 40 \mathrm{~V}$ with power off．The switches turn off when $\mathrm{V}+$ is not powered， regardless of V －．

Pin Compatibility
These switches have identical pinouts to common non－ fault－protected CMOS switches．They allow for carefree
direct replacement in existing printed circuit boards since the NO＿，NC＿，and COM＿pins of each switch are fault protected．

Internal Construction

Internal construction is shown in Figure 1，with the ana－ log signal paths shown in bold．A single NO switch is shown．The NC configuration is identical except the logic－level translator becomes an inverter．The analog switch is formed by the parallel combination of N －chan－ nel FET（N1）and P－channel FET（P1），which are driven on and off simultaneously according to the input fault condition and the logic－level state．

Normal Operation

Two comparators continuously compare the voltage on the COM＿，NO＿，and NC＿pins with V＋and V－．When the signal on $\mathrm{COM}_{-}, \mathrm{NO}_{-}$，or NC_{-}is between $\mathrm{V}+$ and V－，the switch acts normally，with FETs N1 and P1 turn－ ing on and off in response to $I N_{\text {＿}}$ signals．The parallel combination of N 1 and P 1 forms a low－value resistor between NO＿（or NC＿）and COM＿so that signals pass equally well in either direction．

Positive Fault Condition

When the signal on NO＿（or NC＿）and COM＿exceeds $\mathrm{V}+$ ，the high－fault comparator output is high，turning off FETs N1 and P1．This makes the NO＿（or NC＿）and COM＿pins high impedance regardless of the switch

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

state. If the switch state is off, all FETs are turned off and both NO_{-}(or NC_) and COM_ are high impedance.

Negative Fault Condition

When the signal on NO_{-}
(or NC_) and COM_ exceeds V-, the low-fault comparator output is high, turning off FETs N1 and P1. This makes the NO_ (or NC_) and COM_ pins high impedance regardless of the switch state. If the switch state is off, all FETs are turned off and both NO_ (or NC_) and COM_ are high impedance.

Transient Fault Response and Recovery When a fast rise-time and fall-time transient on $\mathrm{NO}_{\text {_ }}$, NC_, or COM_ exceeds V+ or V-, the output follows the input to the supply rail with only a few nanoseconds delay. This delay is due to the switch on-resistance and circuit capacitance to ground. When the input transient returns to within the supply rails, however, there is a longer output recovery time delay. For positive faults, the recovery time is typically $1 \mu \mathrm{~s}$. For negative faults, the recovery time is typically $0.6 \mu \mathrm{~s}$. These values depend on the output resistance and capacitance, and are not production tested or guaranteed. The delays are not dependent on the fault amplitude. Higher load resistance and capacitance increase recovery times.

Fault-Protection Voltage and Power Off The maximum fault voltage on the NO_{-}(or NC_{-}) and COM_ pins is $\pm 36 \mathrm{~V}$ with power applied and $\pm 40 \mathrm{~V}$ with power off.

Failure Modes

Exceeding the fault-protection voltage limits on $\mathrm{NO}_{\mathbf{\prime}}$, NC_, or COM_, even for very short periods, can cause the device to fail (see the Absolute Maximum Ratings). The failure modes may not be obvious, and failure in one switch may or may not affect other switches in the same package.

Ground
There is no galvanic connection between the analog signal paths and GND. The analog signal paths consist of an N-channel and P-channel MOSFET with their sources and drains paralleled and their gates driven out of phase to $\mathrm{V}+$ and V - by the logic-level translators. However, the potential of the analog signals must be defined or at least limited with respect to GND.
V+ and GND power the internal logic and logic-level translators and set the input logic thresholds. The logiclevel translators convert the logic levels to switched V_{+} and V - signals to drive the gates of the analog switches. This drive signal is the only connection between the power supplies and the analog signals.

Bipolar Supplies

The MAX312F/MAX313F/MAX314F operate with bipolar supplies between $\pm 4.5 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$. The $\mathrm{V}+$ and V - supplies need not be symmetrical, but their difference cannot exceed the absolute maximum rating of 44 V .

Single Supply

The MAX312F/MAX313F/MAX314F operate from a single supply between +9 V and +36 V when V - is connected to GND.

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX313FESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SO
MAX313FEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX314FESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SO
MAX314FEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP

Chip Information

TRANSISTOR COUNT: 251
PROCESS: CMOS
SUBSTRATE CONNECTED TO: V+

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Test Circuits/Timing Diagrams

Figure 1. Functional Diagram

Figure 2. Switch Turn-On/Turn-Off Times

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Figure 3. MAX314F Break-Before-Make Interval

Figure 4. Charge Injection

Figure 5. COM_, NO_, NC_ Capacitance

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Test Circuits/Timing Diagrams (continued)

MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AND OPEN AT SOCKET TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_AND OFF NO_OR NC_TERMINALS. ON-RESPONSE IS MEASURED BETWEEN COM_AND ON NO_OR NC_ TERMINALS. CROSSTALK IS MEASURED BETWEEN COM_TERMINALS WITH ALL SWITCHES ON. V- IS CONNECTED TO GND (OV) FOR SINGLE-SUUPPLY OPERATION.

Figure 6. Frequency Response, Off-Isolation, and Crosstalk
Pin Configurations (continued)

TOP VIEW

N.C. = NOT CONNECTED. SWITCHES SHOWN FOR LOGIC O INPUT. ALL SWITCHES ARE OFF WITH POWER REMOVED.

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
D	0.386	0.394	9.80	10.00
e	0.050	BSC	1.27	BSC
E	0.150	0.157	3.80	4.00
H	0.228	0.244	5.80	6.20
h	0.010	0.020	0.25	0.50
L	0.016	0.050	0.40	1.27
α	$0 ?$	$8 ?$	$0 ?$	$8 ?$

NDTES:

1. D\&E DI NGT INCLUDE MILD FLASH.
2. MILD FLASH OR PROTRUSIONS NUT TI EXCEED . 15 mm (.006")
3. CZNTROLLING DIMENSIDN: MILLIMETER
4. MEETS JEDEC MS-012 AC.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

