# +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers 


#### Abstract

General Description The MAX3171/MAX3173 are three-driver/three-receiver multiprotocol transceivers that operate from a single $+3.3 V$ supply. The MAX3171/MAX3173, along with the MAX3170 and MAX3172/MAX3174, form a complete software-selectable data terminal equipment (DTE) or data communications equipment (DCE) interface port that supports V. 28 (RS-232) and V.10/V. 11 (RS-449, V.36, EIA-530, EIA-530-A, X.21, RS-423) protocols. The MAX3171/MAX3173 transceivers carry the serial interface control signaling; the MAX3170 transceivers carry the clock and data signals. The MAX3172/ MAX3174 have an extra transceiver for applications requiring four transceivers for control signaling. An internal charge pump and proprietary low-dropout transmitter output stage allow V.28, V.11, and V. 10 compliant operation from a single +3.3 V supply. A nocable mode is entered when all mode pins (M0, M1, and M2) are pulled high or left unconnected. In nocable mode, supply current decreases to 2 mA and all transmitter and receiver outputs are disabled (high impedance). Short-circuit limiting and thermal-shutdown circuits protect the drivers against excessive power dissipation. The MAX3171 features $10 \mu$ s deglitching on the V.10/V.11/V. 28 receiver inputs. The MAX3173 is available for applications that do not require deglitching on the serial handshake signals. These parts require only four surface-mount capacitors for charge-pump operation in addition to supply bypassing.


## Features

- Industry's First +3.3V Multiprotocol Transceiver
- Certified TBR-1 and TBR-2 Compliant (NET1 and NET2)
- Supports V. 28 (RS-232) and V.10/V. 11 (RS-449, V.36, EIA-530, EIA-530-A, X.21, RS-423) Protocols
- 3V/5V Logic Compatibility
- Software-Selectable DCE/DTE
- True Fail-Safe Receiver Operation
- Available in Small 28-Pin SSOP Package
- 10 $\boldsymbol{~}$ s Receiver Input Deglitching (MAX3171 only)
- All Transmitter Outputs Fault Protected to $\pm 15 \mathrm{~V}$, Tolerate Cable Miswiring

Applications

Data Networking
PCI Cards
CSU and DSU
Telecommunications
Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE |
| :--- | :--- | :--- |
| MAX3171CAI | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 28 SSOP |
| MAX3173CAI | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 28 SSOP |

Pincebnfigutation appears at end of data sheet


## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers

## ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND unless otherwise noted.)
Supply Voltages

| $V_{C C}$ | -0.3 V to +4 V |
| :---: | :---: |
| V+ (Note 1) | -0.3 V to +7 V |
| $V$ - (Note 1) | +0.3 V to -7 V |
| V+ to V- (Note 1) | .13V |
| Logic Input Voltages |  |
| M0, M1, M2, DCE/DTE, T_IN | -0.3 V to +6 V |
| Logic Output Voltages |  |
| R_OUT | -0.3V to ( $\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ |
| Short-Circuit Duration | Continuous |

-0.3 V to +4 V
to +7 V
V- (Note 1) +0.3 V to -7 V .13 V
Logic Input Voltages
M0, M1, M2, DCE/DTE, T IN
-0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Short-Circuit Duration $\qquad$ Continuous

Transmitter Outputs
T_OUT_.............................................................-15V to +15V
Short-Circuit Duration .........................................................60s
Receiver Inputs
R_IN_............................................................-15V to +15 V
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
28-Pin SSOP (derate $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) $\ldots \ldots . .889 \mathrm{~mW}$ Operating Temperature Range

MAX3171CAI/MAX3173CAI
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) ................................ $300^{\circ} \mathrm{C}$

Note 1: $V+$ and $V$ - can have maximum magnitudes of 7 V , but their absolute difference cannot exceed 13 V .

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=3.3 V \pm 5 \% ; C 1=C 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=3.3 \mu \mathrm{~F}\right.$, and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}$ $\left.=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Note 2$)$

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC CHARACTERISTICS |  |  |  |  |  |  |
| Supply Current (DCE Mode, Digital Inputs = GND or VCC, Transmitter Outputs Static) | IcC | V.11/V. 10 modes |  | 220 | 300 | mA |
|  |  | V.11/V. 10 modes (no load) |  | 6 | 23 |  |
|  |  | V .28 mode |  | 24 | 40 |  |
|  |  | V .28 mode (no load) |  | 6 | 23 |  |
|  |  | No-cable mode |  | 2 | 8 |  |
| Internal Power Dissipation | PD | V.11/V. 10 modes (no load) |  | 20 |  | mW |
|  |  | V.11/V. 10 modes (full load) |  | 450 |  |  |
|  |  | V. 28 mode (full load) |  | 40 |  |  |
|  |  | No-cable mode |  | 6.6 |  |  |
| V+ Output Voltage | V+ | V.11/V. 10 modes (no load) | 4.4 |  |  | V |
|  |  | V.11/V. 10 modes (full load) | 4.2 |  |  |  |
|  |  | V .28 mode | 5.55 |  |  |  |
|  |  | No-cable mode |  | 4.6 |  |  |
| V- Output Voltage | V- | V.11/V. 10 modes (no load) |  |  | -4.0 | V |
|  |  | V.11/V. 10 modes (full load) |  |  | -3.8 |  |
|  |  | V .28 mode |  |  | -5.45 |  |
|  |  | No-cable mode |  | -4.2 |  |  |
| Charge-Pump Enable Time |  | Delay until V+ and V- specifications met |  | 1 |  | ms |
| LOGIC INPUTS (M0, M1, M2, DCE/DTE, T_IN) |  |  |  |  |  |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | 2.0 |  |  | V |
| Input Low Voltage | $\mathrm{V}_{\text {IL }}$ |  |  |  | 0.8 | V |
| Logic Input Current | $\mathrm{IIH}^{\text {I }} \mathrm{IL}$ | T_IN |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
|  |  | M0, M1, M2, DCE/ $\overline{\mathrm{DTE}}=\mathrm{V}_{C C}$ |  |  | $\pm 1$ |  |
|  |  | M0, M1, M2, DCE/ $\overline{\text { TTE }}=$ GND | 30 | 50 | 100 |  |

## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers

ELECTRICAL CHARACTERISTICS (continued)
( $V_{C C}=3.3 \mathrm{~V} \pm 5 \% ; C 1=C 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=3.3 \mu \mathrm{~F}$, and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}$

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOGIC OUTPUTS (R_OUT) |  |  |  |  |  |  |  |
| Output High Voltage | VOH | ISOURCE $=1.0 \mathrm{~mA}$ |  | VCC - 1.0 |  |  | V |
| Output Low Voltage | VOL | ISINK $=1.6 \mathrm{~mA}$ |  |  |  | 0.4 | V |
| Rise or Fall Time | $t r r, ~_{\text {t }}$ | 10\% to 90\%, Figure 4 |  | 15 |  |  | ns |
| Output Leakage Current (Receiver Output Three-Stated) |  | R_OUT = GND |  | 30 | 50 | 100 | $\mu \mathrm{A}$ |
|  |  | R_OUT $=$ VCC |  |  |  | $\pm 1$ |  |
| TRANSMITTER OUTPUTS |  |  |  |  |  |  |  |
| Output Leakage Current | Iz | $-0.25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+0.25 \mathrm{~V}$, power off or no-cable mode |  | -100 |  | 100 | $\mu \mathrm{A}$ |
| Data Rate |  | V. 28 |  | 240 |  |  | kbps |
|  |  | V. 10 |  | 115 |  |  |  |
|  |  | V. 11 |  | 10 |  |  | Mbps |
| Receiver Glitch Rejection (MAX3171 only) |  | Minimum pulse width passed |  | 5 |  |  | $\mu \mathrm{S}$ |
|  |  | Minimum pulse width rejected |  |  | 15 |  |  |
| Receiver Input Resistance | RIN | $-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{AB}} \leq+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}$ or $\mathrm{V}_{\mathrm{B}}$ grounded, V.11/V.35, no-cable mode |  | $20 \quad 40$ |  | 7 | K $\Omega$ |
|  |  | $-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+15 \mathrm{~V}, \mathrm{~V} .28$ mode |  | 3 | 5 |  |  |
| Data Rate |  | MAX3171 | V.10/V. 28 |  | 64 |  | kbps |
|  |  |  | V. 11 |  | 64 |  |  |
|  |  | MAX3173 | V.10/V. 28 |  | 240 |  |  |
|  |  |  | V. 11 | 10 |  |  | Mbps |
| V.11 TRANSMITTER |  |  |  |  |  |  |  |
| Unloaded Differential Output Voltage | VODO | $R=1.95 \mathrm{k} \Omega$, Figure 1 |  | 4.0 |  | 6.0 | V |
| Loaded Differential Output Voltage | VODL | $R=50 \Omega$, Figure 1 |  | $0.5 \times \mathrm{V}$ ODO |  |  | V |
| Change in Magnitude of Output Differential Voltage | $\Delta \mathrm{V}_{\mathrm{OD}}$ | $\mathrm{R}=50 \Omega$, Figure 1 |  |  |  | 0.2 | V |
| Common-Mode Output Voltage | Voc | $R=50 \Omega$, Figure 1 |  |  |  | 3.0 | V |
| Change in Magnitude of Output Common-Mode Voltage | $\Delta \mathrm{VOC}$ | $\mathrm{R}=50 \Omega$, Figure 1 |  |  |  | 0.2 | V |
| Short-Circuit Current | ISC | T_OUTA/B = GND |  |  | 60 | 150 | mA |
| Rise or Fall Time | tr, tf | 10\% to 90\%, Figure 2 |  |  | 10 | 25 | ns |
| Transmitter Input to Output | tPHL, tPLH | Figure 2 |  |  | 50 | 80 | ns |
| Data Skew | tPHL - tpLH | Figure 2 |  |  | 2 | 10 | ns |
| Output-to-Output Skew | tSkEW | Figure 2 |  | 2 |  |  | ns |
| Channel-to-Channel Skew |  |  |  |  | 2 |  | ns |
| V. 11 RECEIVER |  |  |  |  |  |  |  |
| Differential Threshold Voltage | $\mathrm{V}_{\text {TH }}$ | $-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+7 \mathrm{~V}$ |  | -200 | -100 | -25 | mV |
| Input Hysteresis | $\Delta V_{\text {TH }}$ | $-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$ |  | 5 | 15 |  | mV |

## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 5 \%\right.$; $\mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=3.3 \mu \mathrm{~F}$, and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}$ $=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Receiver Input to Output | tPHL, tPLH | MAX3171 | 5 | 10 | 15 | $\mu \mathrm{s}$ |
|  |  | MAX3173 |  | 60 | 120 | ns |
| Data Skew | \| tPHL - tplh | | MAX3171 |  | 0.5 | 4 | $\mu \mathrm{s}$ |
|  |  | MAX3173 |  | 5 | 16 | ns |
| V. 10 TRANSMITTER |  |  |  |  |  |  |
| Unloaded Output Voltage | VODO | $R \mathrm{~L}=3.9 \mathrm{k} \Omega$, Figure 3 | $\pm 4.0$ | $\pm 4.4$ | $\pm 6.0$ | V |
| Loaded Output Voltage Swing | VODL | $R \mathrm{~L}=450 \Omega$, Figure 3 | $\begin{gathered} 0.9 \times \\ \text { VODO } \end{gathered}$ |  |  | V |
| Short-Circuit Current | ISC | T_OUTA = GND |  | $\pm 100$ | $\pm 150$ | mA |
| Transmitter Rise or Fall Time | $\mathrm{tr}_{\text {, }}^{\text {tf }}$ | $R_{L}=450 \Omega, C_{L}=100 \mathrm{pF}$, Figure 3 |  | 2 |  | $\mu \mathrm{s}$ |
| Transmitter Input to Output | tPHL, tPLH | $R_{L}=450 \Omega, C_{L}=100 \mathrm{pF}$, Figure 3 |  | 2 |  | $\mu \mathrm{s}$ |
| Data Skew | $\mid$ tphL-tPLH $\mid$ | $R_{L}=450 \Omega, C_{L}=100 p F$, Figure 3 |  | 50 |  | ns |
| V. 10 RECEIVER |  |  |  |  |  |  |
| Threshold Voltage | $V_{\text {TH }}$ |  | +25 | +100 | +300 | mV |
| Input Hysteresis | $\Delta \mathrm{V}_{\text {TH }}$ |  |  | 15 |  | mV |
| Receiver Input to Output | tPHL, tPLH | MAX3171, Figure 4 | 5 | 10 | 15 | $\mu \mathrm{s}$ |
|  |  | MAX3173, Figure 4 |  | 60 | 120 | ns |
| Data Skew | $\mid$ tPHL-tPLH $\mid$ | MAX3171, Figure 4 |  | 0.5 | 4 | $\mu \mathrm{s}$ |
|  |  | MAX3173, Figure 4 |  | 5 | 16 | ns |
| V. 28 TRANSMITTER |  |  |  |  |  |  |
| Output Voltage Swing | Vo | All transmitters loaded with $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ | $\pm 5.0$ | $\pm 5.4$ |  | V |
|  |  | No load |  |  | $\pm 6.5$ |  |
| Short-Circuit Current | ISC | T_OUTA = GND |  | $\pm 25$ | $\pm 60$ | mA |
| Output Slew Rate | SR | $R_{L}=3 \mathrm{k} \Omega, C_{L}=2500 \mathrm{pF}$, measured from +3 V to -3 V or from -3 V to +3 V , Figure 3 | 4 |  | 30 | V/us |
|  |  | $R_{L}=7 \mathrm{k} \Omega, C_{L}=150 \mathrm{pF}$, measured from +3 V to -3 V or from -3 V to +3 V , Figure 3 | 6 |  | 30 |  |
| Transmitter Input to Output | tPHL, tPLH | Figure 3 |  | 1 |  | $\mu \mathrm{s}$ |
| Data Skew | $\mid$ tPHL- tPLH $\mid$ | Figure 3 |  | 100 |  | ns |
| V. 28 RECEIVER |  |  |  |  |  |  |
| Input Threshold Low | $\mathrm{V}_{\text {IL }}$ |  |  |  | 0.8 | V |
| Input Threshold High | $\mathrm{V}_{\mathrm{IH}}$ |  | 2.0 |  |  | V |
| Input Hysteresis | VHYS |  |  | 0.5 |  | V |
| Propagation Delay | tPLH, tPHL | MAX3171, Figure 4 | 5 | 10 | 15 | $\mu \mathrm{s}$ |
|  |  | MAX3173, Figure 4 |  | 200 |  |  |
| Data Skew | $\|\mathrm{tPHL}-\mathrm{tPLH}\|$ | MAX3171, Figure 4 | 0.5 |  | 4.0 | $\mu \mathrm{s}$ |
|  |  | MAX3173, Figure 4 |  | 100 |  | ns |

Note 2: V+ and V- are also used to supply the MAX3172/MAX3174. The MAX3171/MAX3173 are tested with additional current load on $\mathrm{V}+$ and V - to capture the effect of loading from the MAX3172/MAX3174 in all operation modes.

# +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers 

## Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1.0 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=3.3 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

V. 28 LOADED OUTPUT VOLTAGE vs. TEMPERATURE

V. 28 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE

V. 28 MODE SUPPLY CURRENT vs. DATA RATE

V. 10 LOADED OUTPUT VOLTAGE
vs. TEMPERATURE

V. 28 SLEW RATE
vs. LOAD CAPACITANCE

V. 11 LOADED DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE

V.10/N. 11 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE

V. 10 TRANSMITTER RISE AND FALL TIMES vs. LOAD CAPACITANCE


## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers



Test Circuits


Figure 1. V. 11 DC Test Circuit


Figure 2. V. 11 AC Test Circuit

## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceiver

Test Circuits (continued)


Figure 3. V.10/V. 28 Driver Test Circuit


Figure 4. V.10/V. 28 Receiver Test Circuit

Pin Description

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| 1 | V+ | Positive Supply Generated by the Charge Pump (connect to V+ pin of MAX3172/MAX3174). Bypass V+ to ground with a $3.3 \mu \mathrm{~F}$ ceramic capacitor. |
| 2 | C2+ | Positive Terminal of the Inverting Charge-Pump Capacitor. Connect C2+ to C2- with a $1 \mu \mathrm{~F}$ ceramic capacitor. |
| 3 | C2- | Negative Terminal of the Inverting Charge-Pump Capacitor. Connect C2+ to C2- with a $1 \mu \mathrm{~F}$ ceramic capacitor. |
| 4 | V- | Negative Supply Generated by the Charge Pump (connect to V- pin of MAX3172/MAX3174). Bypass V- to ground with a $3.3 \mu \mathrm{~F}$ ceramic capacitor. |
| 5, 6, 7 | T_IN | Transmitter CMOS Inputs (T1IN, T2IN, T3IN) |
| 8, 9, 10 | R_OUT | Receiver CMOS Outputs (R1OUT, R2OUT, R3OUT) |
| 11, 12, 13 | M_ | Mode Select Inputs (M0, M1, M2). Internally pulled up to $V_{C C}$. See Table 1 for detailed information. |
| 14 | DCE/DTE | DCE/DTE Mode Select Input. Logic level high selects DCE interface; logic level low selects DTE interface. Internally pulled up to VCC. |
| 15, 18 | R_INB | Noninverting Receiver Inputs (R31NB, R2INB) |
| 16, 17 | R_INA | Inverting Receiver Inputs (R3INA, R2INA) |
| 19 | T3OUTB/R1INB | Noninverting Transmitter Output/Noninverting Receiver Input |
| 20 | T3OUTA/R1INA | Inverting Transmitter Output/Inverting Receiver Input |
| 21, 23 | T_OUTB | Noninverting Transmitter Outputs (T2OUTB, T1OUTB) |
| 22, 24 | T_OUTA | Inverting Transmitter Outputs (T2OUTA, T1OUTA) |
| 25 | C1- | Negative Terminal of the Voltage-Doubler Charge-Pump Capacitor. Connect C1+ to C1- with a $1 \mu \mathrm{~F}$ ceramic capacitor. |
| 26 | GND | Ground |
| 27 | $V_{C C}$ | +3.3 V Supply Voltage ( $\pm 5 \%$ ). Bypass $\mathrm{V}_{C C}$ to ground with a $3.3 \mu \mathrm{~F}$ ceramic capacitor. |
| 28 | C1+ | Positive Terminal of the Voltage-Doubler Charge-Pump Capacitor. Connect C1+ to C1- with a $1 \mu \mathrm{~F}$ ceramic capacitor. |

## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers

Table 1. Mode Selection

| PROTOCOL | LOGIC INPUTS |  |  |  | TRANSMITTERS |  |  | RECEIVERS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M2 | M1 | M0 | DCE/ $/$ DTE | T1 | T2 | T3 | R1 | R2 | R3 |
| V. 11 | 0 | 0 | 0 | 0 | V. 11 | V. 11 | Z | V. 11 | V. 11 | V. 11 |
| RS-530A | 0 | 0 | 1 | 0 | V. 11 | V. 10 | Z | V. 11 | V. 10 | V. 11 |
| RS-530 | 0 | 1 | 0 | 0 | V. 11 | V. 11 | Z | V. 11 | V. 11 | V. 11 |
| X. 21 | 0 | 1 | 1 | 0 | V. 11 | V. 11 | Z | V. 11 | V. 11 | V. 11 |
| V. 35 | 1 | 0 | 0 | 0 | V. 28 | V. 28 | Z | V. 28 | V. 28 | V. 28 |
| RS-449/V. 36 | 1 | 0 | 1 | 0 | V. 11 | V. 11 | Z | V. 11 | V. 11 | V. 11 |
| V.28/RS-232 | 1 | 1 | 0 | 0 | V. 28 | V. 28 | Z | V. 28 | V. 28 | V. 28 |
| No cable | 1 | 1 | 1 | 0 | Z | Z | Z | Z | Z | Z |
| V. 11 | 0 | 0 | 0 | 1 | V. 11 | V. 11 | V. 11 | Z | V. 11 | V. 11 |
| RS-530A | 0 | 0 | 1 | 1 | V. 11 | V. 10 | V. 11 | Z | V. 10 | V. 11 |
| RS-530 | 0 | 1 | 0 | 1 | V. 11 | V. 11 | V. 11 | Z | V. 11 | V. 11 |
| X. 21 | 0 | 1 | 1 | 1 | V. 11 | V. 11 | V. 11 | Z | V. 11 | V. 11 |
| V. 35 | 1 | 0 | 0 | 1 | V. 28 | V. 28 | V. 28 | Z | V. 28 | V. 28 |
| RS-449/V. 36 | 1 | 0 | 1 | 1 | V. 11 | V. 11 | V. 11 | Z | V. 11 | V. 11 |
| V.28/RS-232 | 1 | 1 | 0 | 1 | V. 28 | V. 28 | V. 28 | Z | V. 28 | V. 28 |
| No cable | 1 | 1 | 1 | 1 | Z | Z | Z | Z | Z | Z |

$Z=$ High impedance


Figure 5. Charge-Pump Connections

## Detailed Description

The MAX3171/MAX3173 are three-driver/three-receiver multiprotocol transceivers that operate from a single $+3.3 V$ supply. The MAX3171/MAX3173, along with the MAX3170 and MAX3172/MAX3174, form a complete software-selectable DTE or DCE interface port that supports the V. 28 (RS-232), V.10/V. 11 (RS-449, V.36, EIA530 , EIA-530-A, X.21, RS-423), and V. 35 protocols. The MAX3171/MAX3173 carry the control signals, while the MAX3170 transceiver carries the high-speed clock and data signals. The MAX3172/MAX3174 provide termination for the clock and data signals and have an extra transceiver for applications requiring four transceivers for control handshaking.

The MAX3171/MAX3173 feature a 2mA no-cable mode, true fail-safe operation, and thermal shutdown circuitry. Thermal shutdown protects the drivers against excessive power dissipation. When activated, the thermal shutdown circuitry places the driver outputs into a highimpedance state.

## Mode Selection

The state of mode select pins M0, M1, and M2 determines which serial interface protocol is selected (Table 1). The state of the DCE/DTE input determines whether the transceivers will be configured as a DTE serial port or a DCE serial port. When the DCE/DTE input is logic HIGH, driver T3 is activated and receiver R1 is disabled. When the DCE/DTE input is logic LOW, driver T3 is disabled and receiver R1 is activated. M0, M1, M2, and DCE/DTE are internally pulled up to $V_{C C}$ to ensure logic HIGH if left unconnected.
The MAX3171/MAX3173's mode can be selected through software control of the M0, M1, M2, and DCE/DTE inputs. Alternatively, the mode can be selected by shorting the appropriate combination of mode control inputs to GND (the inputs left floating will be internally pulled up to $\mathrm{V}_{\mathrm{C}}$ ). If the $\mathrm{M} 0, \mathrm{M} 1$, and M 2 mode inputs are all unconnected, the MAX3171/ MAX3173 will enter no-cable mode.

# +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceiver 


#### Abstract

No-Cable Mode The MAX3171/MAX3173 enter no-cable mode when the mode select pins are left unconnected or tied HIGH ( $\mathrm{M} 0=\mathrm{M} 1=\mathrm{M} 2=1$ ). In this mode, the multiprotocol drivers and receivers are disabled and the supply current is less than 8 mA . The receiver outputs enter a highimpedance state in no-cable mode, which allows these output lines to be shared with other receivers (the receiver outputs have an internal pullup resistor to pull the outputs HIGH if not driven). Also, in no-cable mode, the transmitter outputs enter a high-impedance state, so these output lines can be shared with other devices.


## Dual Charge-Pump Voltage Converter

The MAX3171/MAX3173 internal power supply consists of a regulated dual charge pump that provides positive and negative output voltages from a +3.3 V supply. The charge pump operates in discontinuous mode: If the output voltage is less than the regulated voltage, the charge pump is enabled; if the output voltage exceeds the regulated voltage, the charge pump is disabled. Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the $V+$ and $V$ - supplies. See Figure 5 for charge-pump connections.
The charge pump is designed to supply $V+$ and $V$ power to the MAX3172/MAX3174 in addition to the MAX3171/MAX3173 internal transceivers. Connect the MAX3172/MAX3174 $\mathrm{V}+$ and V - terminals to the MAX3171/MAX3173 V+ and V- terminals, respectively.

Fail-Safe
The MAX3171/MAX3173 guarantee a logic HIGH receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with drivers disabled. The V. 11 receiver threshold is set between -25 mV and -200 mV to guarantee fail-safe operation. If the differential receiver input voltage ( $B-A$ ) is $\geq-25 m V$, R_OUT is logic HIGH. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage is pulled to 0 by the termination. With the MAX3171/MAX3173 receiver thresholds, this results in R_OUT logic HIGH with a 25 mV (min) noise margin.
The V .10 receiver threshold is set between +25 mV and +300 mV . If the V .10 receiver input voltage is $\leq+25 \mathrm{mV}$, ROUT is logic HIGH. The V. 28 receiver threshold is set between 0.8 V and 2.0 V . If the receiver input voltage is $\leq 0.8 \mathrm{~V}$, ROUT is logic HIGH. In the case of a terminated bus with transmitters disabled, the V.10/V. 28 receiver's input voltage is pulled to ground by the termination. With the MAX3172/MAX3174 receiver thresholds, this results in R_OUT logic HIGH.

## Applications Information

Capacitor Selection
The capacitors used for the charge pumps, as well as the supply bypassing, should have a low-ESR and lowtemperature coefficient. Multilayer ceramic capacitors with an X7R dielectric offer the best combination of performance, size, and cost. The flying capacitors (C1, C2) should have a value of $1 \mu \mathrm{~F}$, while the reservoir capacitors (C3, C4) and bypass capacitor (C5) should have a minimum value of $3.3 \mu \mathrm{~F}$ (Figure 5). To reduce the ripple present on the transmitter outputs, capacitors C3, C4, and C5 can be increased. Do not increase the value of C1 and C2.

## Local Loopback Control Signal

 For applications that require the use of local loopback (LL) signal routing, an extra transceiver is available for use on the MAX3172/MAX3174 multiprotocol termination network device.Cable-Selectable Mode Figure 6 shows a cable-selectable mulitprotocol interface. The mode control lines (M0, M1, M2, and DCE/DTE) are wired to the DB-25 connector. To select the serial interface mode, the appropriate combinations of M0, M1, M2, and DCE/DTE are grounded within the cable wiring. The control lines that are not grounded are pulled high by the internal pullups on the MAX3170. The serial interface protocol of the MAX3171/MAX3173 (MAX3170 and MAX3172/MAX3174) is now selected based on the cable connected to the DB-25 interface.

## V. 11 (RS-422) Interface

As shown in Figure 7, the V. 11 protocol is a fully balanced differential interface. The V. 11 driver generates $\pm 2 \mathrm{~V}$ (min) between nodes $A$ and $B$ when $100 \Omega$ (min) resistance is presented at the load. The V. 11 receiver is sensitive to $\pm 200 \mathrm{mV}$ differential signals at the receiver inputs $A^{\prime}$ and $B^{\prime}$. The $V .11$ receiver input must comply with the impedance curve of Figure 8 and reject com-mon-mode signals up to $\pm 7 \mathrm{~V}$ developed across the cable (referenced from C to $\mathrm{C}^{\prime}$ in Figure 7).
The MAX3171/MAX3173 V. 11 mode receiver has a differential threshold between -200 mV and -25 mV to ensure that the receiver has proper fail-safe operation (see Fail-Safe). To aid in rejecting system noise, the MAX3171/MAX3173 V .11 receiver has a 15 mV (typ) hysteresis. Switch S3 in Figure 9 is open in V. 11 mode to disable the $\mathrm{V} .285 \mathrm{k} \Omega$ termination at the inverting receiver input. Because the control signals are slow ( 64 kbps ), $100 \Omega$ termination resistance is generally not required for the MAX3171/MAX3173.

## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers



Figure 6. Cable-Selectable Multiprotocol DCE/DTE Port


Figure 7. Typical V. 11 Interface

## V. 10 Interface

The V. 10 interface (Figure 10) is an unbalanced singleended interface capable of driving a $450 \Omega$ load. The V .10 driver generates a $\pm 4 \mathrm{~V}$ (min) VodO voltage across $A^{\prime}$ and $C^{\prime}$ when unloaded and a minimum of $\pm 0.9 \times$ VODO voltage with a $450 \Omega$ load. The V. 10 receiver input trip threshold is defined between +300 mV and -300 mV with the input impedance characteristic shown in Figure 8.
The MAX3171/MAX3173 V. 10 mode receiver has a threshold between +25 mV and +300 mV to ensure that the receiver has proper fail-safe operation (see Fail-

## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceiver



Figure 8. Receiver Input Impedance Curve


Figure 9. V. 11 Termination and Internal Resistance Networks


Figure 10. Typical V.10/N. 28 Interface


Figure 11. V. 10 Internal Resistance Network


Figure 12. V. 28 Termination and Internal Resistance Networks

## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers


Figure 13. Multiprotocol DCE/ $\overline{D T E}$ Port

Safe). To aid in rejecting system noise, the MAX3171/MAX3173 V. 10 receiver has 15 mV (typ) hysteresis. Switch S3 in Figure 11 is open in V. 10 mode to disable the $5 \mathrm{k} \Omega \mathrm{V} .28$ termination at the receiver input. Switch S4 is closed, and switch S5 is open to internally ground the receiver B input.

## V. 28 Interface

The V .28 interface is an unbalanced single-ended interface (Figure 12). The V. 28 generator provides $\pm 5 \mathrm{~V}$ $(\mathrm{min})$ across the load impedance between $\mathrm{A}^{\prime}$ and $\mathrm{C}^{\prime}$. The V. 28 standard specifies input trip points at $\pm 3 \mathrm{~V}$.
The MAX3171/MAX3173 V. 28 mode receiver has a threshold between +0.8 V and +2.0 V to ensure that the receiver has proper fail-safe operation (see Fail-Safe). To aid in rejecting system noise, the MAX3171/MAX3173 V. 28 receiver has a 500 mV (typ) hysteresis. Switch S3 in

Figure 12 is closed in V .28 mode to enable the $5 \mathrm{k} \Omega \mathrm{V} .28$ termination at the receiver input.

Receiver Glitch Rejection
To facilitate operation in an unterminated or otherwise noisy system, the MAX3171 features $10 \mu$ s of receiver input glitch rejection in V.10, V.11, and V. 28 modes. The glitch rejection circuitry blocks the reception of high-frequency noise ( $\mathrm{t}_{\mathrm{B}}<5 \mu \mathrm{~s}$ ) while receiving a lowfrequency signal ( $\mathrm{t}_{\mathrm{B}}>15 \mu \mathrm{~s}$ ), allowing glitch-free operation in unterminated systems at up to 64 kbps . The MAX3173 does not have this feature and can be operated at data rates up to 240 kbps if properly terminated.

DTE vs. DCE Operation
Figure 13 shows a DCE or DTE controller-selectable interface. The DCE/DTE input switches the port's mode of operation. A logic high selects DCE, which enables

## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceiver



Figure 14. DCE-to-DTE X. 21 Interface
driver 3 on the MAX3171/MAX3173, driver 3 on the MAX3170, and driver 4 on the MAX3172/MAX3174. A logic low selects DTE, which enables receiver 1 on the MAX3171/MAX3173, receiver 1 on the MAX3170, and receiver 4 on the MAX3172/MAX3174.

This application requires only one DB-25 connector. See Figure 13 for complete signal routing in DCE and DTE modes. For example, driver 3 routes the DCD (DCE) signal to pins 22 and 6 in DCE mode, while in DTE mode, receiver 1 routes pins 22 and 6 to DCD (DTE).

Complete Multiprotocol X. 21 Interface Figure 14 shows a complete DCE-to-DTE interface operating in X. 21 mode. The MAX3171/MAX3173 generate the control signals, and the MAX3170 is used to generate the clock and data signals. The MAX3172/ MAX3174 generate local loopback and are used to terminate the clock and data signals to support the V. 11 protocol for cable termination. The control signals do not need external termination.

## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceivers

Compliance Testing
A European Standard EN 45001 test report is available for the MAX3170-MAX3174 chipset. A copy of the test report will be available from Maxim.

## Chip Information

TRANSISTOR COUNT: 1763
PROCESS: BiCMOS

Pin Configuration


## +3.3V Multiprotocol 3Tx/3Rx Software-Selectable Control Transceiver

Package Information


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface - Specialised category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
CY7C910-51LMB MC33689DPEWR2 MC33975ATEKR2 MEC1632-AUE NVT4555UKZ RKSAS4 HMC677G32 LPC47N207-JV FTP637DSL633R SM712GX04LF04-BA MC33689DPEW PCA9704PWJ MCW1001A-I/SS HOA6241-001 SC74HC4066ADTR2G AS3935BQFT NCN5120MNTWG NCN5150DR2G NCN8025MTTBG C100N50Z4A DG407AK/883B SRT2-ATT01 TDA8035HN/C1/S1J LTC1694CS5\#TRMPBF TLE9221SXXUMA2 DS90UB947TRGCRQ1 NCS2300MUTAG HMC677LP5E HMC677LP5ETR LTC1756EGN\#PBF LTC1955EUH\#PBF LT3669EUFD-2\#PBF MXL1543BCAI MAX3170CAI+ XL1192D TLE9221SX CP82C59AZ KTU1109EFAA-TR CH368L LTC1694CS5\#TRPBF LTC1694IS5\#TRM LTS 25-NP 73S8024RN-20IMF 73S8024RN-IL/F 78P2352-IGT/F $\underline{\text { DS2406+ }} \underline{\text { DS2413P+ DS2413P+T\&R DS28E17Q+ DS8113-RNG+ }}$

