Evaluates: MAX3223E

General Description

The MAX3223E evaluation kit (EV kit) provides a proven design to evaluate the MAX3223E 1 μ A supply current, 1Mbps, 3.0V to 5.5V, RS-232 transceivers with AutoShutdownTM.

The MAX3223E EV kit PCB comes with a MAX3223EEUP+ installed.

AutoShutdown is a trademark of Maxim Integrated Products,

Features

- Single-Supply Operation
- 6-Pin Signal Header
- DCE-Connected DB9 Socket
- Digital Loopbacks
- RS-232 Loopbacks
- Hardware Handshake Loopbacks
- Lead(Pb)-Free and RoHS Compliant
- Proven PCB Layout
- Fully Assembled and Tested

Ordering Information

PART	TYPE	
MAX3223EEVKIT+	EV Kit	

+Denotes lead(Pb)-free and RoHS compliant.

DESIGNATION	QTY	DESCRIPTION
LED1, LED2	2	Red LEDs (0805)
R1, R2	2	470Ω ±5% resistors (0603)
U1	1	±15kV ESD-protected, 1μA, 3.0V to 5.5V, 250kbps, RS-232 transceiver with AutoShutdown (20 TSSOP) Maxim MAX3223EEUP+
—	11	Shunts
_	1	DB9 I/O extension cable, 6ft
	1	PCB: MAX3223E Evaluation Kit+

Component List

Inc.

DESIGNATION	QTY	DESCRIPTION
C1–C5	5	0.1µF ±10%, 16V X7R ceramic capacitors (0603) TDK C1608X7R1C104K
C6	1	10μF ±20%, 16V X5R ceramic capacitor (1206) Murata GRM31CR61C106M
H1, H2	2	10-pin headers
H3	1	6-pin header
J1	1	DB9 female right-angle receptacle
JU1, JU2, JU3, JU5–JU8	7	3-pin headers
JU4, JU9, JU10, JU11	4	2-pin headers

Component Suppliers

SUPPLIER	WEBSITE
Murata Electronics, North America, Inc.	www.murata-northamerica.com
TDK Corp.	www.component.tdk.com

Note: Indicate that you are using the MAX3223E when contacting these component suppliers.

Evaluates: MAX3223E

Quick Start—Digital Loopback

Required Equipment

- MAX3223E EV kit (DB9 I/O extension cable included)
- A user-supplied Windows[®] 2000/XP- or Windows Vista[®]-compatible PC with a spare RS-232 serial port
- 3.3V DC power supply

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

Procedure

The MAX3223E EV kit is fully assembled and tested. Follow the steps below to verify board operation. This procedure is written for one particular terminal emulator (RealTerm version 2.0.0.57), but any terminal emulation software should work.

- Visit <u>www.maximintegrated.com/evkitsoftware</u> to download the latest version of the EV kit software, 3223Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file. The EV kit software consists of the free, open-source terminal emulator, RealTerm (also available from http://realterm.sourceforge.net).
- 2) Verify that all jumpers (JU1–JU11) are in their default positions, as shown in Table 1.
- 3) Connect the 3.3V DC power supply between the VCC and GND pads on EV kit.
- 4) Connect the DB9 I/O extension cable between the EV kit and the computer's serial port.
- 5) Start the RealTerm software by opening its icon in the <u>Start | Programs</u> menu. The RealTerm software main window appears, as shown in Figure 1. Note: If the serial cable is connected to a serial port other than COM1, then bring up the **Port** tab and open the corresponding serial port.
- 6) Install a shunt across jumper JU1 pins 2-3 to enable normal operation.
- 7) Install a shunt across jumper JU9 pins 1-2 to enable digital loopback.
- 8) Enable the 3.3V DC power supply.
- 9) In the RealTerm window, click in the display area and type on the keyboard. The digital loopback connection immediately relays each character from the receiver to the transmitter, so each character typed on the keyboard appears in the display area.

- 10) Move the JU1 shunt to pins 1-2 to disable the MAX3223E.
- 11) In the RealTerm window, click in the display area and type on the keyboard. With the MAX3223E disabled, characters typed on the keyboard do not appear in the display area.

Quick Start—External Microcontroller

Required Equipment

Before beginning, the following equipment is needed:

- MAX3223E EV kit (DB9 I/O extension cable included)
- A user-supplied Windows 2000/XP- or Windows Vista-compatible PC with a spare RS-232 serial port
- 3.3V DC power supply
- A user-supplied microcontroller, such as MAXQ2000EVKIT or DS89C450-K00

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

Procedure

The MAX3223E EV kit is fully assembled and tested. Follow the steps below to verify board operation. This procedure is written for one particular terminal emulator (RealTerm version 2.0.0.57), but any terminal emulation software should work.

- Visit <u>www.maximintegrated.com/evkitsoftware</u> to download the latest version of the EV kit software, 3223Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file. The EV kit software consists of the free, open-source terminal emulator, RealTerm (also available from http://realterm.sourceforge.net).
- 2) Verify that all jumpers (JU1–JU11) are in their default positions, as shown in Table 1.
- 3) Connect the 3.3V DC power supply between the VCC and GND pads on EV kit.
- 4) Connect the DB9 I/O extension cable between the EV kit and the computer's serial port.
- 5) Start the RealTerm software by opening its icon in the <u>Start | Programs</u> menu. The RealTerm software main window appears, as shown in Figure 1. Note: If the serial cable is connected to a serial port other than COM1, then bring up the **Port** tab and open the corresponding serial port.

Windows and Windows Vista are registered trademarks of Microsoft Corp.

Evaluates: MAX3223E

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
11.14		1-2	EN = VCC
J01			ĒN = GND
	FORCEON	1-2*	FORCEON = VCC
JU2	FURCEON	2-3	FORCEON = GND
1112	FORCEOFE	1-2*	FORCEOFF = VCC
303	FURCEUFF	2-3	FORCEOFF = GND
		1-2*	INVALID drives LED2
JU4	INVALID	Open	INVALID is not connected to LED2
		1-2*	R2IN is driven by DTRIN from connector J1
JU5	R2IN	2-3	R2IN is driven by RTSIN from connector J1
		Open	R2IN is not connected to J1
	DODOLIT	1-2*	DCDOUT drives DTRIN from connector J1
J06	DCDOUT	2-3	DCDOUT drives T2OUT from U1
11.17		1-2*	DSROUT drives DTRIN from connector J1
307	DSROUT	2-3	DSROUT drives T2OUT from U1
11.10	CTEOUT	1-2*	CTSOUT drives RTSIN from connector J1
300	013001	2-3	CTSOUT drives T2OUT from U1
JU9	T1IN	1-2	T1IN is driven by R1OUT from U1. Data received from RS-232 side loops back at digital connection.
	соорраск	Open*	T1IN is not connected to R1OUT
JU10 T2IN	T2IN	1-2	T2IN is driven by R2OUT from U1. Handshake received from RS-232 side loops back at digital connection.
	соорраск	Open*	T2IN is not connected to R2OUT
JU11	RS232 Loopback	1-2	R1IN is driven by T1OUT from U1. Data received from digital side loops back at RS-232 connection.
		Open*	R1IN is not connected to T1OUT

Table 1. MAX3223E EV Kit Jumper Descriptions (JU1–JU11)

*Default position.

- 6) Install a shunt across jumper JU1 pins 2-3 to enable normal operation.
- 7) Enable the 3.3V DC power supply.
- 8) Connect the microcontroller's 3.3V bus to the EV kit header's H3 VCC (H3-1) pin.
- 9) Connect the microcontroller's UART RXD input to the EV kit header's H3 R1OUT (H3-2) output.
- 10) Connect the microcontroller's UART TXD output to the EV kit header's H3 T1IN (H3-3) input.
- 11) Connect the microcontroller's ground return to the EV kit header's H3 GND (H3-6) pin.
- 12) In the RealTerm window, click in the display area and type on the keyboard. Characters typed from the keyboard are sent to the microcontroller UART. Characters sent by the microcontroller UART are displayed in the terminal window.

Detailed Description of Hardware

The MAX3223E EV kit provides a proven layout for the MAX3223E. Capacitors C1–C4 are used by the charge pump to generate the internal V+ and V- supplies from VCC. Capacitors C5 and C6 bypass the VCC supply. Header H3 provides the digital connections to the MAX3223E. Jumpers JU1, JU2, and JU3 control the

TICK here insid	le the terminal windo	w then type from the	keyboard. 🕅	
Display Port Captur	e Pins Send EchoPort I	2C I2C-2 I2CMisc Misc		n Clear Freeze
			-	
				Status
<u>B</u> aud 57600 ▼ <u>P</u> ort	1	Open Spy		Status
<u>B</u> aud 57600 ▼ Port	1	Open Spy Change Software Flow Control		Status Connected RXD (2)
Baud 57600 ▼ Port Parity Data Bit: None ● 8 bit:	1 ▼ s Stop Bits s 1 bit C 2 bits	<u>Open</u> <u>Spy</u> <u>✓ Change</u> Software Flow Control Receive Xon Char: 17		Status Connected RXD (2) TXD (3) CTS (8)
Baud 57600 ▼ Port Parity Data Bit: © None © 8 bit: © Odd © 7 bit: © Even © 4 bit:	1 s Stop Bits • 1 bit	Open Spy ✓ Change Software Flow Control Receive Xon Char: 17 ■ Transmit Xoff Char: 19		Status Connected RXD (2) TXD (3) CTS (8) DCD (1)
Baud 57600 ▼ Port Parity Data Bit.	1 s Stop Bits © 1 bit 2 bits Hardware Flow Control © None © NDP / CDE / C	Open Spy Change Software Flow Control Receive Xon Char: 17 Receive Xon Char: 19 Winsock is:: 15		Status Connected RXD (2) TXD (3) CTS (8) DCD (1) DSR (6)
Baud 57600 ▼ Port Parity Data Bit C None C 8 bit: C Odd C 7 bit: C Even C 6 bit: C Space C 5 bit:	1 s Stop Bits • 1 bit • 2 bits Hardware Flow Control • None • None • DTR/DSR © RS485-rts	Open Spy ✓ Change Software Flow Control Receive Xon Char: 17 ■ Transmit Xoff Char: 19 Winsock is: Raw ● Raw		Status Connected RXD (2) TXD (3) CTS (8) DCD (1) DSR (6) Ring (9)
Baud 57600 ▼ Port Parity Data Bit ○ None ○ 8 bit ○ Odd ○ 7 bit ○ Even ○ 6 bit ○ Mark ○ 5 bit	1 s Stop Bits © 1 bit C 2 bits Hardware Flow Control © None C DTR/DSR ⊂ RS485-rts	Open Spy ✓ Change Software Flow Control Receive Xon Char. 17 Transmit Xoff Char. 19 Winsock is: C Raw Telnet 10		Status Connected RXD (2) TXD (3) CTS (8) DCD (1) DSR (6) Ring (9) BREAK

Figure 1. RealTerm Software Main Window (Port Tab Sheet)

MAX3223E power-management signals. Jumper JU4 connects the INVALID status output to LED2. Jumpers JU5–JU8 configure the hardware handshake signals. Jumpers JU9 and JU10 allow digital loopback. Jumper JU11 allows RS-232 loopback.

The DCE-connected RS-232 connector (J1) uses MAX3223E transmitter 1 and receiver 1 for the serial data. MAX3223E transmitter 2 and receiver 2 can optionally be used for DTR-DSR or RTS-CTS hardware handshake.

Hardware Handshakes

A hardware handshake consists of two or more signal wires used to control the flow of information on the other wires. The MAX3223E does not enforce any hardware handshake convention, but allows a microcontroller to use the secondary receiver/transmitter to conduct active flow control using one of the defined hardware handshakes. If the hardware handshake is not being actively managed by a microcontroller, then the corresponding handshake signals should be connected together to allow data to flow. Without a hardware handshake connection, communication may be blocked.

Tables 2 and 3 provide suggested jumper settings for the two most common hardware handshakes.

Table 2. Jumper Settings for DTR-DSR Handshake (JU5–JU8)

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
JU5	R2IN	1-2	R2IN is driven by DTRIN from connector J1
JU6	DCDOUT	1-2	DCDOUT = DTRIN from connector J1
JU7	DSROUT	2-3	DSROUT = T2OUT from U1
JU8	CTSOUT	1-2	CTSOUT = RTSIN from connector J1

Table 3. Jumper Settings for RTS-CTS Handshake (JU5–JU8)

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
JU5	R2IN	2-3	R2IN = RTSIN from connector J1
JU6	DCDOUT	1-2	DCDOUT = DTRIN from connector J1
JU7	DSROUT	1-2	DSROUT = DTRIN from connector J1
JU8	CTSOUT	2-3	CTSOUT = T2OUT from U1

Evaluates: MAX3223E

Figure 2. MAX3223E EV Kit Schematic

Evaluates: MAX3223E

Figure 3. MAX3223E EV Kit Component Placement Guide— Component Side

Figure 4. MAX3223E EV Kit PCB Layout—Component Side

Figure 5. MAX3223E EV Kit PCB Layout—Solder Side

Evaluates: MAX3223E

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	2/09	Initial Release	_
1	2/18	Updated trademark reference	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface Development Tools category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

ADP5585CP-EVALZ CHA2066-99F AS8650-DB MLX80104 TESTINTERFACE 416100120-3 XR18910ILEVB XR21B1421IL28-0A-EVB TW-DONGLE-USB EVAL-ADM2491EEBZ MAXREFDES23DB# MAX13235EEVKIT DFR0257 XR22404CG28EVB ZLR964122L ZLR88822L EVK-U23-01S EVK-W262U-00 DC327A PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177# EVAL-ADM2567EEBZ ZSSC3240KIT MAX9121EVKIT PIM532 ZSC31010KITV2P1 UMFT4233HPEV LVDS-18B-EVK XR20M1172G28-0B-EB SI871XSOIC8-KIT 1764 1833 1862 EVB-USB82514 ATA6628-EK ATA6631-EK EVAL-CN0313-SDPZ 2264 MCP23X17EV PS081-EVA-HR MODULE 237 SMA2RJ45EVK/NOPB FR12-0002 MAFR-000455-001 BOB-13263 ORG4572-R01-UAR CPC5622-EVAL-600R