General Description

The MAX3293/MAX3294/MAX3295 low-power, highspeed transmitters for RS-485/RS-422 communication operate from a single +3.3 V power supply. These devices contain one differential transmitter. The MAX3295 transmitter operates at data rates up to 20 Mbps , with an output skew of less than 5 ns , and a guaranteed driver propagation delay below 25 ns . The MAX3293 (250kbps) and MAX3294 (2.5Mbps) are slew-rate limited to minimize EMI and reduce reflections caused by improperly terminated cables.
The MAX3293/MAX3294/MAX3295 output level is guaranteed at +1.5 V with a standard 54Ω load, compliant with RS-485 specifications. The transmitter draws 5 mA of supply current when unloaded, and $1 \mu \mathrm{~A}$ in low-power shutdown mode (DE = GND).
Hot-swap circuitry eliminates false transitions on the data cable during circuit initialization or connection to a live backplane, and short-circuit current limiting and thermal-shutdown circuitry protect the driver against excessive power dissipation.
The MAX3293/MAX3294/MAX3295 are offered in a 6 -pin SOT23 package, and are specified over the automotive temperature range.

Applications

- RS-485/RS-422 Communications
- Clock Distribution
- Telecom Equipment
- Automotive
- Security Equipment
- Point-of-Sale Equipment
- Industrial Control

Typical Operating Circuit

Features

- Space-Saving 6-Pin SOT23 Package
- $250 \mathrm{kbps} / 2.5 \mathrm{Mbps} / 20 \mathrm{Mbps}$ Data Rates Available
- Operate from a Single +3.3V Supply
- ESD Protection $\pm 9 \mathrm{kV}$-Human Body Model
- Slew-Rate Limited for Errorless Data Transmission (MAX3293/MAX3294)
- $1 \mu \mathrm{~A}$ Low-Current Shutdown Mode
- -7 V to +12 V Common-Mode Input Voltage Range
- Current Limiting and Thermal Shutdown for Driver-Overload Protection
- Hot-Swap Inputs for Telecom Applications
- Automotive Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- AEC-Q100 Qualified MAX3295AUT/V+T

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3293AUT +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6
MAX3294AUT +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6
MAX3295AUT +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6
MAX3295AUT $/ \mathrm{V}+\mathrm{T}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6

+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel.
N denotes automotive-qualified package.

Selector Guide

PART	MAXIMUM DATA RATE (Mbps)	SLEW- RATE LIMITED	TOP MARK
MAX3293AUT+T	0.25	Yes	ABNI or ABVH
MAX3294AUT+T	2.5	Yes	ABNJ or ABVI
MAX3295AUT+T	20	No	ABNK or ABVJ
MAX3295AUT/V+T	20	No	+ACSB

Pin Configuration appears at end of data sheet.

Operating Temperature Ranges	
MAX32 AUT	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Junction Temperature	$+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 1	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

6 SOT23

Package Code	U6CN+2
Outline Number	$\underline{21-0058}$
Land Pattern Number	$\underline{90-0175}$
Thermal Resistance, Single-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)(\mathrm{C} / \mathrm{W})$	122.3
Junction to Case $\left(\theta_{\mathrm{JC}}\right)(\mathrm{C} / \mathrm{W})$	84
Thermal Resistance, Multilayer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)(\mathrm{C} / \mathrm{W})$	74.6
Junction to Case $\left(\theta_{\mathrm{JC}}\right)(\mathrm{C} / \mathrm{W})$	6

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1,2$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
Supply Voltage	V_{CC}			3.135	3.300	3.465	V
Supply Current in Normal Operation	I_{Q}	No load, $\mathrm{DI}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{DE}=\mathrm{V}_{\mathrm{CC}}$				5	mA
Supply Current in Shutdown Mode	ISHDN	No load, DE = GND			1	10	$\mu \mathrm{A}$
DRIVER							
Differential Driver Output	V_{OD}	Figure 1, $D E=V_{C C}$,$\mathrm{DI}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & \mathrm{R}=50 \Omega(\mathrm{RS}-422), \\ & \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	2.0		V_{CC}	V
			$\begin{aligned} & \mathrm{R}=27 \Omega(\mathrm{RS}-485), \\ & \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	1.5		V_{CC}	
Change in Magnitude of Differential Output Voltage	Δ_{VOD}	Figure 1, $\mathrm{R}=27 \Omega$ or 50Ω, DE $=\mathrm{V}_{\mathrm{CC}}$ (Note 3)				0.2	V
Driver Common-Mode Output Voltage	V_{OC}	Figure 1, $\mathrm{R}=27 \Omega$ or 50Ω, $\mathrm{DE}=\mathrm{V}_{\mathrm{CC}}$, $\mathrm{DI}=\mathrm{V}_{\mathrm{CC}}$ or GND		-1		+3	V
Change in Magnitude of Common-Mode Voltage	$\Delta \mathrm{V}_{\mathrm{OC}}$	Figure 1, R = 27Ω or 50Ω (Note 3)				0.2	V
DRIVER LOGIC							
Input High Voltage	V_{IH}	DE, DI		2.0			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	DE, DI				0.8	V
Input Current	IN	DE, DI		-2		+2	$\mu \mathrm{A}$
Output Leakage	10	$\begin{aligned} & \mathrm{Y}, \mathrm{Z} \\ & \mathrm{DE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND} \text { or } \\ & +3.3 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=+12 \mathrm{~V}$	-20		+20	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$	-20		+20	
Driver Short-Circuit Foldback Output Current	IOSFD	$\left(\mathrm{V}_{\text {CC }}-1 \mathrm{~V}\right) \leq \mathrm{V}_{\text {OUT }} \leq+12 \mathrm{~V}$, output high		+25			mA
		$-7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 1 \mathrm{~V}$, output high				-25	
Driver Short-Circuit Output Current	IOSD	$0 \leq \mathrm{V}_{\text {OUT }} \leq+12 \mathrm{~V}$, output low		-250			mA
		$-7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$, output high				+250	
Thermal-Shutdown Threshold	$\mathrm{T}_{\text {TS }}$				160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	TTSH				40		${ }^{\circ} \mathrm{C}$
ESD Protection		Y, Z	Human Body Model		± 9		kV

Switching Characteristics (MAX3293)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Driver Propagation Delay	$t_{\text {PLH }}$	Figures 2, 3; $\mathrm{R}_{\mathrm{DIFF}}=54 \Omega$, $C_{L}=50 \mathrm{pF}$	400	1300	ns
	$t_{\text {PHL }}$		400	1300	
Driver Differential Output Rise or Fall Time	t_{R}	Figures 2, 3; $\mathrm{R}_{\mathrm{DIFF}}=54 \Omega$, $C_{L}=50 \mathrm{pF}$	400	1200	ns
	t_{F}		400	1200	
Driver-Output Skew	${ }^{\text {t SKEW }}$	Figures 2, 3; $R_{\text {DIFF }}=54 \Omega, C_{L}=50 \mathrm{pF}$, $\mathrm{t}_{\text {SKEW }}=\mid$ tpLH $\mathrm{t}_{\text {PHL }} \mid($ Note 5$)$	-400	+400	ns
Differential Driver-Output Skew	$\mathrm{t}_{\text {DSKEW }}$	Figures 2, 3; $\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-100	+100	ns
Maximum Data Rate		Figures 2, 3; $\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	250		kbps
Driver Enable to Output High	${ }_{\text {t }} \mathrm{H}$	Figures 4, 5; 2 closed, $\mathrm{R}_{\mathrm{L}}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		2000	ns
Driver Enable to Output Low	${ }^{\text {t }}$ L	Figures 4, 5; S1 closed, $\mathrm{R}_{\mathrm{L}}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		2000	ns
Driver Disable Time from Low	$t_{\text {LZ }}$	Figures 4, 5; S1 closed, $\mathrm{R}_{\mathrm{L}}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		1000	ns
Driver Disable Time from High	$t_{H Z}$	Figures 4, 5; S2 closed, $\mathrm{R}_{\mathrm{L}}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		1000	ns
Device-to-Device Propagation Delay Matching		Same power supply, maximum temperature difference between devices $=+30^{\circ} \mathrm{C}$ (Note 5)		900	ns

Switching Characteristics (MAX3294)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Driver Propagation Delay	tPLH	$\begin{aligned} & \text { Figures 2, 3; } \mathrm{R}_{\mathrm{DIFF}}=54 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	24	70	ns
	$t_{\text {PHL }}$		24	70	
Driver Differential Output Rise or Fall Time	t_{R}	$\begin{aligned} & \text { Figures 2, 3; R } \mathrm{RIFF}=54 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	10	70	ns
	t_{F}		10	70	
Driver-Output Skew	${ }^{\text {t SKEW }}$	Figures 2,$3 ; \mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $\mathrm{t}_{\text {SKEW }}=\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$ (Note 5)	-40	+40	ns
Differential Driver-Output Skew	t DSKEW	Figures 2, 3; $\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-6	+6	ns
Maximum Data Rate		Figures 2, 3; $\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2.5		Mbps
Driver Enable to Output High	$t_{\text {ZH }}$	Figures 4, 5; S 2 closed, $\mathrm{R}_{\mathrm{L}}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		400	ns
Driver Enable to Output Low	${ }^{\text {t }} \mathrm{LL}$	Figures 4, 5; S1 closed, $\mathrm{R}_{\mathrm{L}}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		400	ns
Driver Disable Time from Low	$t_{L Z}$	Figures 4, 5; S1 closed, $\mathrm{R}_{\mathrm{L}}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		100	ns
Driver Disable Time from High	$t_{\text {Hz }}$	Figures 4, 5; S2 closed, $\mathrm{R}_{\mathrm{L}}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		100	ns
Device-to-Device Propagation Delay Matching		Same power supply, maximum temperature difference between devices $=+30^{\circ} \mathrm{C}$ (Note 5)		46	ns

Switching Characteristics (MAX3295)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$. $)$

Note 1: Devices production tested at $+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
Note 2: All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to device ground, unless otherwise noted.
Note 3: $\Delta \mathrm{V}_{\mathrm{OD}}$ and $\Delta \mathrm{V}_{\mathrm{OC}}$ are the changes in V_{OD} and V_{OC}, respectively, when the DI input changes state.
Note 4: The maximum current applies to peak current just prior to foldback current limiting.
Note 5: Guaranteed by design; not production tested.

Test Circuits and Timing Diagrams

Figure 1. Driver DC Test Load

Figure 2. Driver Timing Test Circuit

Figure 3. Driver Propagation Delays

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	DI	Driver Input. A logic low on DI forces the noninverting output (Y) low and the inverting output (Z) high. A logic high on DI forces the noninverting output (Y) high and the inverting output (Z) low.
2	VCC	Positive Supply. $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 5 \%$. Bypass V_{CC} to GND with a 0.1 $\mu \mathrm{F}$ capacitor.
3	DE	Driver Output Enable. Force DE high to enable driver. Pull DE low to disable the driver. Hot-swap input, see the Hot-Swap Capability section.
4	Z	Inverting RS-485/RS-422 Output
5	GND	Ground
6	Y	Noninverting RS-485/RS-422 Output

Detailed Description

The MAX3293/MAX3294/MAX3295 are low-power transmitters for RS-485/RS-422 communication. The MAX3295 operates at data rates up to 20 Mbps , the MAX3294 up to 2.5 Mbps (slew-rate limited), and the MAX3293 up to 250 kbps (slew-rate limited). These devices are enabled using an active-high driver enable (DE) input. When disabled, outputs enter a high-impedance state, and the supply current reduces to $1 \mu \mathrm{~A}$.
The MAX3293/MAX3294/MAX3295 have a hot-swap input structure that prevents disturbance on the differential signal lines when a circuit board is plugged into a "hot" backplane (see the Hot-Swap Capability section). Drivers are also short-circuit current limited and are protected against excessive power dissipation by thermal-shutdown circuitry.

Driver

The driver accepts a single-ended, logic-level input (DI) and translates it to a differential RS-485/RS-422 level output (Y and Z). Driving DE high enables the driver, while pulling $D E$ low places the driver outputs (Y and Z) into a high-impedance state (see Table 1).

Low-Power Shutdown

Force DE low to disable the MAX3293/MAX3294/ MAX3295. In shutdown mode, the device consumes a maximum of $10 \mu \mathrm{~A}$ of supply current.

Hot-Swap Capability

Hot-Swap Input

When circuit boards are inserted into a "hot" or powered backplane, disturbances to the enable can lead to data errors. Upon initial circuit board insertion, the processor undergoes its power-up sequence. During this period, the output drivers are high impedance and are unable to drive the DE input of the MAX3293/ MAX3294/MAX3295 to a defined logic level. Leakage currents up to $10 \mu \mathrm{~A}$ from the high-impedance output could cause DE to drift to an incorrect logic state. Additionally, parasitic circuit board capacitance could
Table 1. MAX3293/MAX3294/
MAX3295 (RS-485/RS-422) Transmitting Function Table

INPUTS		OUTPUTS	
DE	DI	\mathbf{Y}	\mathbf{Z}
0	X	Shutdown	Shutdown
1	0	0	1
1	1	1	0

cause coupling of V_{CC} or GND to DE. These factors could improperly enable the driver.
The MAX3293/MAX3294/MAX3295 eliminate all above issues with hot-swap circuitry. When V_{CC} rises, an internal pulldown circuit holds DE low for approximately $10 \mu \mathrm{~s}$. After the initial power-up sequence, the pulldown circuit becomes transparent, resetting the hot-swap tolerable input.

Figure 6. Simplified Structure of the Driver Enable Input (DE)

Figure 7. Differential Power-Up Glitch ($0.1 \mathrm{~V} / \mu \mathrm{s}$)

Hot-Swap Input Circuitry

The MAX3293/MAX3294/MAX3295 enable input features hot-swap capability. At the input, there are two NMOS devices, M1 and M2 (Figure 6). When $V_{C C}$ ramps from zero, an internal 10μ s timer turns on M2 and sets the SR latch, which also turns on M1. Transistors M2, a 2 mA current sink, and M1, a $100 \mu \mathrm{~A}$ current sink, pull DE to GND through a $5.6 \mathrm{k} \Omega$ resistor. M2 is designed to pull DE to the disabled state against an external parasitic capacitance up to 100 pF that may drive DE high. After $10 \mu \mathrm{~s}$, the timer deactivates M2 while M1 remains on, holding DE low against threestate leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resets and M1 turns

Figure 8. Differential Power-Up Glitch (1V/ $\mu \mathrm{s}$)

Figure 9. Differential Power-Up Glitch (10V/ $\mu \mathrm{s}$)
off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V_{CC} drops below 1 V , the hot-swap input is reset.

Hot-Swap Line Transient

During a hot-swap event when the driver is connected to the line and is powered up, the driver must not cause the differential signal to drop below 200 mV . Figures 7,8 , and 9 show the results of the MAX3295 during power-up for three different V_{CC} ramp rates $(0.1 \mathrm{~V} / \mu \mathrm{s}, 1 \mathrm{~V} / \mu \mathrm{s}$, and $10 \mathrm{~V} /$ $\mu \mathrm{s})$. The photos show the V_{CC} ramp, the single-ended signal on each side of the 100Ω termination, as well as the differential signal across the termination.

ESD Protection

Human Body Model

Figure 10 shows the Human Body Model, and Figure 11 shows the current waveform it generates when discharged into low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

Figure 10. Human Body ESD Test

Figure 11. Current Waveform

Reduced EMI and Reflections (MAX3293/MAX3294)

The MAX3293/MAX3294 are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 12 shows Fourier analysis of the MAX3295 transmitting a 125 kHz signal. High-frequency harmonics with large amplitudes are evident. Figure 13 shows the same information, but for the slew-rate-limited MAX3293, transmitting the same signal. The high-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.
To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX3293 and MAX3294 are more tolerant of imperfect termination.

Figure 12. Driver-Output Waveform and FFT Plot of MAX3295 Transmitting a 125 kHz Signal

Driver-Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. The first, a foldback current limit on the output stage, provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics). The second, a thermal-shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds $+160^{\circ} \mathrm{C}$.

Chip Information

PROCESS: BiCMOS

Figure 13. Driver-Output Waveform and FFT Plot of MAX3293 Transmitting a 125 kHz Signal

Pin Configuration

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	$3 / 11$	Added lead-free parts to the Ordering Information and Selector Guide tables	1
4	$12 / 14$	Added MAX3295AUT/V+T to Ordering Information	1
5	$4 / 19$	Added AEC-Q100 qualified MAX3295AUT/V+T in Features, move and added Package Information table with Thermal Characteristics information	1,2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NSI83085 WS3088EESA-GEC ADM2687EBRIZ-RL7 MAX489CPD+ MAX485ESA+T MAX491EPD+ MAX488EEPA+ MAX3080CPD+ MXL1535EEWI+ SN65LBC173DR DS16F95J/883 MAX490ESA+T LTM2881IY-3\#PBF LT1791CN\#PBF LTM2881CY-3\#PBF LTC2852CDD\#PBF LTC2857IMS8-2\#PBF LT1791ACN\#PBF LTC487CS\#PBF MAX1487CUA+T XR3074XID-F XR3082XID-F SP1481EEN-L SN75ALS173NSR ADM3491ARZ-REEL ADM485JN ADM1485ANZ ADM1485JNZ ADM1490EBRMZ ADM489ABRZ ADM1491EBRZ-REEL7 ADM3070EYRZ ADM3073EARZ ADM4850ACPZ-REEL7 ADM4850ARMZ-REEL7 ADM485ANZ ADM485ARMZ ADM485JNZ ADM488ANZ ADM489ANZ ADM489ARUZ ADM3488ARZ ADM3488EARZ ADM3490ARZ ADM3493ARZ ADM4856ARZ-REEL7 ADM487EARZ-REEL7 ADM488ABRZ ADM1486ARZ ADM3075EWYRZ

