
General Description

The MAX3320 combines a microprocessor (μ P) supervisory circuit with an RS-232 transceiver. The power-on reset performs a single function: it asserts a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, staying asserted for at least 100ms after V_{CC} rises above the reset threshold. The MAX3320 has an active-low RESET output, which is guaranteed to be in the correct state for V_{CC} down to 1V. The reset comparator is designed to ignore fast transients on V_{CC}. Reset thresholds suitable for operation with a variety of supply voltages are available.

The MAX3320 transceivers have a proprietary lowdropout transmitter output stage, enabling true RS-232 performance with a dual charge pump powered from a +3V to +5.5V supply. The device requires only four small 0.1 μ F external charge-pump capacitors, and is guaranteed to run at data rates of up to 250kbps. It comes in the space-saving 20-pin SSOP package.

Applications

Palmtop Computers Portable/Battery-Powered Equipment Hand-Held Equipment Peripherals Printers

Pin Configuration

__Features

- Precise Monitoring of 5V and 3.3V Power-Supply Voltages:
 - 100ms (min) Power-On RESET Pulse Width

M/X/M

- Power-Supply Transient Immunity
- Guaranteed RESET Valid to V_{CC} = 1V
- 4µA Supply Current Achieved with AutoShutdown Plus
- Receivers Always Active
- Power-On Reset Always Active
- ♦ 4µA Low-Power Shutdown
- 250kbps Guaranteed Data Rate

Ordering Information

PART*	TEMP. RANGE	PIN-PACKAGE
MAX3320_CAP	0°C to +70°C	20 SSOP
MAX3320_EAP	-40°C to +85°C	20 SSOP

* This part offers a choice of reset threshold voltage. From the table below, select the suffix corresponding to the desired threshold and insert it into the blank to complete the part number.

SUFFIX	RESET THRESHOLD (V)
А	4.25
В	2.85
L	4.63
Т	3.08

Typical Operating Circuit appears at end of data sheet.

AutoShutdown Plus is a trademark of Maxim Integrated Products.

_ Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.

ABSOLUTE MAXIMUM RATINGS

V _{CC}	
V+ (Note 1)	
V- (Note 1)	
V+ + V- (Note 1) Input Voltages	13V
Input Voltages	
T_IN, FORCEOFF, FORCEON	0.3V to 6V
R_IN	±25V
Output Voltages	
T_OUT	
R_OUT, INVALID, RESET	0.3V to (V _{CC} + 0.3V)

Short-Circuit Duration
T_OUTContinuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
SSOP (derate 8.00mW/°C above +70°C)640mW
Operating Temperature Ranges
MAX3320_CAP0°C to +70°C
MAX3320_EAP40°C to +85°C
Storage Temperature Range65°C to +160°C
Lead Temperature (soldering, 10sec)+300°C

Note 1: V+ and V- can have a magnitude of +7V (max), but their absolute difference cannot exceed +13V.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

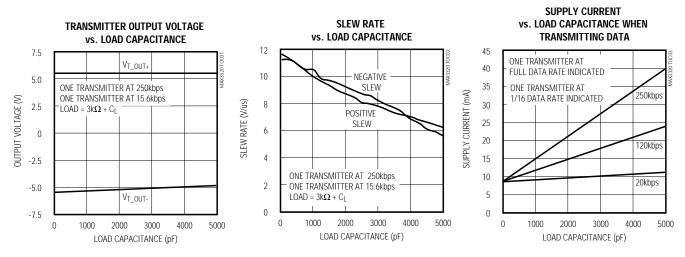
(V_{CC} = 3V to 5.5V, C1–C4 = 0.1 μ F (tested at 3.3V ±10%), C1 = 0.047 μ F, C2–C4 = 0.33 μ F (tested at 5V ±10%), TA = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DC CHARACTERISTICS						
Power-Supply Current	No load, Vcc = 3.3V or 5	$V, T_A = +25^{\circ}C$		0.45	1.0	mA
Shutdown Supply Current	FORCEOFF = GND, TA =	= +25°C		4.0	10	μA
AutoShutdown Plus Supply Current	$\frac{\text{All R_IN unconnected, FG}}{\text{FORCEOFF}} = V_{CC}, \text{ all T_}$	ORCEON = GND, IN = V _{CC} or GND, T _A = +25°C		4.0	10	μΑ
LOGIC INPUTS AND RECEIVE			1			
Input Logic Threshold Low	T_IN, FORCEON, FORCE	EOFF			0.8	V
Input Logic Throshold Lligh	T_IN, FORCEON,	$V_{CC} = 3.3V$	2.0			V
Input Logic Threshold High	FORCEOFF	$V_{CC} = 5V$	2.4			- V
Input Leakage Current	T_IN, FORCEON, FORCE	EOFF		±0.01	±1.0	μA
Input Hysteresis	T_IN, FORCEON, FORCEOFF			250		mV
Output Voltage Low	$I_{OUT} = 1.6 \text{mA}$				0.4	V
Output Voltage High	Iout = -1mA		V _{CC} - 0.6	V _{CC} - 0.1		V
RECEIVER INPUTS						
Input Voltage Range			-25		25	V
Input Thrachald Law	$V_{CC} = 3.3V$		0.6	1.2		V
Input Threshold Low	$V_{CC} = 5V$		0.8	1.5		- V
	$V_{CC} = 3.3V$			1.5	2.4	
Input Threshold High	$V_{CC} = 5V$			1.8	2.4	- V
Input Hysteresis				0.3		V
Input Resistance	$T_A = +25^{\circ}C$		3	5	7	kΩ
INVALID OUTPUT			1			
Receiver Input Threshold to	Figure 3, positive threshold				2.7	
INVALID Output High	Figure 3, negative thresh	old	-2.7			- V
Receiver Input Threshold to INVALID Output Low	Figure 3		-0.3		0.3	V
INVALID Output Voltage Low	I _{OUT} = 1.6mA				0.4	V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 3V \text{ to } 5.5V, \text{ C1-C4} = 0.1\mu\text{F} \text{ (tested at } 3.3V \pm 10\%), \text{ C1} = 0.047\mu\text{F}, \text{ C2-C4} = 0.33\mu\text{F} \text{ (tested at } 5V \pm 10\%), \text{ T}_{A} = \text{T}_{MIN} \text{ to } \text{T}_{MAX}, \text{ unless otherwise noted}.$ Typical values are at T_A = +25°C.)

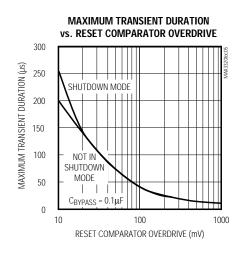
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INVALID Output Voltage High	I _{OUT} = -1mA	V _{CC} - 0.	5		V
Receiver Positive or Negative Threshold to INVALID High	Figure 3		0.1		μs
Receiver Positive or Negative Threshold to INVALID Low	Figure 3		90		μs
AUTOSHUTDOWN PLUS (FOR	CEON = GND, FORCEOFF = Vcc)				
Receiver or Transmitter Edge to Transmitters Enabled	Figure 5		25		μs
Receiver or Transmitter Edge to Shutdown	Figure 3	15	30	60	sec
TRANSMITTER OUTPUTS					
Output Voltage Swing	All transmitter outputs loaded with $3k\Omega$ to ground	±5.0	±5.4		V
Output Resistance	$V_{CC} = V_{+} = V_{-} = GND$, $V_{T_OUT} = \pm 2V$	300	10M		Ω
Output Short-Circuit Current	$T_OUT = GND, T_IN = V_{CC} \text{ or } GND$		±35	±60	mA
Output Leakage Current	$V_{T_OUT} = \pm 12V$, $V_{CC} = 0$ to 5.5V, transmitters disabled			±25	μA
RESET OUTPUT					
RESET Operating Voltage	MAX3320_C	1.0		5.5	V
Range	MAX3320_E	1.2		5.5	v
	MAX3320A	4.00	4.25	4.50	
	MAX3320B	2.70	2.85	3.00	V
RESET Threshold	MAX3320L	4.50	4.63	4.75	- V
	MAX3320T	3.00	3.08	3.15	-
	I _{SINK} = 1.2mA, V _{CC} = reset threshold, MAX3320B/T			0.3	
	I_{SINK} = 3.2mA, V_{CC} = reset threshold, MAX3320A/L			0.4	
RESET Output Voltage	I _{SINK} = 50μA, V _{CC} > 1V, MAX3320_C			0.3	- V
	ISINK = 100µA, V _{CC} > 1.2V, MAX3320_E			0.4	-

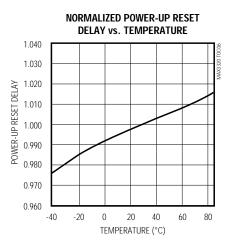

TIMING CHARACTERISTICS

 $(V_{CC} = 3V \text{ to } 5.5V, C1-C4 = 0.1\mu\text{F}, C1-C4 = 0.1\mu\text{F} \text{ (for } 3.3V \pm 10\%), C1 = 0.047\mu\text{F}, C2-C4 = 0.33\mu\text{F} \text{ (tested at } 5V \pm 10\%), TA = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at TA = +25°C.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Maximum Data Rate	$R_L = 3k\Omega$, $C_L = 1000pF$, one transm	itter switching	250			kbps
Receiver Propagation Delay	R_IN to R_OUT, $C_L = 150 pF$	t _{PHL}		0.3		
Receiver Propagation Delay	K_IN to K_001, CL = 150pi	tplh		0.3		– µs
Transmitter Skew	tphl - tplh			100		ns
Receiver Skew	tphl - tplh			200		ns
	$V_{CC} = 3.3V$, $R_L = 3k\Omega$ to $7k\Omega$,	C _L = 150pF to 1000pf	6		30	
Transition-Region Slew Rate	measured from +3V to -3V or -3V to +3V, TA = +25°C	C _L = 150pF to 2500pf	4		30	– V/µs
V_{CC} to $\overline{\text{RESET}}$ Delay	100mV overdrive from reset threshold			40		μs
RESET Active Timeout Period	V _{CC} = reset threshold		100		280	ms

Typical Operating Characteristics


 $(V_{CC} = 3.3V, 250kbps data rate, C1-C4 = 0.1\mu F$, all transmitters loaded with $3k\Omega$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)



M/IXI/M

_Typical Operating Characteristics (continued)

 $(V_{CC} = 3.3V, 250$ kbps data rate, C1–C4 = 0.1µF, all transmitters loaded with 3k Ω . Typical values are at T_A = +25°C, unless otherwise noted.)

_Pin Description

PIN	NAME	FUNCTION
1	V+	5.5V generated by the charge pump
2	C2+	Positive terminal of inverting charge-pump capacitor
3	C2-	Negative terminal of inverting charge-pump capacitor
4	V-	-5.5V generated by the charge pump
5, 6	T_IN	TTL/CMOS Transmitter Inputs (T1IN and T2IN)
7, 8	R_OUT	TTL/CMOS Receiver Outputs (R1OUT and R2OUT)
9	INVALID	Output of the Valid Signal Detector. Asserts when no valid RS-232 levels are present on any of the receiver inputs for 90µs.
10	RESET	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
11	FORCEOFF	Force-Off Input. Drive FORCEOFF low to shut down transmitters and on-board power supply. This overrides AutoShutdown Plus and FORCEON (Table 1).
12	FORCEON	Force-On Input. Drive FORCEON high to override AutoShutdown Plus, keeping transmitters on (FORCEOFF must be high) (Table 1).
13, 14	R_IN	RS-232 Receiver Inputs (R2IN and R1IN)
15, 16	T_OUT	RS-232 Transmitter Outputs (T2OUT and T1OUT)
17	GND	Ground
18	C1-	Negative terminal of voltage-doubler charge-pump capacitor
19	V _{CC}	+3V to +5.5V Supply Voltage
20	C1+	Positive terminal of voltage-doubler charge-pump capacitor

Table 1. MAX3320 Output Control Truth Table

FORCEON	FORCEOFF	AUTOSHUTDOWN PLUS*	OPERATION STATUS	T_OUT	R_OUT
Х	0	Х	Shutdown (forced off)	High-Z	Active
1	1	Х	Normal operation (forced on)	Active	Active
0	1	<30sec*	Normal operation (AutoShutdown Plus)	Active	Active
0	1	>30sec*	Shutdown (AutoShutdown Plus)	High-Z	Active

X = Don't Care

*Time since last receiver or transmitter input activity

Detailed Description

Dual Charge-Pump Voltage Converter

The MAX3320's internal power supply consists of a regulated dual charge pump that provides output voltages of +5.5V (doubling charge pump) and -5.5V (inverting charge pump) while V_{CC} remains in the 3V to 5.5Vrange. The charge pumps operate in discontinuous mode; they are enabled if the output voltages are less than 5.5V, and disabled if output voltages exceed 5.5V. Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies.

RS-232 Transmitters

The transmitters are inverting level translators that convert CMOS-logic levels to 5V EIA/TIA-232 levels. The MAX3320 transmitters guarantee a 250kbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software (such as LapLinkTM). Transmitters can be paralleled to drive multiple receivers. Figure 1 shows a complete system connection.

When FORCEOFF is driven to ground, the transmitter's outputs become high impedance. When the AutoShutdown Plus circuitry senses that all receiver and transmitter inputs are inactive for more than 30sec, the transmitters turn off and the outputs go into a high-impedance state, but the receivers remain active. When the power is off or the MAX3320 is shut down, outputs may be driven up to $\pm 12V$.

The transmitter inputs do not have pull-up resistors. Connect unused inputs to GND or V_{CC}.

Laplink is a trademark of Traveling Software.

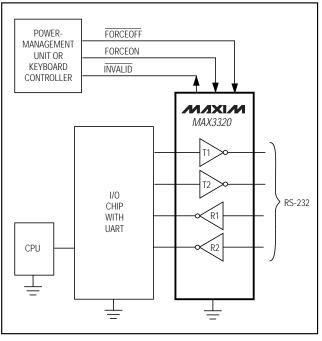


Figure 1. Interface Under Control of PMU

RS-232 Receivers

The receivers convert RS-232 signals to CMOS-logic output levels. All receivers have inverting outputs and are active in shutdown FORCEOFF (Table 1).

AutoShutdown Plus Mode

Maxim's AutoShutdown Plus feature, which operates when FORCEOFF is high and FORCEON is low, achieves a 4μ A supply current. When the MAX3320 senses no valid signal levels on all receiver and transmitter inputs for 30sec, the on-board power supply and drivers shut off,

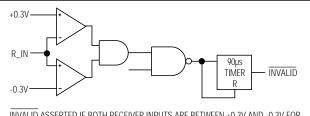
MAX3320A/B/L/T

reducing supply current to 4 μ A. This occurs if the RS-232 cable is disconnected or the connected peripheral transmitters turn off. The system turns on again when a valid transition occurs at any RS-232 receiver or transmitter input. As a result, the system saves power without changes to the existing BIOS or operating system. The INVALID output is high when the receivers are active. Since INVALID indicates the receiver inputs' condition, it can be used in any mode (Figure 2).

Tables 1 and 2 and Figure 2 summarize the MAX3320's operating modes. FORCEON and FORCEOFF override the automatic circuitry and force the transceiver into its normal operating state or into its low-power standby state. When neither control is asserted, the IC enters AutoShutdown Plus mode and selects between these states automatically, based on the last receiver or transmitter input edge received.

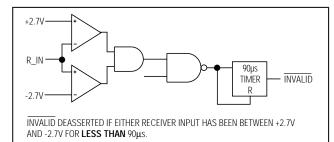
When shut down, the device's charge pumps turn off, V+ decays to V_{CC}, V- decays to ground, and the transmitter outputs turn off (high impedance). The time required to exit shutdown is typically 25μ s (Figure 3a).

Software-Controlled Shutdown

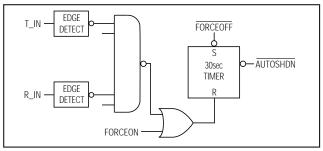

If direct software control is desired, use INVALID to indicate DTR or Ring Indicator signal. Connect FORCEOFF and FORCEON together to bypass the AutoShutdown Plus feature so the line acts like a SHDN input.

Power-On Reset

In addition to issuing a reset to the microprocessor (μ P) during power-up, power-down, and brownout conditions, the MAX3320 is relatively immune to short-duration, negative-going V_{CC} transitions (glitches). Typically, a V_{CC} transient that goes 100mV below the reset threshold and lasts 20 μ s or less does not cause a reset pulse (see *Typical Operating Characteristics*). Additional bypass capacitance mounted as close as possible to the V_{CC} pin provides additional transient immunity.


Table 2.	INVALID	Truth	Table
----------	---------	-------	-------

RS-232 SIGNAL PRESENT AT RECEIVER INPUT	INVALID OUTPUT
Yes	Н
No	L



INVALID ASSERTED IF BOTH RECEIVER INPUTS ARE BETWEEN +0.3V AND -0.3V FOR AT LEAST 90 $\mu s.$

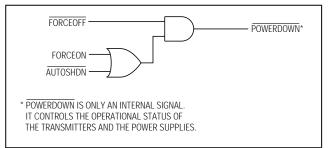


Figure 2d. Power-Down Logic

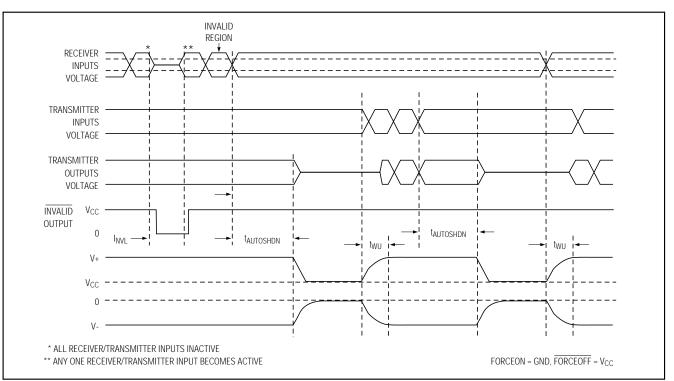


Figure 3a. AutoShutdown Plus and INVALID Timing Diagram

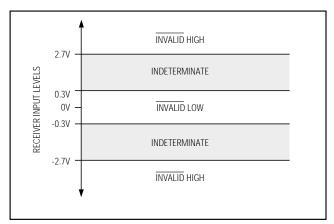


Figure 3b. Receiver Positive/Negative Thresholds for INVALID

Applications Information

Ensuring a Valid Reset Output Down to VCC = 0V

When V_{CC} falls below 1V, RESET no longer sinks current: it becomes an open circuit. Therefore, highimpedance CMOS logic inputs connected to RESET can drift to undefined voltages. This presents no problem in most applications, since most µPs and other circuitry is inoperative with V_{CC} below 1V. However, in applications where RESET must be valid down to 0V, add a pull-down resistor to ground, holding RESET low (Figure 4). R1's value is not critical; 100k Ω is large enough not to load RESET, and small enough to pull it to ground.

Capacitor Selection

///XI//

The capacitor type used for C1–C4 is not critical for proper operation; use either polarized or nonpolarized capacitors. The charge pump requires 0.1μ F capacitors for 3.3V operation. For other supply voltages, refer to Table 3 for required capacitor values. Do not use values smaller than those listed in Table 3. Increasing the capacitor values (e.g., by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, and C4 can be increased without changing C1's value. However, do not increase C1 without also increasing the values of C2, C3, C4, and CBYPASS, to maintain the proper ratios (C1 to the other capacitors).

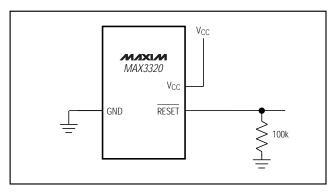


Figure 4. Ensuring \overrightarrow{RESET} Valid to $V_{CC} = 0V$

When using the minimum required capacitor values, make sure the capacitor value does not degrade excessively with temperatures outside the 0°C to +70°C range. If in doubt, use capacitors with a larger nominal value. The capacitor's equivalent series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-.

Transmitter Outputs when Exiting Shutdown

Figure 5 shows two transmitter outputs when exiting shutdown mode. As they become active, the two transmitter outputs go to opposite RS-232 levels (one transmitter input is high; the other is low). Each transmitter is loaded with $3k\Omega$ in parallel with 2500pF. The transmitter outputs display no ringing or undesirable transients as they exit shutdown. Note that the transmitters are enabled only when the magnitude of V- exceeds approximately 3V.

High Data Rates

The MAX3320 maintains the RS-232 ±5V minimum transmitter output voltage even at high data rates. Figure 6 shows a transmitter loop-back test circuit. Figure 7 shows a loop-back test result at 120kbps, and Figure 8 shows the same test at 250kbps. For Figure 7, both transmitters were driven simultaneously at 120kbps into RS-232 loads in parallel with 1000pF. For Figure 8, a single transmitter was driven at 250kbps, and both transmitters were loaded with an RS-232 receiver in parallel with 1000pF.

Interconnection with 3V and 5V Logic The MAX3320 can directly interface with various 5V logic families, including ACT and HCT CMOS. See Table 4 for more information on possible combinations of interconnections.

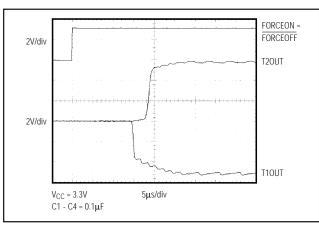


Figure 5. Transmitter Outputs when Exiting Shutdown or Powering Up

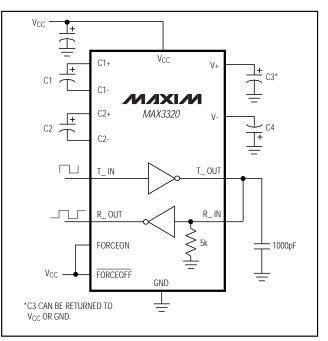


Figure 6. Loop-Back Test Circuit

Table 3. Required MinimumCapacitance Values

V _{CC} (V)	C1 (μF)	C2, C3, C4, C _{BYPASS} (µF)
3 to 3.6	0.1	0.1
4.5 to 5.5	0.047	0.33
3 to 5.5	0.1	0.47

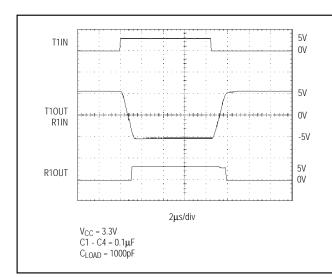


Figure 7. Loop-Back Test Result at 120kbps

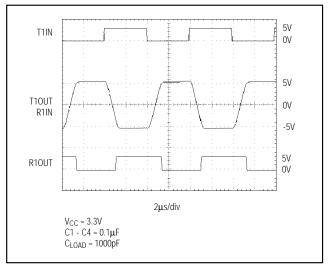
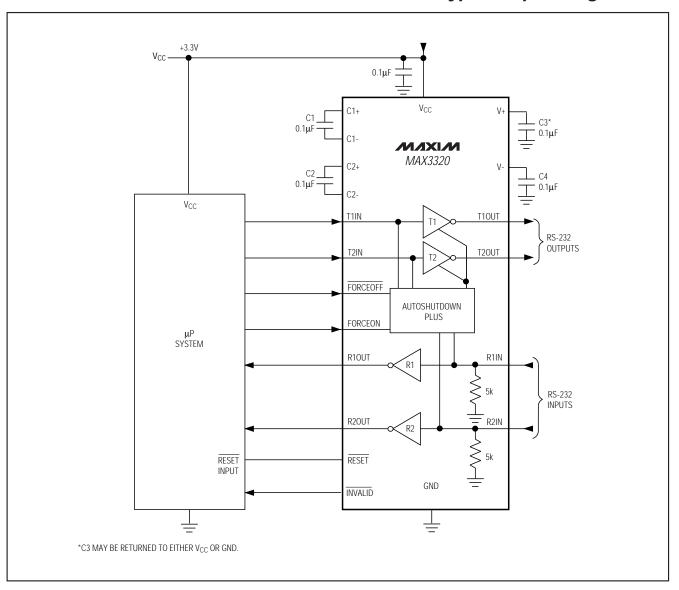
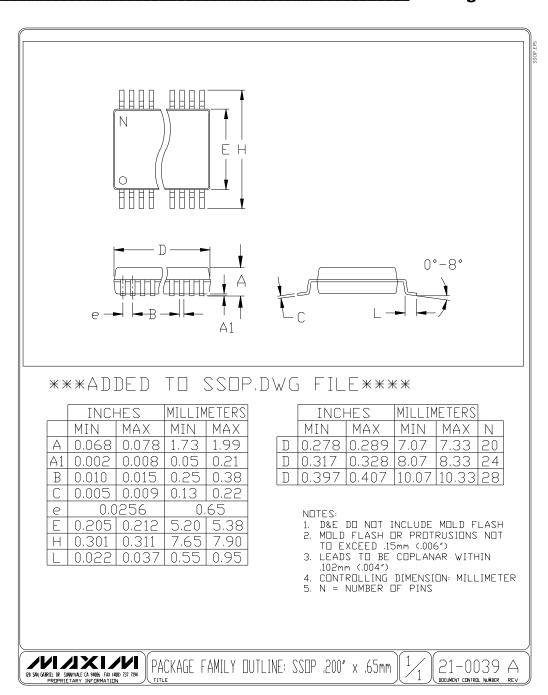


Figure 8. Loop-Back Test Result at 250kbps

Table 4. Logic-Family Compatibilitywith Various Supply Voltages


SYSTEM POWER-SUPPLY VOLTAGE (V)	V _{CC} SUPPLY VOLTAGE (V)	COMPATIBILITY
3.3	3.3	Compatible with all CMOS families
5	5	Compatible with all TTL and CMOS families
5	3.3	Compatible with ACT and HCT CMOS, and with AC, HC, or CD4000 CMOS

Chip Information


TRANSISTOR COUNT: 1577

MAX3320A/B/L/7

_Typical Operating Circuit

_Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

© 1997 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-232 Interface IC category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

062191EB CH438L LT1039CN LTC1327CNW MAX3386ECPWR TRS222IDWR MAX232INE4 MAX3232CPW MAX204CWE+ TRS3243EIDWR TRS3232EIDWR SN65C3232EDWR ADM208ARZ-REEL LT1780CSW#PBF LT1237CSW#PBF LT1281AISW#PBF LTC1337CSW#PBF LT1180ACN#PBF LTC1343CGW#PBF LT1237CNW#PBF LT1039CN#PBF LT1032CSW#PBF LT1130ACSW#PBF LTC1349ISW#PBF LT1032ISW#PBF LTM2882IY-3#PBF LT1140ACN#PBF LTC1384IG#PBF LTC1383CS#PBF LT1280AIN#PBF LT1080ISW#PBF LTC2845IG#PBF LTC1383CN#PBF LTC2845CG#PBF LTC2846CG#PBF LTC1384CG#PBF LT1781IS#PBF LT1080ISW#PBF LT1131ACNW LT1131ACSW SN75188DE4 LTC1350CNW MAX3209EEUU+T AD7306AR AD7306ARZ AD7306JNZ AD7306JRZ ADM3311EARSZ-REEL ADM3310EACPZ-REEL7 ADM3202ARUZ-REEL7