General Description

The MAX338/MAX339 are monolithic, CMOS analog multiplexers (muxes). The 8 -channel MAX338 is designed to connect one of eight inputs to a common output by control of a 3-bit binary address. The dual, 4-channel MAX339 is designed to connect one of four inputs to a common output by control of a 2-bit binary address. Both devices can be used as either a mux or a demux. On-resistance is 400Ω max, and the devices conduct current equally well in both directions.
These muxes feature extremely low off leakages (less than 20 pA at $+25^{\circ} \mathrm{C}$), and extremely low on-channel leakages (less than 50 pA at $+25^{\circ} \mathrm{C}$). The new design offers guaranteed low charge injection (1.5 pC typ) and electrostatic discharge (ESD) protection greater than 2000 V , per method 3015.7. These improved muxes are pin-compatible upgrades for the industry-standard DG508A and DG509A. For similar Maxim devices with lower leakage and charge injection but higher on-resistance, see the MAX328 and MAX329.
The MAX338/MAX339 operate from a single +4.5 V to +30 V supply or from dual supplies of $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. All control inputs (whether address or enable) are TTL compatible (+0.8 V to +2.4 V) over the full specified temperature range and over the $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supply range. These parts are fabricated with Maxim's 44V silicon-gate process.

Applications

- Data-Acquisition Systems
- Sample-and-Hold Circuits
- Test Equipment
- Heads-Up Displays
- Military Radios
- Communications Systems
- Guidance and Control Systems

Features

- On-Resistance, $<400 \Omega$ max
- Transition Time, $<500 \mathrm{~ns}$
- On-Resistance Match, <10
- NO-Off Leakage Current, $<20 \mathrm{pA}$ at $+25^{\circ} \mathrm{C}$
- 1.5 pC Charge Injection
- Single-Supply Operation $(+4.5 \mathrm{~V}$ to +30 V) Bipolar-Supply Operation ($\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$)
- Plug-In Upgrade for Industry-Standard DG508A/DG509A
- Rail-to-Rail Signal Handling
- TTL/CMOS-Logic Compatible
- ESD Protection >2000V, per Method 3015.7

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX338CEE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX338CPE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 PDIP
MAX338CSE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX338C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX338EEE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX338ETE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP** $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$

Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.
${ }^{* *} E P=$ Exposed Pad
***Contact factory for availability.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Pin Configurations/Functional Diagrams/Truth Tables

Absolute Maximum Ratings

Itage Refe
GN
Digital Inputs, NO, COM (Note 1) \qquad (V- -2 V) to ($\mathrm{V}++2 \mathrm{~V}$) or 30 mA (whichever occurs first)
Continuous Current (any terminal)..................................30mA
Peak Current, NO or COM (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max) \qquad 100 mA
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... 842 mW
Narrow SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW

16-Pin TQFN (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 1666.7 mW CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............. 800 mW Operating Temperature Ranges

MAX33_C \qquad $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX33 E $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX33_MJE, MSE...................................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)
Lead(Pb)-free packages
$+260^{\circ} \mathrm{C}$
Packages containing lead(Pb).
$+240^{\circ} \mathrm{C}$

Note 1: Signals on NO, COM, EN, A0, A1, or A2 exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS					$\begin{aligned} & \text { TYP } \\ & \text { lote 2) } \end{aligned}$	MAX	UNITS
SWITCH									
Analog Signal Range	V_{NO}, $\mathrm{V}_{\mathrm{COM}}$	(Note 3)				-15		15	V
On-Resistance	R_{ON}	$\begin{aligned} & l_{\mathrm{NO}}=0.2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}= \pm 10 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		220			Ω
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$					
On-Resistance Matching Between Channels	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}}=0.2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}= \pm 10 \mathrm{~V} \text { (Note 4) } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4	10	Ω
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$	$\mathrm{T}_{\text {MAX }}$			15	
NO-Off Leakage Current (Note 5)	${ }^{\prime} \mathrm{NO}(\mathrm{OFF})$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=+10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.02	0.001	0.02	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	C, E	-1.25		1.25	
				$\text { to } \mathrm{T}_{\mathrm{MAX}}$	M	-20		20	
COM-Off Leakage Current (Note 5)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=+10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \end{aligned}$	MAX338	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.05	0.005	0.05	nA
				$\begin{aligned} & T_{A}=T_{M I N} \\ & \text { to } T_{M A X} \end{aligned}$	C, E	-3.25		3.25	
					M	-40		40	
		$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=+10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \end{aligned}$	MAX339	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.05	0.005	0.05	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	C, E	-1.65		1.65	
					M	-20		20	
COM-On Leakage Current (Note 5)	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}$, $\mathrm{V}_{\mathrm{NO}}= \pm 10 \mathrm{~V}$, Sequence each switch on	MAX338	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.05	0.006	0.05	nA
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	C, E	-3.25		3.25	
					M	-40		40	
			MAX339	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.05	0.008	0.05	
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$$\text { to } \mathrm{T}_{\mathrm{MAX}}$	C, E	-1.65		1.65	
					M	-20		20	

Electrical Characteristics—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS				TYP (Note 2)	MAX	UNITS
INPUT								
Input Current with Input Voltage High	$\mathrm{I}_{\text {AH }}$	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ or 15 V			-1.0	0.001	1.0	$\mu \mathrm{A}$
Input Current with Input Voltage Low	$\mathrm{I}_{\text {AL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \text { or } 2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V} \end{aligned}$			-1.0		1.0	$\mu \mathrm{A}$
SUPPLY								
Power-Supply Range					± 4.5		± 20	V
Positive Supply Current	+	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		50	100	$\mu \mathrm{A}$
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			150	
		$\begin{aligned} & V_{\mathrm{EN}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}(\mathrm{ALL})}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		290	500	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			600	
Negative Supply Current	I-	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \text { or } 2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}(\mathrm{ALL})}=0 \mathrm{~V}, 2.4 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
DYNAMIC								
Transition Time	${ }^{\text {t }}$ TRANS	Figure 2		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} / \\ & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		200	500	ns
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			650	ns
Break-Before-Make Interval	topen	Figure 4		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10	140		ns
Enable Turn-On Time	$\mathrm{t}_{\text {ON(EN }}$)	Figure 3		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		160	500	ns
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			750	
Enable Turn-Off Time	toff(EN)	Figure 3		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		100	500	ns
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			750	
Charge Injection (Note 3)	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega, \text { Figu } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.5	5	pC
Off Isolation (Note 6)	VISO	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-75		dB
Crosstalk Between Channels	V_{CT}	$\begin{aligned} & \hline V_{E N}=2.4 \mathrm{~V}, \mathrm{f} \\ & \mathrm{~V}_{\mathrm{GEN}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{F}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{Fig} \\ & \hline \end{aligned}$	$=100 \mathrm{kHz},$ ure 7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-92		dB
Logic Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2		pF
NO-Off Capacitance	$\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{EI}} \\ & \text { oV, Figure } 8 \end{aligned}$	$=V_{N O}=$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3		pF
COM-Off Capacitance	$\mathrm{C}_{\text {COM }}$ (OFF)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \end{aligned}$ Figure 8	MAX338	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		11		pF
			MAX339			6		
COM-On Capacitance	$\mathrm{C}_{\text {COM }}$ (ON)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \end{aligned}$ Figure 8	MAX338	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		16		pF
			MAX339			9		

Electrical Characteristics-Single Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS			$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
SWITCH							
Analog Signal Range	V_{NO}, $\mathrm{V}_{\mathrm{COM}}$	(Note 3)		0		12	V
On-Resistance	R_{ON}	$\begin{aligned} & l_{\mathrm{NO}}=0.2 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} \text { or } 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		460	650	Ω
DYNAMIC							
Transition Time (Note 3)	${ }^{\text {t }}$ TRANS	$\begin{aligned} & \mathrm{V}_{\mathrm{NO} 1}=8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO} 8}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \end{aligned}$ Figure 1	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} / \\ & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		210	500	ns
						800	ns
Enable Turn-On Time (Note 3)	ton(EN)	$\begin{aligned} & \mathrm{V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{INL}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO} 1}=5 \mathrm{~V}, \end{aligned}$ Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		280	500	ns
Enable Turn-Off Time (Note 3)	toff(EN)	$\begin{aligned} & \mathrm{V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{INL}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO} 1}=5 \mathrm{~V}, \end{aligned}$ Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		110	500	ns
Charge Injection (Note 3)	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.8	5	ns

Note 2: The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$.
Note 5: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
Note 6: Worst-case isolation is on channel 4 because of its proximity to the drain pin. Off isolation $=20 \log \mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}$, where $\mathrm{V}_{\mathrm{COM}}=$ output and $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OFF LEAKAGE vs. TEMPERATURE

SUPPLY CURRENT vs. TEMPERATURE

ON-RESISTANCE vs. VCOM (SINGLE SUPPLY)

ON LEAKAGE vs. TEMPERATURE

TRANSITION TIME vs.
POWER SUPPLIES

Pin Description

PIN				NAME	FUNCTION
MAX338		MAX339			
DIP/SO/QSOP	TQFN-EP	DIP/SO/QSOP	TQFN-EP		
1, 15, 16,	15, 14, 13	-	-	A0, A2, A1	Address Inputs
-	-	1,16	15, 14	A0, A1	Address Inputs
2	16	2	16	EN	Enable
3	1	3	1	V-	Negative-Supply Voltage Input
4-7	2-5	-	-	NO1-NO14	Analog Inputs-Bidirectional
-	-	4-7	2-5	NO1A-NO4A	Analog Inputs-Bidirectional
8	6	-	-	COM	Analog Output-Bidirectional
-	-	8, 9	6, 7	COMA, COMB	Analog Outputs-Bidirectional
9-12	7-10	-	-	NO8-NO5	Analog Inputs-Bidirectional
-	-	10-13	8-11	NO4B-NO1B	Analog Inputs-Bidirectional
13	11	14	12	V+	Positive-Supply Voltage Input
14	12	15	13	GND	Ground
-	-	-	-	Exposed Pad	Exposed Pad (TQFN only). Connect EP to V+.

Applications Information

Operation with

Supply Voltages Other than 15V

Using supply voltages less than $\pm 15 \mathrm{~V}$ will reduce the analog signal range. The MAX338/MAX339 switches operate with $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ bipolar supplies or with a +4.5 V to +30 V single supply. Connect V - to GND when operating with a single supply. Both device types can also operate with unbalanced supplies such as +24 V and -5 V . The Typical Operating Characteristics graphs show typical on-resistance with $20 \mathrm{~V}, 15 \mathrm{~V}, 10 \mathrm{~V}$, and 5 V supplies. (Switching times increase by a factor of two or more for operation at 5 V .)

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence $\mathrm{V}+$ on first, then V -, followed by the logic inputs NO and COM. If power-supply sequencing is not possible, add two small signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to 1 V below $\mathrm{V}+$ and 1 V above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between $V+$ and V - should not exceed 44 V .

Figure 1. Overvoltage Protection Using External Blocking Diodes

Test Circuits/Timing Diagrams

Figure 2. Transition Time

Figure 3. Enable Switching Time

Test Circuits/Timing Diagrams (continued)

Figure 4. Break-Before-Make Interval

Figure 5. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 6. Off-Isolation

Figure 8. NO/COM Capacitance

8-Channel/Dual 4-Channel, Low-Leakage, CMOS Analog Multiplexers

Pin Configurations/Functional Diagrams/Truth Tables (continued)

MAX339

LOGIC " 0 " $\mathrm{V}_{\text {AL }} \geq 0.8 \mathrm{~V}$, LOGIC " 1 " $\mathrm{V}_{\text {AH }} \geq 2.4 \mathrm{~V}$

Pin Configurations/Functional Diagrams/Truth Tables (continued)

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX338EPE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 PDIP
MAX338ESE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX338EJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
MAX338MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP***
MAX338MSE/PR3+	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Narrow SO
MAX339CEE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX339CPE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 PDIP
MAX339CSE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX339C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice $*$

PART	TEMP RANGE	PIN-PACKAGE
MAX339EEE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX339ETE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP** $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$
MAX339EPE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 PDIP
MAX339ESE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX339EJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
MAX339MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP***
MAX339MSE/PR3+	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Narrow SO

*Contact factory for dice specifications.
**EP = Exposed Pad
***Contact factory for availability.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 PDIP	$\mathrm{P} 16+1$	$\underline{21-0043}$	-
16 Narrow SO	$\mathrm{S} 16+1$	$\underline{21-0041}$	$\underline{90-0097}$
16 QSOP	$\mathrm{E} 16+5$	$\underline{21-0055}$	$\underline{90-0167}$
16 TQFN-EP	$\mathrm{T} 1655+3$	$\underline{21-0140}$	$\underline{90-0073}$
16 CDIP	$\mathrm{J} 16+4$	$\underline{21-0045}$	-

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
4	$4 / 12$	Added the MAX338CEE+ / MAX338EEE+/ MAX338MSE /PR3 / MAX339CEE+ / MAX339EEE+ part and packaging information	$1,2,6,10,11$
5	$10 / 17$	Updated Ordering Information table	11
6	$5 / 19$	Updated Electrical Characteristics table	3,4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ HEF4053BT. 653 PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZRL7

