±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

General Description

The MAX3394E/MAX3395E/MAX3396E bidirectional level translators provide level shifting required for data transfer in a multivoltage system. Internal slew-rate enhancement circuitry features 10mA current-sink and 15mA current-source drivers to isolate capacitive loads from lower current drivers. In open-drain systems, slew-rate enhancement enables fast data rates with larger pullup resistors and increased bus load capacitance. Externally applied voltages, V_{CC} and V_{L} , set the logic-high levels for the device. A logic-low signal on one I/O side of the device appears as a logic-low signal on the opposite I/O side, and vice-versa. Each I/O line is pulled up to V_{CC} or V_{L} by an internal pullup resistor, allowing the devices to be driven by either pushpull or open-drain drivers.

The MAX3394E/MAX3395E/MAX3396E feature a tristate output mode, thermal-shutdown protection, and ±15kV Human Body Model (HBM) ESD protection on the V_{CC} side for greater protection in applications that route signals externally.

The MAX3394E/MAX3395E/MAX3396E accept V_{CC} voltages from +1.65V to +5.5V, and V_L voltages from +1.2V to V_{CC} , making them ideal for data transfer between low voltage ASIC/PLDs and higher voltage systems. The MAX3394E/MAX3395E/MAX3396E operate at a guaranteed data rate of 6Mbps with push-pull drivers and 1Mbps with open-drain drivers.

The MAX3394E is a dual-level translator available in 9-bump UCSP™ and 8-pin 3mm x 3mm TDFN packages. The MAX3395E is a quad-level translator available in 12-bump UCSP, and 12-pin 4mm x 4mm TQFN packages. The MAX3396E is an octal-level translator available in 20-bump UCSP and 20-pin 5mm x 5mm TQFN packages. The MAX3394E/MAX3395E/MAX3396E operate over the extended -40°C to +85°C temperature range.

Applications

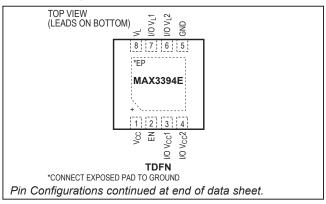
- Multivoltage Bidirectional Level Translation
- SPI™, MICROWIRE™, and I²C Level Translation
- Open-Drain Rise-Time Speed-Up
- High-Speed Bus Fan-Out Expansion
- Cell Phones
- Telecom, Networking, Servers, RAID/SAN

MICROWIRE is a trademark of National Semiconductor Corp. SPI is a trademark of Motorola, Inc.

UCSP is a trademark of Maxim Integrated Products, Inc.

Features

- ±15kV ESD Protection on I/O V_{CC} Lines
- Bidirectional Level Translation Without Direction Pin
- I/O V_L and I/O V_{CC} 10mA Sink-/15mA Source-Current Capability
- Slew-Rate Enhancement Circuitry Supports
- Larger Capacitive Loads or Larger External Pullup Resistors
- 6Mbps Push-Pull/1Mbps Open-Drain Guaranteed Data Rate
- Wide Supply-Voltage Range: Operation Down to +1.2V on V_I and +1.65V on V_{CC}
- Low Supply Current in Tri-State Output Mode (3µA typ)
- Low Quiescent Current
- Thermal-Shutdown Protection
- UCSP, TDFN, and TQFN Packages


Ordering Information

PART	PIN-PACKAGE	PKG CODE
MAX3394EETA+T	8 TDFN-EP**	T833-1
MAX3394EEBL+T	9 UCSP	B9-5
MAX3395EETC+	12 TQFN-EP**	T1244-4
MAX3395EEBC+T	12 UCSP	B12-1
MAX3396EEBP+T*	20 UCSP	B20-1
MAX3396EETP+*	20 TQFN-EP**	T2055-4

Note: All devices specified over the -40°C to +85°C operating range.

Selector Guide appears at end of data sheet.

Pin Configurations

⁺Denotes lead(Pb)-free/RoHS-compliant package.

^{*}Future product—contact factory for availability.

^{**}EP = Exposed paddle.

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

Absolute Maximum Ratings

12-Pin TQFN (derate 16.9mW/°C above +70°C) 1349mW
12-Bump UCSP (derate 6.5mW/°C above +70°C)519mW
20-Pin TQFN (derate 20.8mW/°C above +70°C)1667mW
20-Bump UCSP (derate 10.0mW/°C above +70°C)800mW
Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature+150°C
Bump Temperature (soldering)+235°C
Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{CC}$ = +1.65V to +5.5V, V_L = +1.2V to V_{CC} ; $C_{IOVL} \le$ 15pF, $C_{IOVCC} \le$ 15pF; T_A = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIO	MIN	TYP	MAX	UNITS	
POWER SUPPLY							
V _L Supply Range	VL			1.2		V _{CC}	V
V _{CC} Supply Range	V _{CC}			1.65		5.50	V
			MAX3394E			150	
Supply Current from V _{CC}	Icc	I/O lines internally pulled up	MAX3395E			300	μA
			MAX3396E			600	
			MAX3394E			30	μА
Supply Current from V _L	IL	I/O lines internally pulled up	MAX3395E			30	
			MAX3396E			30	
V _{CC} Tri-State Supply Current	I _{CC-3}	EN = GND, T _A = +25°C		3	6	μΑ	
V _L Tri-State Supply Current	I _{L-3}	EN = GND, T _A = +25°C		0.7	2	μA	
LOGIC I/O							
I/O V _L Input-Voltage High Threshold	V _{IHL}			0.7 x V _L			V
I/O V _L _Input-Voltage Low Threshold	V _{ILL}					0.3 x V _L	V
I/O V _L Internal Pullup DC Resistance	R _L	EN = V _{CC} or V _L		5	10	20	kΩ
I/O V _L Source Current During Low-to-High Transition	I _{IHL}	V _L = +1.2V			15		mA
I/O V _L _Sink Current During High-to-Low Transition	I _{ILL}	V _{CC} = +1.65V			10		mA

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

Electrical Characteristics (continued)

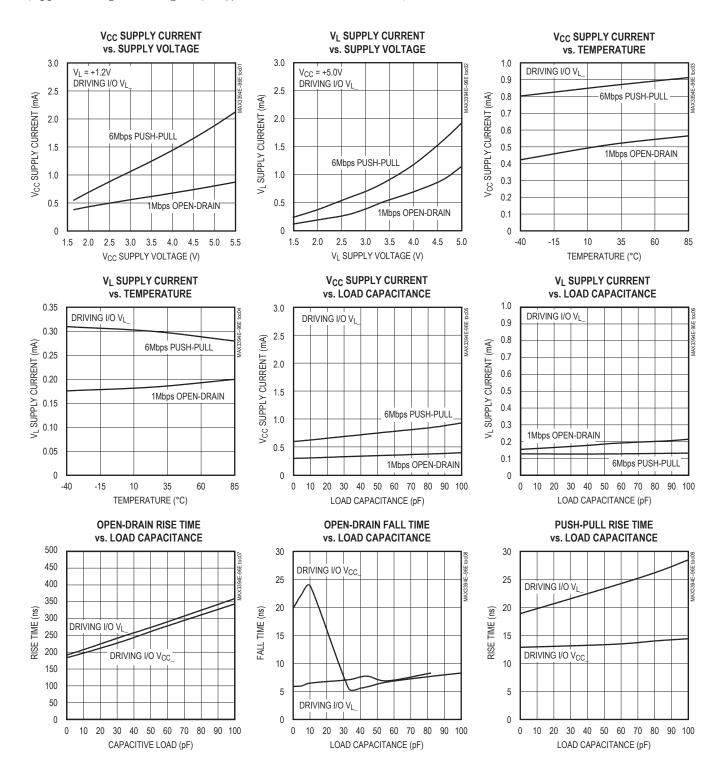
 $(V_{CC}$ = +1.65V to +5.5V, V_L = +1.2V to V_{CC} ; $C_{IOVL} \le$ 15pF, $C_{IOVCC} \le$ 15pF; T_A = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I/O V _L _ Low-to-High Transition Threshold	V _{L-TH}	V _{CC} = +3.3V, V _L = +1.8V	0.3 x V _L	0.5 x V _L		V
		I/O V _L sink current = 5mA, V _{ILC} = 0V			0.25	
I/O V _L Output-Voltage Low	V _{OLL}	I/O V_L sink current = 10mA, $V_{ILC} \le 0.4V$ or 0.2 x V_L			V _{ILC} + 0.4V	V
I/O V _L _Tri-State Output Leakage Current		EN = GND, T _A = +25°C	-1		+1	μA
I/O V _{CC} _ Input-Voltage High Threshold	V _{IHC}	(Note 2)	0.7 x V _{CC}			V
I/O V _{CC} _ Input-Voltage Low Threshold	V _{ILC}	(Note 2)			0.3 x V _{CC}	V
I/O V _{CC} _ Internal Pullup DC Resistance	R _{CC}	EN = V _{CC} or V _L	5	10	20	kΩ
I/O V _{CC} _ Source Current During Low-to-High Transition	I _{IHCC}	V _{CC} = +1.65V		15		mA
I/O V _{CC} _ Sink Current During High-to-Low Transition	lilcc	V _{CC} = +1.65V		10		mA
I/O V _{CC} _ Low-to-High Transition Threshold	V _{CC-TH}	V _{CC} = +3.3V, V _L = +1.8V	0.3 x V _{CC}	0.5 x V _{CC}		V
		I/O V _{CC} sink current = 5mA, V _{ILL} = 0V			0.25	
I/O V _{CC} _ Output-Voltage Low	V _{OLC}	I/O V_{CC} sink current = 10mA, $V_{ILL} \le 0.4V$ or $0.2 \times V_L$			V _{ILL} + 0.4V	V
I/O V _{CC} _ Tri-State Output Leakage Current		EN = GND, T _A = +25°C	-1		+1	μA
EN Input-Voltage High Threshold	V _{IHE}		0.7 x V _L			V
EN Input-Voltage Low Threshold	V _{ILE}				0.3 x V _L	V
EN Pin Input Leakage Current		T _A = +25°C	-1		+1	μA
ESD PROTECTION						
I/O V _{CC} _ESD Protection		C _{VCC} = 1µF, Human Body Model		±15		kV

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

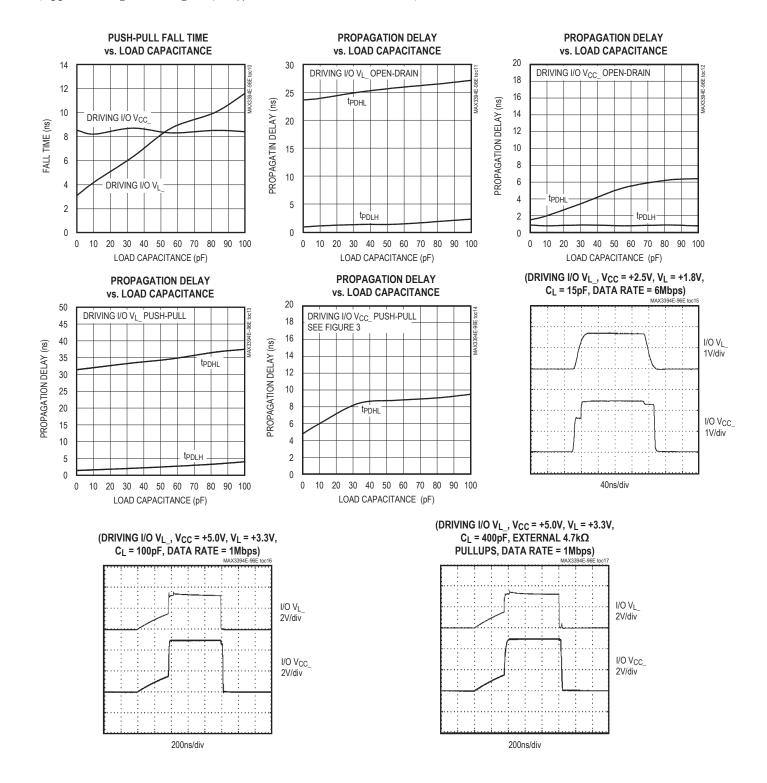
Timing Characteristics

 $(V_{CC}$ = +1.65V to +5.5V, V_L = +1.2V to V_{CC} ; $C_{IOVL} \le$ 15pF, $C_{IOVCC} \le$ 15pF; T_A = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
I/O V Digo Timo		Push-pull driver, Figure 1			50	200			
I/O V _{CC} _ Rise Time	tRVCC	Open-drain driver, internal pullup, Figure 2			500	ns			
I/O V		Push-pull driver, Figure 1			50	ne			
I/O V _{CC} _ Fall Time	tFVCC	Open-drain driver, internal pullup, Figure 2			50	ns			
I/O V Bigg Time	4	Push-pull driver, Figure 3	50			no			
I/O V _L _ Rise Time	t _{RVL}	Open-drain driver, internal pullup, Figure 4			500	ns			
I/O V Fall Time	4	Push-pull driver, Figure 3			50	no			
I/O V _L _ Fall Time	t _{FVL}	Open-drain driver, internal pullup, Figure 4			50	ns			
	t _{I/OVL-VCC}	Push-pull driver, Figure 1			50	ns			
		Open-drain driver, internal pullup, Figure 2			600				
Propagation Delay	t _{I/OVCC-VL}	Push-pull driver, Figure 3			50				
		Open-drain driver, internal pullup, Figure 4			600				
Propagation Delay After EN	Propagation Delay After EN t _{EN} Push-r				5	μs			
	tskew	Push-pull driver			5				
Channel-to-Channel Skew		Open-drain driver, internal pullup			100	ns			
		Push-pull driver, Figures 1, 3	6		6				
Maximum Data Rate		Open-drain driver, internal pullup, Figures 2, 4			1	Mbps			

Note 1: All units are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and not production tested.

Note 2: During a low-to-high transition, the threshold at which the I/O changes state is the lower of V_{ILL} and V_{ILC} since the two sides are internally connected by an internal switch while the device is in the logic-low state.


Typical Operating Characteristics

(V_{CC} = +2.5V, V_L = +1.8V, C_L = 15pF, T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(V_{CC} = +2.5V, V_L = +1.8V, C_L = 15pF, T_A = +25°C, unless otherwise noted.)

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

Pin Description

PIN							
MAX3	394E	MAX3	395E	MAX	3396E	NAME	FUNCTION
TDFN	UCSP	TQFN	UCSP	TQFN	UCSP		
1	A1	11	B1	14	D3	V _{CC}	V_{CC} Supply Voltage +1.65V \leq V_{CC} \leq +5.5V. Bypass V_{CC} to GND with a 0.1 μ F ceramic capacitor and a 1 μ F or greater ceramic capacitor as close to the device as possible.
2	B1	6	В3	4	A4	EN	Enable Input. Drive EN logic high for normal operation. Drive EN logic low to force all I/O lines to a high-impedance state and disconnect internal pullup resistors.
3	A2	10	C1	18	C1	I/O V _{CC} 1	I/O 1 Referred to V _{CC}
4	A3	9	C2	16	D1	I/O V _{CC} 2	I/O 2 Referred to V _{CC}
5	В3	5	B4	13	D4	GND	Ground
6	C3	2	A2	20	A1	I/O V _L 2	I/O 2 Referred to V _L
7	C2	1	A1	19	B1	I/O V _L 1	I/O 1 Referred to V _L
8	C1	12	B2	3	A3	VL	Logic Supply Voltage +1.2V \leq V _L \leq V _{CC} . Bypass V _L to GND with a 0.1µF or greater ceramic capacitor as close to the device as possible.
_	_	3	A3	1	B2	I/O V _L 3	I/O 3 Referred to V _L
_	_	4	A4	2	A2	I/O V _L 4	I/O 4 Referred to V _L
_	_	7	C4	15	D2	I/O V _{CC} 4	I/O 4 Referred to V _{CC}
_	_	8	C3	17	C2	I/O V _{CC} 3	I/O 3 Referred to V _{CC}
_	_	_	_	12	C3	I/O V _{CC} 5	I/O 5 Referred to V _{CC}
_		_	_	11	D5	I/O V _{CC} 6	I/O 6 Referred to V _{CC}
_		_	_	10	C4	I/O V _{CC} 7	I/O 7 Referred to V _{CC}
_		_	_	9	C5	I/O V _{CC} 8	I/O 8 Referred to V _{CC}
_	_	_	_	5	В3	I/O V _L 5	I/O 5 Referred to V _L
_		_	_	6	A5	I/O V _L 6	I/O 6 Referred to V _L
_	_	_	_	7	B4	I/O V _L 7	I/O 7 Referred to V _L
_		_	_	8	B5	I/O V _L 8	I/O 8 Referred to V _L
EP	_	EP	_	EP	_	EP	Exposed Pad. Connect exposed pad to GND.

Detailed Description

The MAX3394E/MAX3395E/MAX3396E bidirectional level translators provide level shifting required for data transfer in a multivoltage system. Internal slew-rate enhancement circuitry features 10mA current-sink and 15mA current-source drivers to isolate capacitive loads from lower current drivers. In open-drain systems, slew-rate enhancement enables fast data rates with larger pullup resistors

and increased bus load capacitance. Externally applied voltages, V_{CC} and $V_L,$ set the logic-high levels for the device. A logic-low signal on one I/O side of the device appears as a logic-low signal on the opposite I/O side and vice-versa. Each I/O line is pulled up to V_{CC} or V_L by an internal pullup resistor, allowing the devices to be driven by either push-pull or open-drain drivers.

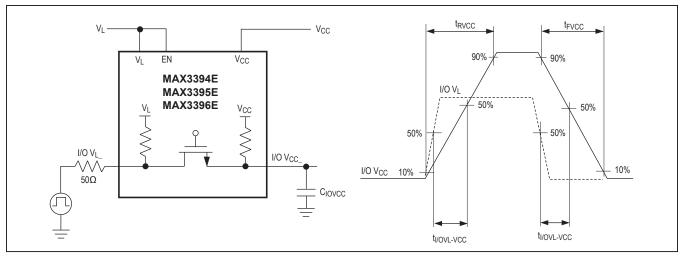


Figure 1. Push-Pull Driving I/O V_L Test Circuit and Timing

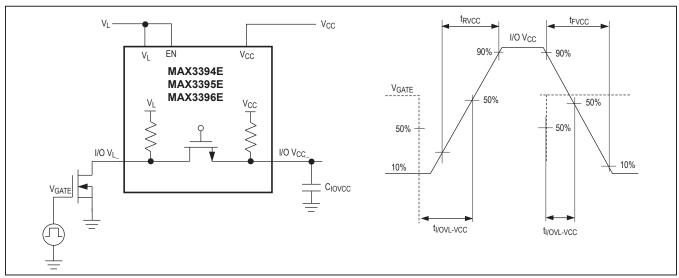


Figure 2. Open-Drain Driving I/O V_L Test Circuit and Timing

The MAX3394E/MAX3395E/MAX3396E feature a tristate output mode, thermal-shutdown protection, and $\pm 15 \text{kV}$ Human Body Model (HBM) ESD protection on the V_{CC} side for greater protection in applications that route signals externally.

The MAX3394E/MAX3395E/MAX3396E accept V_{CC} voltages from +1.65V to +5.5V, and V_{L} voltages from +1.2V to V_{CC} , making them ideal for data transfer between low-voltage ASIC/PLDs and higher voltage systems. The MAX3394E/MAX3395E/MAX3396E operate at a guaran-

teed data rate of 6Mbps with push-pull drivers and 1Mbps with open-drain drivers.

Level Translation

The MAX3394E/MAX3395E/MAX3396E utilize a transmission gate architecture to provide bidirectional level translation between I/O V_L and I/O V_{CC} . The transmission gate architecture is comprised of a pass-FET, gate-control logic, and slew-rate enhancement circuitry. When both I/O V_L and I/O V_{CC} are logic high, the gate-control logic disables the pass-FET, providing

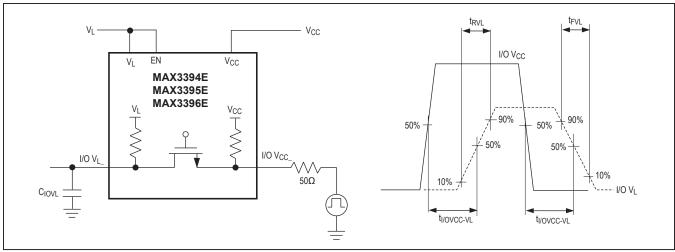


Figure 3. Push-Pull Driving I/O V_{CC} Test Circuit and Timing

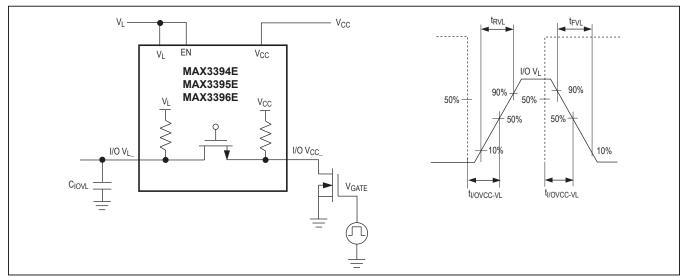


Figure 4. Open-Drain Driving I/O V_{CC} Test Circuit and Timing

capacitive isolation between I/O lines. When one or both I/O lines are at a logic-low level, the gate-control logic turns the pass-FET on. When the pass-FET is active, I/O $V_{L_}$ and I/O $V_{CC_}$ are connected, allowing the logic-low signal to be expressed simultaneously on both I/O lines.

The MAX3394E/MAX3395E/MAX3396E have internal $10k\Omega$ (typ) pullup resistors from I/O V_L and I/O V_{CC} to the respective supply voltages, allowing operation with open-drain drivers. Internal slew-rate enhancement circuitry accelerates logic-state transitions, maintaining a fast data rate with a higher bus load capacitance. Additionally, the 10mA current sink drivers permit the use of smaller external pullup resistors.

Internal Slew-Rate Enhancement

Internal slew-rate enhancement circuitry accelerates logic-state changes by turning on MOSFETs M_{P1} and M_{P2} during low-to-high logic transitions, and MOSFETs M_{N3} and M_{N4} during high-to-low logic transitions (see the Functional Diagram). During logic-state changes, speed-up MOSFETS are triggered by I/O line voltage thresholds. MOSFETS M_{N3} and M_{N4} sink 10mA during high-to-low logic transitions. M_{P1} and M_{P2} source 15mA during low-to-high logic transitions. Slew-rate enhancement allows a fast data rate despite large capacitive bus loads, and permits larger external pullup resistors.

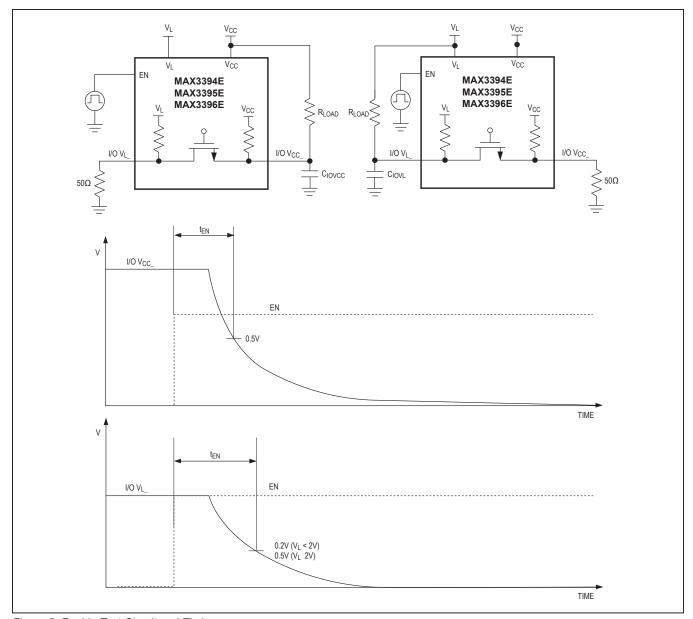


Figure 5. Enable Test Circuit and Timing

Power-Supply Sequencing

The MAX3394E/MAX3395E/MAX3396E require two supply voltages. For proper operation, ensure that +1.65V \leq V_{CC} \leq +5.5V, and +1.2V \leq V_L \leq V_{CC}. There are no restrictions on power-supply sequencing. During power-up or power-down, the MAX3394E/MAX3395E/MAX3396E can withstand either the V_L or the V_{CC} supply floating while the other supply is applied. The device will not latch up in this state.

Tri-State Output Mode

Connect EN to V_{L} or V_{CC} for normal operation. Drive EN low to force the MAX3394E/MAX3395E/MAX3396E to a tri-state output mode. In tri-state output mode, all I/O lines are driven to a high-impedance state, and the pass-FET is disabled to prevent current flow between I/O lines. Tri-state output mode disables the internal pullup resistors on I/O V_{L} and I/O V_{CC} , and reduces supply current to 3 μ A typ (V_{CC}) and 0.7 μ A typ (V_{L}).

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

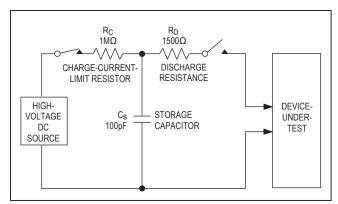


Figure 6a. Human Body ESD Test Model

The high-impedance state of the I/O lines during tri-state output mode facilitates use in multidrop networks. In tristate output mode, do not exceed (V $_{\rm L}$ + 0.3V) on I/O V $_{\rm L}$ or (V $_{\rm CC}$ + 0.3V) on I/O V $_{\rm CC}$.

Thermal-Shutdown Protection

The MAX3394E/MAX3395E/MAX3396E are protected from thermal damage resulting from short-circuit faults. In the event of a short-circuit fault, when the junction temperature (T_J) reaches +125°C, a thermal sensor forces the device into the tri-state output mode. When T_J drops below +115°C, normal operation resumes.

±15kV ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against ESD encountered during handling and assembly. The I/O V_{CC} lines are further protected by advanced ESD structures to guard these pins from damage caused by ESD of up to ± 15 kV. Protection structures prevent damage caused by ESD events in normal operation, tri-state output mode, and when the device is unpowered. After arresting an ESD event, MAX3394E/MAX3395E/MAX3396E continue to function without latching up, whereas competing devices can enter a latched-up state and must be power cycled to restore functionality.

Several ESD testing standards exist for gauging the robustness of ESD structures. The ESD protection of the MAX3394E/MAX3395E/MAX3396E is characterized for the human body model (HBM). Figure 6a shows the model used to simulate an ESD event resulting from contact with the human body. The model consists of a 100pF storage capacitor that is charged to a high voltage then discharged through a $1.5 \mathrm{k}\Omega$ resistor. Figure 6b shows the current waveform when the storage capacitor is discharged into a low impedance.

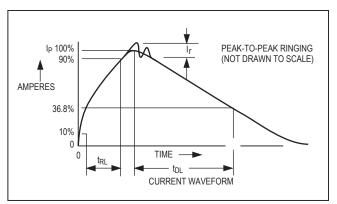


Figure 6b. HBM Discharge Current Waveform

To ensure full $\pm 15 \text{kV}$ ESD protection, bypass V_{CC} to ground with a $0.1 \mu F$ ceramic capacitor and an additional $1 \mu F$ ceramic capacitor as close to the device as possible.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report documenting test setup, methodology, and results.

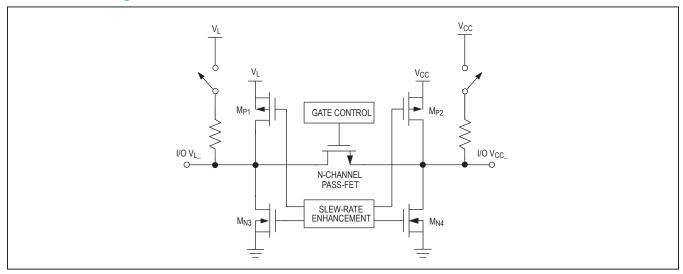
Applications Information

Power-Supply Decoupling

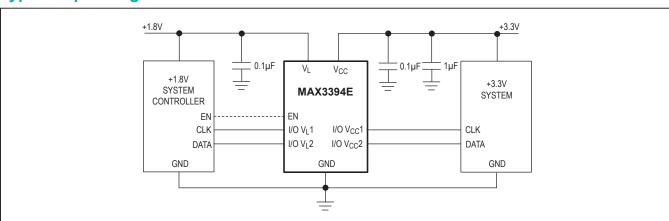
Bypass V_L and V_{CC} to ground with 0.1 μ F ceramic capacitors. To ensure full ±15kV ESD protection, bypass V_{CC} to ground with an additional 1 μ F or greater ceramic capacitor. Place all capacitors as close to the device as possible.

Open-Drain Mode vs. Push-Pull Mode

The MAX3394E/MAX3395E/MAX3396E are compatible with push-pull (active) and open-drain drivers. For push-pull operation, maximum data rate is guaranteed to 6Mbps. For open-drain applications, the MAX3394E/MAX3395E/MAX3396E include internal pullup resistors and slew-rate enhancement circuitry, providing a maximum data rate of 1Mbps. External pullup resistors can be added to increase data rate when the bus is loaded by high capacitance. (See the *Use of External Pullup Resistors* section.)


Serial-Interface Level Translation

The MAX3395E provides level translation on four I/O lines, making it an ideal device for multivoltage I²C, MICROWIRE, and SPI serial interfaces.


Use of External Pullup Resistors

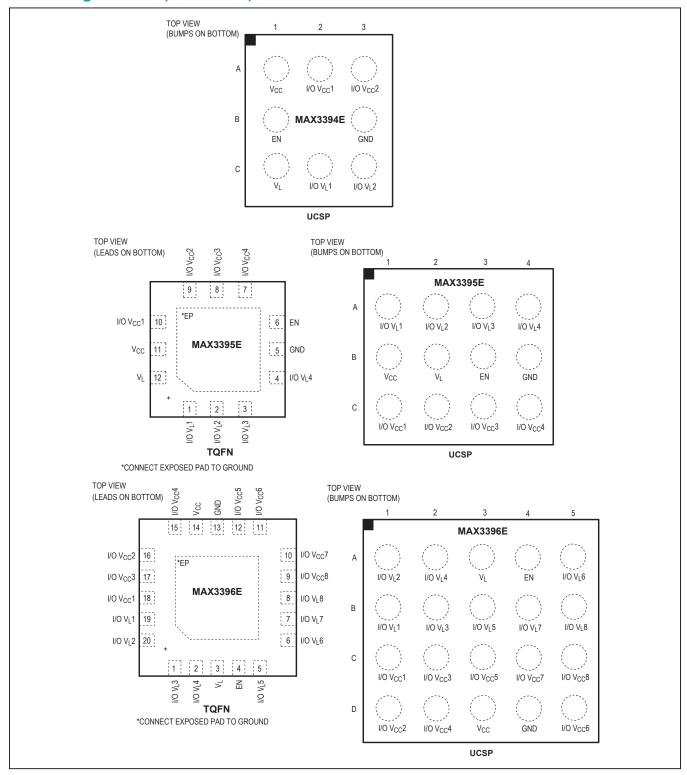
The MAX3394E/MAX3395E/MAX3396E include internal $10k\Omega$ pullup resistors. During a low-to-high logic transition, the internal pullup resistors charge the bus capaci-

Functional Diagram

Typical Operating Circuit

tance with a characteristic RC charging waveform. When the low-to-high transition threshold ($V_{\text{CC-TH}}$ or V_{LTH}) is reached, the rise time accelerators switch on, sourcing 15mA to fully charge the bus capacitance. External pullup resistors reduce the time needed to reach the low-to-high transition threshold, thereby increasing the data rate. In the logic-low state however, external pullup resistors increase the DC current through the internal pass-FET, increasing the output voltage of the device.

Smart-Card Interface


The MAX3395E provides level translation for Class A, B, and C smart cards. When supply voltage V_{CC} is interrupted due to the disconnection of a smart card, the

device does not latch up. Normal operation resumes upon restoration of the V_{CC} supply voltage. The MAX3395E provides bidirectional level translation on four I/O lines, making it well suited for buffering and translating 4-wire serial interfaces.

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profiles, as well as the latest information on reliability testing results, go to Maxim's web site at www.maximintegrated.com/ucsp to find the Application Note 1891: Wafer-Level Packaging (WLP) and Its Applications.

Pin Configurations (continued)

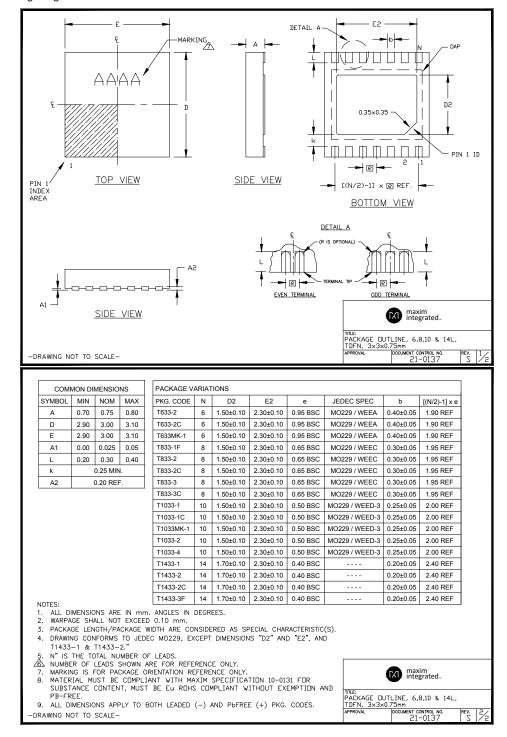
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

Selector Guide

PART	NUMBER OF TRANSLATORS	TOP MARK		
MAX3394EETA+T	2	APE		
MAX3394EEBL+T	2	AEZ		
MAX3395EETC+	4	AAFZ		
MAX3395EEBC+T	4	ACO		
MAX3396EEBP+T	8	_		
MAX3396EETP+	8	_		

Note: All devices specified over the -40°C to +85°C operating range.

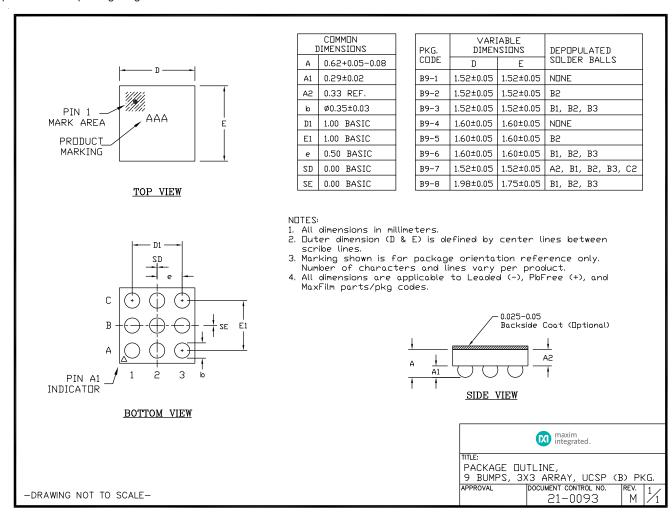
Chip Information


PROCESS: BICMOS

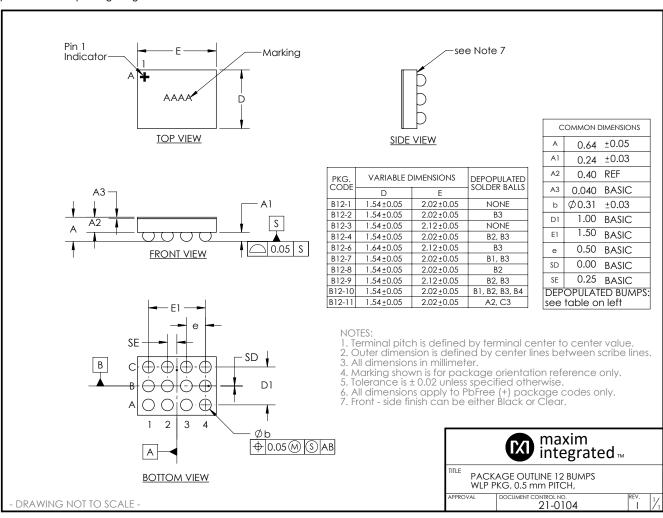
CONNECT EXPOSED PAD TO GND.

⁺Denotes lead(Pb)-free/RoHS-compliant package.

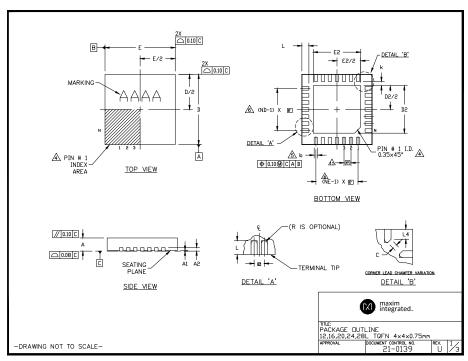
Package Information

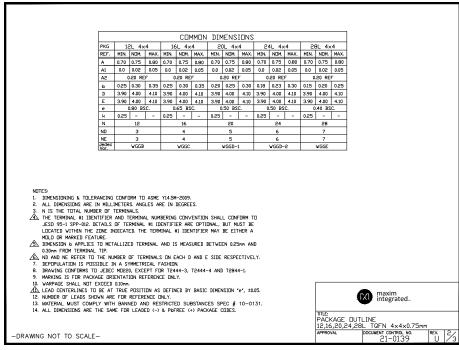

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

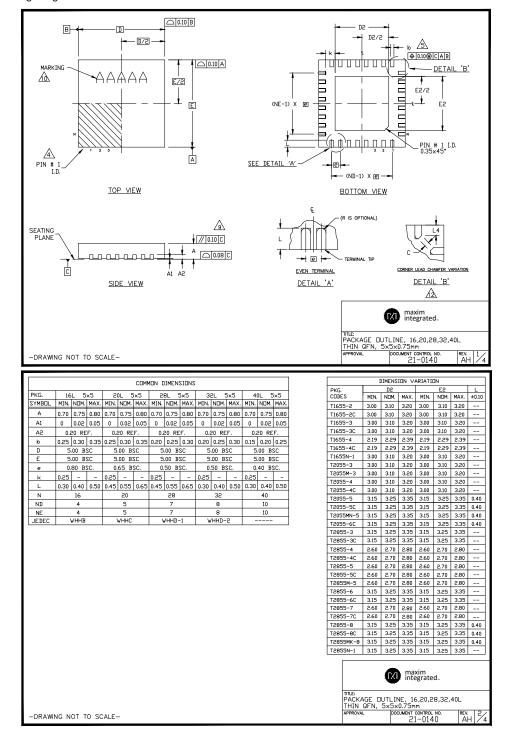

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

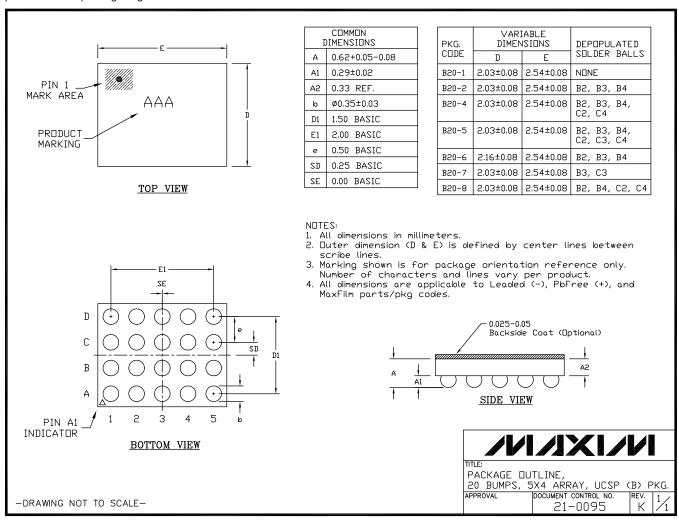

Package Information (continued)


For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)


For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)


For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/Octal-Level Translators with Speed-Up Circuitry

REVISION NUMBER	REVISION DATE	DESCRIPTION	
3	7/17	Updated Electrical Characteristics table	2–3

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG
NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG MAX3371ELT+T
NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H
CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG
MC100EPT21MNR4G MC100EP91DWG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG
SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CN#PBF SY100EL92ZG
74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ
ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3242BRJZ-REEL7 ADG3243BRJZ-REEL7
ADG3245BCPZ