
Abstract

General Description The MAX3397E evaluation kit (EV kit) is a fully assembled and tested printed-circuit board (PCB) that demonstrates the capabilities of the MAX3397E ESDprotected, dual bidirectional low-level translator. The MAX3397E allows data translation in either direction ($\mathrm{V}_{\mathrm{L}} \leftrightarrow \mathrm{V}_{\mathrm{C}}$) on any single data line. The MAX3397E EV kit accepts V_{L} from +1.2 V to +5.5 V and V Cc from +1.65 V to +5.5 V . The EV kit comes with the MAX3397EELA+ installed.

Component List

DESIGNATION	QTY	DESCRIPTION
C1, C2	2	$0.1 \mu \mathrm{~F} \pm 10 \%, 16 \mathrm{~V}$ X7R ceramic capacitors (0603) Murata GRM188R71C104K
C3	1	$1 \mu \mathrm{~F} \pm 10 \%, 16 \mathrm{~V}$ X7R ceramic capacitor (0603) Murata GRM188R71C105K
JU1	1	3-pin header
R1	1	$10 \mathrm{k} \Omega \pm 5 \%$ resistor (0603)
U1	1	MAX3397EELA+ (8-pin $\mu \mathrm{DFN}, 2 m m \times 2 m m)$
-	1	PCB: MAX3397E Evaluation Kit+

Component Supplier

SUPPLIER	PHONE	WEBSITE
Murata Mfg. Co., Ltd.	$770-436-1300$	www.murata.com

Note: Indicate that you are using the MAX3397E when contacting this component supplier

- Jumper-Selectable Enable/Shutdown Configuration - +1.2 V to +5.5 V Supply Range for V_{L} - +1.65 V to +5.5 V Supply Range for Vcc - Proven PCB Layout - Fully Assembled and Tested

Features
Jumper-Selectable Enable/Shutdown Configuration

- +1.2V to +5.5 V Supply Range for V
+1.65V to +5.5V Supply Range for Vcc
Proven PCB Layout
- Fully Assembled and Tested

MAX3397E Evaluation Kit

Quick Start

Recommended Equipment

Before beginning, the following equipment is needed:

- One +5 V DC power supply
- One +3.3V DC power supply
- One function generator
- One oscilloscope

Procedure

The MAX3397E EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on power supplies until all connections are completed.

1) Turn off the $+5 \mathrm{~V} D C$ and $+3.3 \mathrm{~V} D C$ power supplies.
2) Turn off the function generator.
3) Make sure the shunt is on pin 1-2 of JU1.
4) Connect the positive (+) terminal of the +5 V DC power supply to the VCC pad and connect the negative (-) terminal to the adjacent GND pad.
5) Connect the positive (+) terminal of the +3.3 V DC power supply to the VL pad and connect the negative (-) terminal to the adjacent GND pad.
6) Connect the positive (+) terminal of the function generator to I/OVCC1 pad of the MAX3397E EV kit. Connect the negative (-) terminal of the DC signal source to the GND pad.
7) Turn on the +5 V DC and +3.3 V DC power supplies.
8) Turn on the function generator.
9) Set the function generator to a $5 \mathrm{VP}-\mathrm{P}, 1 \mathrm{MHz}, 2.5 \mathrm{~V}$ DC offset square wave.
10) Use the oscilloscope to measure the I/O VL1 output at pin 5 . Verify that the waveform is a 1 MHz square wave and is approximately 3.3 VP -P with 1.625 V DC offset.

Detailed Description of Hardware
The MAX3397E is an ESD-protected, dual bidirectional low-level translator. The MAX3397E EV kit board provides a proven layout for evaluating the MAX3397E. The EV kit comes with a MAX3397EELA+ installed.

Enable/Shutdown Control

Place the shunt on pin 1-2 of JU1 (as shown in Table 1) to drive the EN pin of the MAX3397E high and to enable the device. Place the shunt on pin 2-3 of JU1 to drive the EN pin of the MAX3397E low and to put the device in shutdown state.

Table 1. Jumper JU1 Configuration

JUMPER	SHUNT POSITION	DESCRIPTION
$J \cup 1$	$1-2^{\star}$	Enable
	$2-3$	Shutdown

*Default position.
Power Supply
The MAX3397E accepts VL from +1.2 V to +5.5 V and V_{CC} from +1.65 V to +5.5 V . The voltage on V_{L} must be less than or equal to the voltage on Vcc.
When V_{L} is connected and $V_{C C}$ is disconnected or connected to ground, the device enters shutdown mode. In this mode, I/O VL can still be driven without damage to the device; however, data does not translate from I/O VL to I/O Vcc. If Vcc falls more than +0.8 V (typ) below V_{L}, the device disconnects the pullup resistors at I/O VL and I/O Vcc. To achieve the lowest possible supply current from VL when $V_{C C}$ is disconnected, it is recommended that the voltage at the Vcc supply input be approximately equal to GND.

MAX3397E Evaluation Kit

эん6ع\&XVW :Sołenpenヨ
Figure 1. MAX3397E EV Kit Schematic

Figure 2. MAX3397E EV Kit Component Placement Guide-
Figure 3. MAX3397E EV Kit PCB Layout-Component Side

MAX3397E Evaluation Kit

Figure 4. MAX3397E EV Kit PCB Layout-Solder Side implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

4 \qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Other Development Tools category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
BK0004 BK0012 MAX9684EVKIT\# EVAL01-HMC749LC3C 410-320 TPD6F002-Q1EVM TS9002DB 118777-HMC722LC3C 118777HMC723LC3C DC1765A-A 125614-HMC851LC3C DC2062A-A LMH6321MR-EVAL/NOPB EVAL01-HMC747LC3C 4537 DK-M3F-1.8-TRK-1.5-S DK-M3-FS-1.8-1.5-M12/16 DK-M3-LS-1.8-6 ADALP2000 EVAL-CN0202-SDPZ EVAL-CN0203-SDPZ EVAL-CN0204SDPZ EVAL-CN0209-SDPZ EVAL-CN0229-SDPZ EVAL-CN0251-SDPZ EVAL-CN0272-SDPZ EVAL-CN0301-SDPZ EVAL-CN0355PMDZ EVAL-CN0364-SDPZ EVAL-SDP-CB1Z MAX4951AEEVKIT+ MAXREFDES60\# BK0010 EFIELDEV PD70224EVB MIKROE3319 MIKROE-3357 MIKROE-4048 MIKROE-1370 MIKROE-1899 MIKROE-1901 MIKROE-1910 MIKROE-1917 MIKROE-1993 MIKROE-3116 MIKROE-957 BB-GEVK NCS2200AGEVB $27115 \underline{64019}$

