$\pm 80 V$ Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

General Description

The MAX3430 fault-protected RS-485 transceiver features $\pm 80 \mathrm{~V}$ protection from overvoltage signal faults on communication bus lines. Each device contains one driver and one receiver, and the output pins can withstand faults, with respect to ground, of up to $\pm 80 \mathrm{~V}$. Even if the faults occur when the transceiver is active, shut down, or powered off, the device will not be damaged. The MAX3430 operates from a 3.3 V supply and features a slew-rate-limited driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing errorfree data transmission at data rates up to 250kbps. The MAX3430 has a 1/4-unit-load receiver input impedance allowing up to 128 transceivers on a single bus and features fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open.
Hot-swap circuitry eliminates false transitions on the data cable during circuit initialization or connection to a live backplane. Short-circuit current limiting and ther-mal-shutdown circuitry protect the driver against excessive power dissipation.
The MAX3430 is available in 8-pin SO and 8-pin PDIP packages, and is specified over commercial and industrial temperature ranges.

Applications
RS-422/RS-485 Communications
Lighting Systems
Industrial-Control Local Area Networks
Profibus Applications
Multimaster RS-485 Networks

Features

- ± 80 V Fault Protection
- $\pm 12 k V$ ESD Protection
- +3.3V Operation
- Internal Slew-Rate Limiting
- 250kbps Data Rate
- Allows Up to 128 Transceivers on the Bus
- -7 V to +12 V Common-Mode Input Voltage Range
- True Fail-Safe Inputs
- Hot-Swap Input Structure on DE
- Available in 8-Pin SO and PDIP Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3430CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3430CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3430EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3430ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

Pin Configuration and Typical Operating Circuit

土80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Ranges

MAX3430C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX3430E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temper	$+150^{\circ} \mathrm{C}$
Storage Tempe	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperat	$+300^{\circ} \mathrm{C}$

Note 1: A, B must be terminated with 54Ω or 100Ω to guarantee $\pm 80 \mathrm{~V}$ fault protection.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER						
Differential Driver Output	VOD	Figure 1, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	2.0		V_{CC}	V
		Figure 1, RL = 54Ω	1.5		VCC	
Change in Magnitude of Differential Output Voltage	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 1, $\mathrm{RL}=100 \Omega$ or 54Ω (Note 2)			0.2	V
Driver Common-Mode Output Voltage	Voc	Figure 1, RL = 100Ω or 54Ω		Vcc/2	3	V
Change in Magnitude of Common-Mode Voltage	$\Delta \mathrm{VOC}$	Figure 1, RL = 100Ω or 54Ω (Note 2)			0.2	V
DRIVER LOGIC						
Driver Input High Voltage	V_{IH}	DI	2.0			V
Driver Input Low Voltage	$\mathrm{V}_{\text {IL }}$	DI			0.8	V
Driver Input Current	IIN	DI			± 1	$\mu \mathrm{A}$
Driver Short-Circuit Output Current	IOSD	$0 \leq \mathrm{V}$ OUT $\leq 12 \mathrm{~V}$ (Note 3)			+250	mA
		$-7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$ (Note 3)	-250			
Driver Short-Circuit Foldback Output Current	IOSDF	$\left(V_{C C}-1 \mathrm{~V}\right) \leq \mathrm{V}_{\text {OUT }} \leq 12 \mathrm{~V}$ (Note 3)	+10			mA
		$-7 \mathrm{~V} \leq \mathrm{V}$ OUT $\leq 1 \mathrm{~V}$ (Note 3)			-10	
RECEIVER						
Input Current (A, B)	IA, B	$\mathrm{DE}=\mathrm{GND}, \overline{\mathrm{RE}}=\mathrm{GND}, \mathrm{V}$ IN $=+12 \mathrm{~V}$			250	$\mu \mathrm{A}$
		$\mathrm{DE}=\mathrm{GND}, \overline{\mathrm{RE}}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$			-200	
		V IN $=-80 \mathrm{~V}$ to +80 V	-6		+6	mA
Receiver Differential Threshold Voltage	$V_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$	-200		-50	mV
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$V_{A}+V_{B}=0$		25		mV

土80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

DC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER LOGIC						
RO Output High Voltage	VOH	$\mathrm{I}=-1.6 \mathrm{~mA}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0 . \end{gathered}$			V
RO Output Low Voltage	VOL	$\mathrm{I}=1 \mathrm{~mA}$			0.4	V
Three-State Output Current at Receiver	IozR	$0 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$	48			k Ω
Receiver Output Short-Circuit Current	IOSR	$0 \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$			± 95	mA
CONTROL						
Control Input High Voltage	$\mathrm{V}_{\text {CIH }}$	DE, $\overline{\mathrm{RE}}$	2.0			V
Control Input Low Voltage	$\mathrm{V}_{\text {CIL }}$	$\mathrm{DE}, \overline{\mathrm{RE}}$			0.8	V
Input Current DE Current Latch During First DE Rising Edge				80		$\mu \mathrm{A}$
Input Current $\overline{R E}$ Current Latch During First $\overline{R E}$ Rising Edge				80		$\mu \mathrm{A}$

PROTECTION SPECIFICATIONS

($\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ESD Protection		A, B	Human Body Model		± 12		kV
SUPPLY CURRENT							
Supply Current	IcC	No lo	$\mathrm{d}, \overline{\mathrm{RE}}=0, \mathrm{DE}=\mathrm{V}_{C C}, \mathrm{DI}=0$ or $\mathrm{V}_{C C}$		3.5	10	mA
		No load, $\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{DE}=\mathrm{V}_{\mathrm{CC}}$, $\mathrm{DI}=0$ or VCC			3.0	8	
Supply Current in Shutdown Mode	ISHDN	$\overline{\mathrm{RE}}=$	$\mathrm{Cc}, \mathrm{DE}=0$			200	$\mu \mathrm{A}$

土80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

DRIVER SWITCHING CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Propagation Delay	tDPLH	Figures 2 and 3, $\mathrm{RL}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		700	1500	ns
	tDPHL			700	1500	
Driver Differential Output Rise or Fall Time	tDR, tDF	Figures 2 and 3, RL = 54 $\Omega, C \mathrm{~L}=50 \mathrm{pF}$	250		1200	ns
Differential Driver Output Skew, ItDPLH - tDPHLI	tDSKEW	Figures 2 and $3, R_{L}=54 \Omega, C_{L}=50 \mathrm{pF}$		150	200	ns
Maximum Data Rate			250			kbps
Driver Enable to Output Low	tDZL	Figure 4, $C_{L}=50 \mathrm{pF}$			5200	ns
Driver Disable Time from Output Low	tDLZ	Figure 4, CL = 50pF			1000	ns
Driver Output Enable Time from Shutdown	tDZL(SHDN)	Figure 4, CL = 50pF			8000	ns
Driver Enable to Output High	tDZH	Figure 5, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			5200	ns
Driver Disable Time from Output High	tDHZ	Figure 5, CL = 50pF			1000	ns
Driver Output Enable Time from Shutdown	tDZH(SHDN)	Figure 5, CL = 50pF			8000	ns
Driver Time to Shutdown	tshDN				1000	ns

RECEIVER SWITCHING CHARACTERISTICS
($\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Receiver Propagation Delay	tRPLH	Figure 6, $\mathrm{CL}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{V}_{\mathrm{ID}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$		120	ns
	tRPHL			120	
Receiver Output Skew, ItRPLH - tRPHLI	tSKEW	Figure 6, CL = 20pF		40	ns
Receiver Enable to Output Low	tRZL	Figure $7, R=1 \mathrm{k} \Omega, \mathrm{CL}_{L}=20 \mathrm{pF}$		80	ns
Receiver Enable to Output High	trzH	Figure 7, R = 1k $\Omega, C_{L}=20 \mathrm{pF}$		80	ns
Receiver Disable Time from Low	tRLZ	Figure $7, R=1 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=20 \mathrm{pF}$		80	ns
Receiver Disable Time form High	trhz	Figure 7, R = 1k $\Omega, C L=20 p F$		80	ns
Receiver Output Enable Time from Shutdown	tRZH(SHND), tRZL(SHND)	Figure 7, $R=1 \mathrm{k} \Omega, C L=20 \mathrm{FF}$		5000	ns
Receiver Time to Shutdown	tshDN			1000	ns

Note 2: $\Delta \mathrm{V}_{\mathrm{OD}}$ and $\Delta \mathrm{V}_{O C}$ are the changes in $\mathrm{V}_{O D}$ and V_{OC}, respectively, when the DI input changes state.
Note 3: The short-circuit output current applies to peak current just prior to foldback current limiting; the short-circuit foldback output current applies during current limiting to allow a recovery from bus contention.

土80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

土80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

Figure 1. Driver DC Test Load

Figure 3. Driver Propagation Delays

Figure 2. Driver Timing Test Circuit

Figure 4. Driver Enable and Disable Times (tDzL, $t_{D L}$, $\left.t_{D L Z(S H D N)}\right)$

Figure 5. Driver Enable and Disable Times (tDHz, tDZH, $\left.t_{D Z H(S H D N)}\right)$

土80V Fault－Protected，Fail－Safe， 1／4－Unit Load，＋3．3V RS－485 Transceiver

Figure 6．Receiver Propagation Delays

$\overline{\mathrm{RE}}$

Figure 7．Receiver Enable and Disable Times

土80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

Pin Description

PIN	NAME	\quad FUNCTION
1	RO	Receiver Output
2	$\overline{R E}$	Receiver Output Enable. RO is enabled when $\overline{R E}$ is low; RO is high impedance when $\overline{R E}$ is high. The device enters a low-power shutdown mode if $\overline{R E}$ is high and DE is low.
3	DE	Driver Output Enable. Driving DE high enables the driver outputs. Pulling DE low puts the driver outputs in a high-impedance state. If $\overline{R E}$ is high and DE is low, the device enters a low-power shutdown mode. If the driver outputs are enabled, the device functions as a line driver, and when they are high impedance it functions as a line receiver if $\overline{R E}$ is low.
4	DI	Driver Input. A logic low on DI forces output A low and output B high, while a logic high on DI forces output A high and output B low.
5	GND	Ground
6	A	Noninverting Receiver Input/Driver Output
7	B	Inverting Receiver Input/Driver Output
8	VCC	Positive Supply, VCC $=+3.3 \mathrm{~V} \pm 10 \%$. Bypass VCC to GND with a 0.1 $\mu \mathrm{F}$ ceramic capacitor.

Function Tables

Table 1. Transmitting

INPUTS			OUTPUTS		MODE
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{D I}$	\mathbf{B}	\mathbf{A}	
X	1	1	0	1	Normal
X	1	0	1	0	Normal
0	0	X	High-Z	High-Z	Normal
1	0	X	High-Z	High-Z	Shutdown

[^0]Table 2. Receiving

INPUTS OUTPUTS MODE $\overline{\mathbf{R E}}$ $\mathbf{D E}$ $\mathbf{(A - B)}$ $\mathbf{R O}$ 0 0 $\geq-50 \mathrm{mV}$ 1 Normal 0 0 $\leq-200 \mathrm{mV}$ 0 Normal 0 0 Inputs open 1 Normal 1 0 X High-Z Shutdown $X=$ Don't care.

$\pm 80 V$ Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

Detailed Description

Driver
The driver accepts a single-ended, logic-level input (DI) and transfers it to a differential, RS-485 level output (A and B). Driving DE high enables the driver, while pulling DE low places the driver outputs (A and B) into a high-impedance state.

Receiver
The receiver accepts a differential, RS-485 level input (A and B), and transfers it to a single-ended, logic-level output (RO). Pulling RE low enables the receiver, while driving $\overline{R E}$ high and $D E$ low places the receiver inputs (A and B) into a high-impedance state.

Low-Power Shutdown

Force DE low and $\overline{R E}$ high to shut down the MAX3430. A time delay of $1 \mu \mathrm{~s}$ prevents the device from accidentally entering shutdown due to logic skews when switching between transmit and receive modes. Holding DE low and $\overline{R E}$ high for at least 1 ms guarantees that the MAX3430 enters shutdown. In shutdown, the device consumes $100 \mu \mathrm{~A}$ supply current.

\pm 80V Fault Protection

The driver outputs/receiver inputs of RS-485 devices in industrial network applications often experience voltage faults resulting from transients that exceed the -7V to +12 V range specified in the EIA/TIA-485 standard. In these applications, ordinary RS-485 devices (typical absolute maximum ratings -8 V to +12.5 V) require costly external protection devices. To reduce system complexity and the need for external protection, the driver outputs/receiver inputs of the MAX3430 withstand voltage faults of up to $\pm 80 \mathrm{~V}$ with respect to ground without damage (see the Absolute Maximum Ratings section, Note 1). Protection is guaranteed regardless of whether the device is active, shut down, or without power.

Figure 8a. Human Body ESD Test Model

True Fail-Safe
The MAX3430 uses a -50 mV to -200 mV differential input threshold to ensure true fail-safe receiver inputs. This threshold guarantees the receiver outputs a logic high for shorted, open, or idle data lines. The -50 mV to -200 mV threshold complies with the $\pm 200 \mathrm{mV}$ threshold EIA/TIA-485 standard.
$\pm 12 \mathrm{kV}$ ESD Protection As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against ESD encountered during handling and assembly. The MAX3430 receiver inputs/driver outputs (A, B) have extra protection against static electricity found in normal operation. Maxim's engineers have developed state-of-the-art structures to protect these pins against $\pm 12 \mathrm{kV}$ ESD without damage. After an ESD event, the MAX3430 continues working without latchup.
ESD protection can be tested in several ways. The receiver inputs are characterized for protection up to $\pm 12 \mathrm{kV}$ using the Human Body Model.

ESD Test Conditions

ESD performance depends on a number of conditions. Contact Maxim for a reliability report that documents test setup, methodology, and results.

Human Body Model

Figure 8a shows the Human Body Model, and Figure 8b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

Driver Output Protection
Two mechanisms prevent excessive output current and power dissipation caused by faults or bus contention. The first, a foldback current limit on the driver output

Figure 8b. Human Body Model Current Waveform

土80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

stage, provides immediate protection against short circuits over the whole common-mode voltage range. The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds $+160^{\circ} \mathrm{C}$. Normal operation resumes when the die temperature cools by $+140^{\circ} \mathrm{C}$, resulting in a pulsed output during continuous short-circuit conditions.

Figure 9. Simplified Structure of the Driver Enable Pin (DE)

Hot-Swap Capability Hot-Swap Inputs

 Inserting circuit boards into a hot, or powered backplane may cause voltage transients on $D E, \overline{R E}$, and receiver inputs A and B that can lead to data errors. For example, upon initial circuit board insertion, the processor undergoes a power-up sequence. During this period, the highimpedance state of the output drivers makes them unable to drive the MAX3430 enable inputs to a defined logic level. Meanwhile, leakage currents of up to $10 \mu \mathrm{~A}$ from the high-impedance output, or capacitively coupled noise from VCC or GND, could cause an input to drift to an incorrect logic state. To prevent such a condition from occurring, the MAX3430 features hot-swap input circuitry on DE to safeguard against unwanted driver activation during hot-swap situations. When V_{Cc} rises, an internal pulldown circuit holds DE low for at least $10 \mu \mathrm{~s}$, and until the current into DE exceeds $200 \mu \mathrm{~A}$. After the initial power-up sequence, the pulldown circuit becomes transparent, resetting the hot-swap tolerable input.
Hot-Swap Input Circuitry

At the driver enable input (DE), there are two NMOS devices, M1 and M2 (Figure 9). When VCC ramps from 0 , an internal 15μ s timer turns on M 2 and sets the SR latch, which also turns on M1. Transistors M2, a 2 mA current sink, and M 1 , a $100 \mu \mathrm{~A}$ current sink, pull DE to GND through a $5.6 \mathrm{k} \Omega$ resistor. M2 pulls DE to the disabled state against an external parasitic capacitance up to 100 pF that may drive DE high. After $15 \mu \mathrm{~s}$, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakage currents that may drive DE high. M1 remains on until an external current source overcomes the required input current. At this time, the SR latch resets M1 and turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V_{CC} drops below 1 V , the input is reset.

Figure 10. Typical RS-485 Network

$\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

Applications Information

128 Transceivers on the Bus
The standard RS-485 receiver input impedance is $12 \mathrm{k} \Omega$ (one-unit load), and a standard driver can drive up to 32-unit loads. The MAX3430 transceiver 1/4-unit-load receiver input impedance ($48 \mathrm{k} \Omega$) allows up to 128 transceivers connected in parallel on one communication line. Connect any combination of these devices, and/or other RS-485 devices, for a maximum of 32 unit loads to the line.

RS-485 Applications
The MAX3430 transceiver provides bidirectional data communications on multipoint bus transmission lines. Figure 10 shows a typical network applications circuit. The RS-485 standard covers line lengths up to 4000 ft . The signal line must be terminated at both ends in its characteristic impedance, and stub lengths off the main line kept as short as possible.

Chip Information
TRANSISTOR COUNT: 300
PROCESS: BiCMOS

土80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

TOP VIEW

FRONT VIEW

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	
e	0.050 BSC		1.27	
E	0.150	0.157	3.80	4.00
H	0.228	0.244	5.80	6.20
L	0.016	0.050	0.40	1.27

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $\mathrm{N}=$ NUMBER OF PINS.

PROPRIETARY INFORMATION			
PTTLE: PACKAGE OUTLINE, 150 SOIC			
PRov	DOCUMENT CONTROL NO. $21-0041$	B	1/1

土80V Fault-Protected, Fail-Safe, 1/4-Unit Load, +3.3V RS-485 Transceiver
 Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-485 Interface IC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LTC1483CN8 LTC1482CN8 SN65HVD1477DGKR SN65HVD1477DGK LTC1685CS8\#PBF LTC1518IS\#PBF LTC486CN\#PBF
THVD1500DR LTC488CSW\#PBF LTC2876HMS8E\#PBF LTC485CS8\#PBF THVD1550DR LTC1487CN8\#PBF LTC489CSW\#PBF
LTC1485CN8\#PBF LTC1686IS8\#PBF LTC488CN\#PBF LTC1480IN8\#PBF ADM3066EARMZ ADM3095EBRZ LTC487IN\#PBF
LTC1482CMS8\#PBF LTC488IN\#PBF LTC486IN\#PBF LTC1481IN8\#PBF SN65HVD1470DR ADM3063EARZ ADM3068EARZ
ADM3064EARZ-R7 ADM3064EBRZ ADM3064EARZ ADM3065ETRMZ-EP ADM3066EBRMZ-R7 ADM3066ETRMZ-EP
ADM3095EARZ LTC1687IS\#PBF LTC1686CS8\#PBF LTC1481CS8\#PBF LTC1485IS8\#TRPBF LTC1482CS8\#TRPBF LTC485CN8\#PBF
SP488CS LTC1484CN8\#PBF LTC1482CN8\#PBF LTC1483IN8\#PBF LTC1483CS8 LTC1483IS8 LTC1485IS8 LTC1518IS
LTC1689IS\#PBF

[^0]: X = Don't care

