+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

Abstract

General Description The MAX3465-MAX3469 are high-speed differential bus transceivers for RS-485 and RS-422 communications. They are designed to meet TIA/EIA-422-B, TIA/EIA-485-A, V.11, and X. 27 standards. The transceiver complies with the Profibus specification providing +2.1 V minimum output level with a 54Ω load, 40 Mbps data rate, and output skew less than 2ns. Each part contains one three-state differential line driver and one differential input line receiver. The devices operate from a +5 V supply and feature true fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This enables all receiver outputs on a terminated bus to output logic highs when all transmitters are disabled. All devices feature a 1/4-standard-unit load receiver input impedance that allows 128 transceivers on the bus. Driver and receiver propagation delays are guaranteed under 20ns for multidrop, clock distribution applications. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal-shutdown circuitry. The driver and receiver feature active-high and active-low enables, respectively, that can be connected together externally to serve as a direction control.

Applications

High-Speed RS-485 Communications High-Speed RS-422 Communications Level Translators

Industrial-Control Local Area Networks Profibus Applications
___Features

- Recommended for Profibus Applications
- Up to 40Mbps Data Rate
- 15ns Transmitter Propagation Delay
- 20ns Receiver Propagation Delay
- 2ns Transmitter and Receiver Skew
- High Differential Driver Output Level (2.1V on 54 2)
- Hot-Swap Versions
- 1uA Shutdown Supply Current
- Low Supply Current Requirements (2.5mA, typ)
- Allow Up to 128 Transceivers on the Bus
- True Fail-Safe Receiver while Maintaining EIA/TIA485 Compatibility
- Designed for Multipoint Transmissions on Long or Noisy Bus Lines
- Full-Duplex and Half-Duplex Versions Available
- Phase Controls to Correct for Twisted-Pair Reversal for 14-Pin Versions
- Current-Limiting and Thermal Shutdown for Driver Overload Protection

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3465CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX3465CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3465ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX3465EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP

Ordering Information continued at end of data sheet.
Devices are also available in a lead(Pb)-free/RoHS-compliant package. Specify lead-free by adding "+" to the part number when ordering.

Pin Configurations appear at end of data sheet.

Selector Guide

PART NUMBER	HALF/FULL DUPLEX	RECEIVER/ DRIVER ENABLE	LOW- POWER SHUTDOWN	HOT SWAP	RECEIVER/ DRIVER PHASE SELECT	INDEPENDENT SHDN PIN	PIN COUNT
MAX3465	Full	Yes	Yes	Yes	Yes	Yes	14
MAX3466	Full	Yes	Yes	No	Yes	Yes	14
MAX3467	Full	No	No	No	No	No	8
MAX3468	Half	Yes	Yes	Yes	No	No	8
MAX3469	Half	Yes	Yes	No	No	No	8

For pricing, delivery, and ordering information, please contact Maxim Direct

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

ABSOLUTE MAXIMUM RATINGS

SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 667 mWDIP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
Operating Temperature Range	
MAX346_C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX346_E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$	
Soldering Temperature (reflow)	
Lead(Pb)-Free	$+260^{\circ} \mathrm{C}$
ontaining Lead($+240^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Receiver Differential Threshold Voltage	VTH	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$	-200	-125	-50	mV
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{CM}}=0$		20		mV
Receiver Output High Voltage	V OH	$\mathrm{IO}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\text {TH }}$	$V_{C C}-1.5$			V
Receiver Output Low Voltage	VOL	$\mathrm{IO}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\text {TH }}$			0.4	V
Three-State Output Current at Receiver	Iozr	$0 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$	48			k Ω
Receiver Output Short-Circuit Current	IOSR	$0 \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$	± 7		± 95	mA
ESD Protection		A, B, Y, and Z pins (MAX3467/MAX3468/MAX3469)		± 6		kV

SUPPLY CURRENT

Normal Operation (Static Condition)	IQ	No load, $\mathrm{DI}=\mathrm{Vcc}$ or $\mathrm{DI}=\mathrm{GND}$	2.5	4	mA
Supply Current in SHDN	ISHDN	$\mathrm{DE}=\mathrm{GND}$ and $\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}$, or $\mathrm{SHDN}=\mathrm{V}_{\mathrm{CC}}$	1	10	$\mu \mathrm{A}$

Driver Propagation Delay	tPLH	Figures 6 and 7, RDIFF $=54 \Omega$, $C_{L}=50 \mathrm{pF}$		15	ns
	tPHL				
Driver Differential Output Rise or Fall Time	tR	Figures 6 and 7, RDIFF $=54 \Omega$, $C_{L}=50 \mathrm{pF}$		10	ns
	$\mathrm{tF}_{\text {F }}$				
Driver Output Skew Itpli - tphl	tSKEW	Figures 6 and 7, RDIFF $=54 \Omega$, $C_{L}=50 \mathrm{pF}$, TXP = GND or open		2	ns
Driver Output Transition Skew		Guaranteed by design		1	ns
Maximum Data Rate			30		Mbps
Driver Enable to Output High	tz ${ }^{\text {l }}$	Figures 8 and 9, S2 closed, $R \mathrm{~L}=500 \Omega$, $C_{L}=50 \mathrm{pF}$		30	ns
Driver Enable to Output Low	tZL	Figures 8 and 9, S1 closed, $R_{L}=500 \Omega$, $C_{L}=50 \mathrm{pF}$		30	ns
Driver Disable Time from Low	tLZ	Figures 8 and $9, S 1$ closed, $R L=500 \Omega$, $C_{L}=50 \mathrm{pF}$		30	ns
Driver Disable to Output High	thz	Figures 8 and 9, S2 closed, $R_{L}=500 \Omega$, $C_{L}=50 \mathrm{pF}$		30	ns
Driver Enable Skew Time	ItzL - tzH	$R_{L}=500 \Omega, C_{L}=50 \mathrm{pF}$, S1 closed (Figures 8 and 9), output low		5	ns
Driver Disable Skew Time	ItzL - tzH	$R_{L}=500 \Omega, C_{L}=50 p F, S 2$ closed (Figures 8 and 9), output high		5	ns
Receiver Propagation Delay	tPLH	Figure 10, CL $=15 \mathrm{pF}$ (Note 4)		20	ns
	tPHL				

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Receiver Output Skew	ItpLH - tPHLI	Figure $10, C_{L}=15 p F, R X P=G N D$ or open (Note 4)		2	ns
Receiver Enable to Output Low	tZL	Figures 8 and 11, $R L=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, S1 closed (Note 4)		30	ns
Receiver Enable to Output High	tz H	Figures 8 and 11, $R L=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, S2 closed (Note 4)		30	ns
Receiver Disable Time from Low	tLZ	Figures 8 and 11, $R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, S1 closed (Note 4)		30	ns
Receiver Disable Time from High	thZ	Figures 8 and 11, $R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, S2 closed (Note 4)		30	ns
Time to Shutdown	tSHDN	(Note 5)	50	800	ns
Driver Enable from Shutdown to Output High	tZH (SHDN)	Figures 8 and 9, $R_{L}=500 \Omega, C_{L}=50 p F$, S2 closed (Note 5)		4	$\mu \mathrm{s}$
Driver Enable from Shutdown to Output Low	tZL (SHDN)	Figures 8 and 9, $R_{L}=500 \Omega, C_{L}=50 p F$, S1 closed (Note 5)		4	$\mu \mathrm{s}$
Receiver Enable from Shutdown to Output High	tZH (SHDN)	Figures 8 and 11, $R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, S2 closed (Notes 4, 5)		4	$\mu \mathrm{s}$
Receiver Enable from Shutdown to Output Low	tZL (SHDN)	Figures 8 and 11, $R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, S1 closed (Notes 4,5)		4	$\mu \mathrm{s}$

Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to device ground, unless otherwise noted.
Note 2: $\Delta \mathrm{V}_{\mathrm{OD}}$ and $\Delta \mathrm{V}_{\mathrm{OC}}$ are the changes in V_{OD} and V_{OC}, respectively, when the DI input changes state.
Note 3: The short-circuit output current applies to peak current just prior to foldback-current limiting; the short-circuit foldback output current applies during current limiting to allow a recovery from bus contention.
Note 4: Capacitive load includes test probe and fixture capacitance.
Note 5: Shutdown is enabled by bringing $\overline{R E}$ high and DE low or by bringing SHDN high. If the enable inputs are in this state for less than 50 ns , the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 800 ns , the device is guaranteed to have entered shutdown.

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

RECEIVER PROPAGATION DELAY vs. TEMPERATURE

DRIVER OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGE

RECEIVER OUTPUT LOW VOLTAGE vs. TEMPERATURE

DRIVER PROPAGATION DELAY vs. TEMPERATURE

OUTPUT CURRENT vs. DRIVER OUTPUT LOW VOLTAGE ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

RECEIVER OUTPUT HIGH VOLTAGE vs. TEMPERATURE

dRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE

OUTPUT CURRENT vs. DRIVER OUTPUT HIGH VOLTAGE

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.

Pin Description

PIN			NAME	FUNCTION
FULL DUPLEX		HALF DUPLEX		
MAX3465/ MAX3466	MAX3467	MAX3468/ MAX3469		
1	-	-	SHDN	Shutdown. Drive SHDN high to enter low-power shutdown mode.
2	2	1	RO	Receiver Output. When $\overline{\mathrm{RE}}$ is low and $(A-B) \geq-50 \mathrm{mV}$, $R O$ is high; if $(A-B) \leq$ -200mV, RO is low.
3	-	2	$\overline{\mathrm{RE}}$	Receiver Output Enable. Drive $\overline{\mathrm{RE}}$ low to enable RO; RO is high impedance when $\overline{\mathrm{RE}}$ is high. Drive $\overline{\mathrm{RE}}$ high and DE low to enter low-power shutdown mode.
4	-	3	DE	Driver Output Enable. Drive DE high to enable driver output. The driver outputs are high impedance when $D E$ is low. Drive $\overline{R E}$ high and DE low to enter low-power shutdown mode. Do not leave $\overline{R E}$ unconnected when using the MAX3466 or MAX3469.
5	3	4	DI	Driver Input. With DE high, a low on DI forces the noninverting output low and the inverting output high. Similarly, a high on DI forces the noninverting output high and the inverting output low.
6, 7	4	5	GND	Ground
8	-	-	TXP	Transmitter Phase. Connect TXP to GND, or leave unconnected for normal transmitter phase/polarity. Connect TXP to V_{Cc} to invert the transmitter phase/polarity. TXP has an internal $15 \mu \mathrm{~A}$ pulldown.
9	5	-	Y	Noninverting Driver Output
10	6	-	Z	Inverting Driver Output
11	7	-	B	Inverting Receiver Input
12	8	-	A	Noninverting Receiver Input
13	-	-	RXP	Receiver Phase. Connect RXP to GND, or leave unconnected for normal receiver phase/polarity. Connect RXP to Vcc to invert the receiver phase/polarity. RXP has an internal $15 \mu \mathrm{~A}$ pulldown.
14	1	8	VCC	Positive Supply: $+4.75 \mathrm{~V} \leq \mathrm{V}$ cc $\leq+5.25 \mathrm{~V}$. Bypass V_{Cc} to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
-	-	7	B	Inverting Receiver Input and Inverting Driver Output
-	-	6	A	Noninverting Receiver Input and Noninverting Driver Output

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

MAX3465/MAX3466

Function Tables
MAX3467

TRANSMITTING		
INPUT	OUTPUTS	
DI	\mathbf{Z}	\mathbf{Y}
1	0	1
0	1	0
RECEIVING		
OUTPUT		
INPUTS	RO	
A - B	1	
$\leq-0.05 \mathrm{~V}$	0	
Open/Shorted	1	

MAX3468/MAX3469

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{\mathrm{RE}}$	DE	DI	B	A
X	1	1	0	1
X	1	0	1	0
0	0	X	High-Z	High-Z
1	0	X	Shutdown	
RECEIVING				
INPUTS				OUTPUT
$\overline{\mathrm{RE}}$	DE	A-B		RO
0	X	$\geq-0.05 \mathrm{~V}$		1
0	X	$\leq-0.2 \mathrm{~V}$		0
0	X	Open/Shorted		1
1	1	X		High-Z
1	0	X		Shutdown

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

Pin Configurations and Typical Operating Circuit

TOP VIEW

Figure 1. MAX3465/MAX3466 Pin Configuration and Typical Full-Duplex Operating Circuit

TOP VIEW

Figure 2. MAX3467 Pin Configuration and Typical Full-Duplex Operating Circuit

TOP VIEW

NOTE: PIN LABELS Y AND Z ON TIMING, TEST, AND WAVEFORM DIAGRAMS REFER TO PINS A AND B WHEN DE IS HIGH.
Figure 3. MAX3468/MAX3469 Pin Configuration and Typical Half-Duplex Operating Circuit

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

Detailed Description

The MAX3465-MAX3469 high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature true fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all drivers disabled (see the True Fail-Safe section). The MAX3465-MAX3469's driver slew rates allow transmit speeds up to 40Mbps.
The MAX3468 and MAX3469 are half-duplex transceivers, while the MAX3465, MAX3466, and MAX3467 are full-duplex transceivers. All of these parts operate from a single +5 V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissipation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state. The MAX3465 and MAX3468 devices have a hot-swap input structure that prevents disturbances on the differential signal lines when a circuit board is plugged into a hot backplane (see the Hot-Swap Capability section). All devices have output levels that are compatible with Profibus standards.

True Fail-Safe
The MAX3465-MAX3469 guarantee a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver threshold between -50 mV and -200 mV . If the differential receiver input voltage ($\mathrm{A}-\mathrm{B}$) is greater than or equal to $-50 \mathrm{mV}, \mathrm{RO}$ is logic high. If A - B is less than or equal to $-200 \mathrm{mV}, R O$ is logic low. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage is pulled to OV by the termination. With the receiver thresholds of the MAX3465-MAX3469, this results in a logic high with a 50 mV minimum noise margin. Unlike previous true fail-safe devices, the -50 mV to -200 mV threshold complies with the $\pm 200 \mathrm{mV}$ EIA/TIA-485 standard.

Hot-Swap Capability

Hot-Swap Inputs
When circuit boards are inserted into a "hot" or powered backplane, disturbances to the enable and differential receiver inputs can lead to data errors. Upon initial circuit board insertion, the processor undergoes its power-up sequence. During this period, the processor output drivers are high impedance and are unable to drive the DE input of the MAX3465/MAX3468 to a
defined logic level. Leakage currents up to $10 \mu \mathrm{~A}$ from the high-impedance output could cause DE to drift to an incorrect logic state. Additionally, parasitic circuit board capacitance could cause coupling of Vcc or GND to DE. These factors could improperly enable the driver.
When VCC rises, an internal pulldown circuit holds DE low for around $15 \mu \mathrm{~s}$. After the initial power-up sequence, the pulldown circuit becomes transparent, resetting the hot-swap-tolerable input.

Hot-Swap Input Circuitry
The MAX3465/MAX3468 enable inputs feature hot-swap capability. At the input there are two NMOS devices, M1 and M2 (Figure 4). When VCC ramps from 0, an internal 15μ s timer turns on M2 and sets the SR latch, which also turns on M1. Transistors M2, a 2mA current sink, and M 1 , a $100 \mu \mathrm{~A}$ current sink, pull DE to GND through a $5.6 \mathrm{k} \Omega$ resistor. M 2 is designed to pull DE to the disabled state against an external parasitic capacitance up to 100 pF that can drive DE high. After 15μ s, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resets and M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever VCC drops below 1V, the hot-swap input is reset.
For $\overline{\mathrm{RE}}$ there is a complementary circuit employing two PMOS devices pulling to VCC.

Figure 4. Simplified Structure of the Driver Enable Pin (DE)

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

Figure 5. Driver DC Test Load

Figure 6. Driver Timing Test Circuit

Figure 7. Driver Propagation Delays

Figure 8. Enable/Disable Timing Test Load

Figure 9. Driver Enable and Disable Times

Figure 10. Receiver Propagation Delays

Figure 11. Receiver Enable and Disable Times

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

Figure 12. Receiver Propagation Delay Test Circuit

Applications Information

128 Transceivers on the Bus

The standard RS-485 receiver input impedance is $12 \mathrm{k} \Omega$ (one unit load), and the standard driver can drive up to 32 unit loads. The MAX3465-MAX3469 family of transceivers has a $1 / 4$-unit-load receiver input impedance (48k Ω), allowing up to 128 transceivers to be connected in parallel on one communication line. Any combination of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.

Low-Power Shutdown Mode (Except MAX3467)

Low-power shutdown mode is initiated by bringing SHDN high (MAX3465/MAX3466), or both RE high and DE low. In shutdown, the devices typically draw only $1 \mu \mathrm{~A}$ of supply current. $\overline{\mathrm{RE}}$ and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if $R E$ is high and $D E$ is low for less than 50 ns. If the inputs are in this state for at least 800ns, the devices are guaranteed to enter shutdown.

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. The first, a foldback current limit on the output stage, provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics). The second, a thermal-shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds $+140^{\circ} \mathrm{C}$.

Propagation Delay

Many digital encoding schemes depend on the difference between the driver and receiver propagation delay times. Typical propagation delays are shown in the Typical Operating Characteristics. The difference in receiver delay times, ItPLH - tpHLI, is a maximum of 2 ns . The driver skew time ItPLH - tpHLI is also a maximum of 2 ns .

Typical Applications

The MAX3465-MAX3469 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 13 and 14 show typical network applications circuits. To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible.

Profibus Termination The MAX3465-MAX3469 are designed for driving Profibus termination networks. With a worst-case loading of two termination networks with 220Ω termination impedance and 390Ω pullups and pulldowns, the drivers can drive $\mathrm{V}_{\mathrm{A}} \mathrm{B}>2.1 \mathrm{~V}$ output.

Chip Information
PROCESS: BiCMOS

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX3466CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX3466CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3466ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX3466EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3467CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3467CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3467ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3467EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3468CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3468CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3468ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3468EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3469CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3469CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3469ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3469EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP

Devices are also available in a lead(Pb)--free/RoHS-compliant package. Specify lead-free by adding "+" to the part number when ordering.

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

Figure 13. Typical Half-Duplex RS-485 Network

NOTE: $\overline{\text { ME }}$ AND DE ON MAX3465/MAX3466/MAX3467 ONLY.
Figure 14. Typical Full-Duplex RS-485 Network
Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
14 SO	$\mathrm{S} 14-1$	$\underline{\mathbf{2 1 - 0 0 4 1}}$	$\underline{\mathbf{9 0 - 0 1 1 2}}$
14 PDIP	$\mathrm{P} 14-3$	$\underline{\mathbf{2 1 - 0 0 4 3}}$	-
8 SO	$\mathrm{S}-2$	$\underline{\mathbf{2 1 - 0 0 4 1}}$	$\underline{\mathbf{9 0 - 0 0 9 6}}$
8 PDIP	$\mathrm{P} 8-1$	$\underline{\mathbf{2 1 - 0 0 4 3}}$	-

+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 09$	Initial release.	-
1	$1 / 04$	Updated the description for the DE pin in the Pin Description table.	6
2	$8 / 09$	Replaced TOC 11.	5
3	$5 / 12$	Added lead-free compliant packaging information, updated Figure 3 caption, updated package table	$1,8,11,12$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NSI83085 WS3088EESA-GEC ADM2687EBRIZ-RL7 MAX489CPD+ MAX485ESA+T MAX491EPD+ MAX488EEPA+ MAX3080CPD+ MXL1535EEWI+ SN65LBC173DR DS16F95J/883 MAX490ESA+T LTM2881IY-3\#PBF LT1791CN\#PBF LTM2881CY-3\#PBF LTC2857IMS8-2\#PBF LT1791ACN\#PBF LTC487CS\#PBF MAX1487CUA+T XR3074XID-F XR3082XID-F SP1481EEN-L SN75ALS173NSR ADM3491ARZ-REEL ADM485JN ADM1485ANZ ADM1485JNZ ADM1490EBRMZ ADM489ABRZ ADM1491EBRZ-REEL7 ADM3070EYRZ ADM3073EARZ ADM4850ACPZ-REEL7 ADM4850ARMZ-REEL7 ADM485ANZ ADM485ARMZ ADM485JNZ ADM488ANZ ADM489ANZ ADM489ARUZ ADM3488ARZ ADM3488EARZ ADM3490ARZ ADM3493ARZ ADM4856ARZ-REEL7 ADM487EARZ-REEL7 ADM488ABRZ ADM1486ARZ ADM3075EWYRZ ADM3490ARZREEL7

