1.6 $\mu \mathrm{A}$, RS-485/RS-422, Half-Duplex, Differential Transceiver for Battery-Powered Systems

Abstract

General Description The MAX3471 half-duplex transceiver is intended for lithium battery-powered RS-485/RS-422 applications. It lithium battery-powered RS-485/RS-422 applications. It draws only $1.6 \mu \mathrm{~A}$ (typical) supply current from a 3.6 V supply with the receiver enabled and the driver disabled. Its wide 2.5 V to 5.5 V supply voltage guarantees operation over the lifetime of a lithium battery. This device features true fail-safe operation that guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiv- er output will be a logic high if all transmitters on a terinputs are open or shorted. This means that the receiv- er output will be a logic high if all transmitters on a terminated bus are disabled (high impedance). The MAX3471 has a 1/8-unit load input resistance. When MAX3471 has a 1/8-unit load input resistance. When driver outputs are enabled and pulled above Vcc or below GND, internal circuitry prevents battery backcharging. The MAX3471 is available in an 8-pin μ MAX package. The MAX3471 half-duplex transceiver is intended

Applications
Remote Meter Reading
Battery-Powered Differential Communications Level Translators

路

Features

- $1.6 \mu \mathrm{~A}$ Supply Current with Receiver Enabled
- +2.5V to +5.5 V Single-Supply Operation
- True Fail-Safe Receiver Input
- Available in μ MAX Package
- 1/8-Unit-Load Receiver Input
- -7 V to +10 V Common-Mode Input Voltage Range

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX3471CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX3471EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$

Pin Configuration

Typical Application Circuit

TYPICAL HALF-DUPLEX RS-485 NETWORK

1.6 $\mu \mathrm{A}, ~ R S-485 / R S-422$, Half-Duplex, Differential Transceiver for Battery-Powered Systems

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (VCC)
Control Input Voltage ($\overline{\mathrm{RE}}, \mathrm{DE}$)....................-0.3V to (VCC +0.3 V)
Driver Input Voltage (DI)..............................-0.3V to (Vcc +0.3 V)
Driver Output/Receiver Input Voltage (A, B).................... $\pm 10.5 \mathrm{~V}$
Receiver Output Voltage (RO)....................-0.3V to (Vcc + 0.3V)
Continuous Power Dissipation
$\mu \mathrm{MAX}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .362 mW

Operating Temperature Ranges
MAX3471CUA.. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX3471EUA...................................... $65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $+300^{\circ} \mathrm{C}$
ead Temperature (soldering, 10 sec)

Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Differential Driver Output (no load)	VOD1	Figure 1 ($\mathrm{R}=$ open)				VCC	V
Differential Driver Output (with load)	VOD2	Figure 1	$\mathrm{R}=750 \Omega$ (RS-422)	1.5	3.28		V
			$\mathrm{R}=27 \Omega$ (RS-485)	0.2	0.83		
			$\begin{aligned} & \mathrm{R}=27 \Omega(\mathrm{RS}-485), \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		1.5		
Change in Magnitude of Differential Output Voltage (Note 2)	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure $1, \mathrm{R}=750 \Omega$ or 27Ω				0.2	V
Driver Common-Mode Output Voltage	Voc	Figure $1, \mathrm{R}=750 \Omega$ or 27Ω				$6 \times \mathrm{Vcc}$	V
Change in Magnitude of Common-Mode Voltage (Note 2)	$\Delta \mathrm{V}_{\text {OC }}$	Figure 1, R = 750Ω or 27Ω				0.2	V
Input High Voltage	V_{IH}	DE, DI, $\overline{\mathrm{RE}}$		$0.7 \times \mathrm{V}_{\mathrm{CC}}$			V
Input Low Voltage	VIL	DE, DI, $\overline{\mathrm{RE}}$		$0.3 \times \mathrm{V}_{\mathrm{CC}}$			V
DI Input Hysteresis	VHYS				100		mV
Input Current	IIN1	DE, DI, $\overline{\mathrm{RE}}$			± 0.001	± 1	$\mu \mathrm{A}$
Input Current (A and B), Half Duplex	IIN2	$\begin{aligned} & \mathrm{DE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND} \text { or } 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}$			0.105	mA
			$\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$			-0.075	
Driver Short-Circuit Output	IOSD	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 10 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	-60		60	mA
Current (Note 3)			$\mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$	-130		130	
Receiver Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 10 \mathrm{~V}$		-450	-250	-50	mV
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\text {CM }}=0$			32		mV
Receiver Output High Voltage	VOH	$\mathrm{IO}=-0.8 \mathrm{~mA}, \mathrm{~V} \mathrm{ID}=-50 \mathrm{mV}$		$V_{\text {CC }}-0.4$			V
Receiver Output Low Voltage	VOL	$\mathrm{IO}=2.2 \mathrm{~mA}, \mathrm{VID}=-450 \mathrm{mV}$				0.4	V
Three-State Current at Receiver Output	lozr	$0 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$				± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 10 \mathrm{~V}$		96			$\mathrm{k} \Omega$

1.6 $\mu \mathrm{A}$, RS-485/RS-422, Half-Duplex, Differential Transceiver for Battery-Powered Systems

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS mA
Receiver Output Short-Circuit Current	IOSR	$0 \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$	$\mathrm{Vcc} \leq 3.6 \mathrm{~V}$	-20		50	mA
			$\mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$	-40		110	
Supply Current	Icc	$\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$, no load,	$\mathrm{DE}=\mathrm{V}_{\mathrm{cc}}$		50	60	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=0$	DE = GND		1.6	2	
		$\mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$, no load, $\overline{\mathrm{RE}}=\mathrm{DI}=\mathrm{GND}$ or $\mathrm{VCC}_{\mathrm{C}}$, $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=0$	$D E=V_{C C}$		83	100	
			DE = GND		2.8	4	

SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Input to Output Propagation Delay	tDPLH, tDPHL	Figures 3 and 5, RDIFF $=1.5 \mathrm{k} \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$		1.40	2.00	$\mu \mathrm{s}$
Driver Output Skew (tDPLH - tDPHL)	tDSKEW	Figures 3 and 5, RDIFF $=1.5 \mathrm{k} \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$		0.025		$\mu \mathrm{s}$
Driver Rise or Fall Time	tDR, tDF	Figures 3 and 5, RDIFF $=1.5 \mathrm{k} \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$	0.75	1.34	1.75	$\mu \mathrm{s}$
Driver Enable Time to Output High	tDzH	Figures 4 and 6, CL= 100pF, S2 closed, S1 open		1.5	6.00	$\mu \mathrm{s}$
Driver Enable Time to Output Low	tDZL	Figures 4 and 6, CL= 100pF, S1 closed, S2 open		0.86	4.00	$\mu \mathrm{s}$
Driver Disable Time from Low	tDLZ	Figures 4 and 6, $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$, S1 closed, S2 open		0.4	1.5	$\mu \mathrm{s}$
Driver Disable Time from High	tDHz	Figures 4 and 6, CL = 15pF, S2 closed, S1 open		0.6	1.5	$\mu \mathrm{s}$
Receiver Input to Output Propagation Delay	trPLH	Figures 7 and 9, $\mathrm{CL}_{L}=15 \mathrm{pF},\|\mathrm{VID}\|=2 \mathrm{~V}$		5.2	12	$\mu \mathrm{s}$
	tRPHL			6.4	12	
Differential Receiver Skew (tRPLH - tRPHL)	trSKEW	Figures 7 and 9, $\left\|\mathrm{VIV}^{\text {ID }}\right\|=2 \mathrm{~V}$		1.2		$\mu \mathrm{s}$
Data Rate	fmax	Figure 9, $\mathrm{CL}_{\text {L }}=100 \mathrm{pF}$	64			kbps
Receiver Enable Time to Output Low	tRZL	Figures 2 and 8, CL = 15pF, S1 closed, S2 open		70	500	ns
Receiver Enable Time to Output High	trzH	Figures 2 and 8, CL = 15pF, S2 closed, S1 open		85	500	ns
Receiver Disable Time from Low	tRLZ	Figures 2 and 8, CL $=15 \mathrm{pF}$, S1 closed, S2 open		50	200	ns
Receiver DisableTime from High	trHz	Figures 2 and 8, $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$, S2 closed, S1 open		35	200	ns

Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.
Note 2: $\Delta \mathrm{V}_{O D}$ and $\Delta \mathrm{V}_{O C}$ are the changes in magnitude of $\mathrm{V}_{O D}$ and V_{OC}, respectively, when the DI input changes state.
Note 3: Maximum and minimum current levels apply to peak current just prior to foldback-current limiting.

1.6 $\mu \mathrm{A}$, RS-485/RS-422, Half-Duplex,

 Differential Transceiver for Battery-Powered Systems$\left(\mathrm{V} C \mathrm{C}=+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

OUTPUT CURRENT vs. RECEIVER OUTPUT LOW VOLTAGE

RECEIVER OUTPUT LOW VOLTAGE vs. TEMPERATURE

DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE

OUTPUT CURRENT vs. RECEIVER OUTPUT HIGH VOLTAGE

DRIVER OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGE
 DIFFERENTIAL OUTPUT VOLTAGE(V)

OUTPUT CURRENT vs. DRIVER OUTPUT LOW VOLTAGE (VCC = 5V)

RECEIVER OUTPUT HIGH VOLTAGE vs. TEMPERATURE

DRIVER DIFFERENTIAL
OUTPUT VOLTAGE vs. TEMPERATURE

OUTPUT CURRENT vs. DRIVER OUTPUT LOW VOLTAGE (VCC $=3.6 \mathrm{~V}$)

\qquad

1.6 4 A, RS-485/RS-422, Half-Duplex, Differential Transceiver for Battery-Powered Systems

Typical Operating Characteristics (continued)
($\mathrm{VCC}=+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

1.6 4 A, RS-485/RS-422, Half-Duplex, Differential Transceiver for Battery-Powered Systems

$\left(\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

RECEIVER PROPAGATION DELAY

DRIVER PROPAGATION DELAY

Pin Description

PIN	NAME	FUNCTION
1	RO	Receiver Output. When $\overline{\mathrm{RE}}$ is low, if $\mathrm{A}-\mathrm{B} \geq-50 \mathrm{mV}$, RO will be high; if $\mathrm{A}-\mathrm{B} \leq-450 \mathrm{mV}$, RO will be low.
2	$\overline{\mathrm{RE}}$	Receiver Output Enable. Drive $\overline{\mathrm{RE}}$ low to enable RO; RO is high impedance when $\overline{\mathrm{RE}}$ is high.
3	DE	Driver Output Enable. Drive DE high to enable the driver outputs. These outputs are high impedance when DE is low.
4	DI	Driver Input. With DE high, a low on DI forces the noninverting output low and the inverting output high. Similarly, a high on DI forces the noninverting output high and the inverting output low.
5	GND	Ground
6	A	Noninverting Driver Output and Noninverting Receiver Input
7	B	Inverting Driver Output and Inverting Receiver Input
8	VCC	Positive Supply: $+2.5 \mathrm{~V} \leq$ VCC $\leq+5.5 \mathrm{~V}$

Detailed Description

The MAX3471 half-duplex transceiver consumes only $1.6 \mu \mathrm{~A}$ from a single +3.6 V supply. Its wide 2.5 V to 5.5 V supply voltage guarantees operation over the lifetime of a lithium battery. This device contains one driver and one receiver. Its true fail-safe receiver input guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all drivers disabled. Reduced-slew-rate drivers minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 64kbps.

Receiver Input Filtering
The MAX3471 receiver operates at up to 64kbps and incorporates input filtering in addition to input hystere-
sis. This filtering enhances noise immunity when differential signals have very slow rise and fall times.
The MAX3471 guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is accomplished by setting the receiver threshold between -50 mV and -450 mV . If the differential receiver input voltage ($\mathrm{A}-\mathrm{B}$) is greater than or equal to -50 mV , RO is a logic high. If A-B is less than or equal to $-450 \mathrm{mV}, \mathrm{RO}$ is a logic low. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage is pulled to 0 V by the termination. With the MAX3471's receiver thresholds, this results in a logic high with a 50 mV minimum noise margin.

1.6 $\mu \mathrm{A}, ~ R S-485 / R S-422$, Half-Duplex, Differential Transceiver for Battery-Powered Systems

Table 1. Transmitting

INPUTS			OUTPUTS	
$\overline{R E}$	DE	DI	\mathbf{B}	\mathbf{A}
X	1	1	0	1
X	1	0	1	0
0	0	X	Z_{D}	Z_{D}
1	0	X	Z_{D}	Z_{D}

$Z_{D}=$ Driver output disabled

Applic ations Information

Transceivers on the Bus
The MAX3471 is optimized for the unterminated bus normally used in slow, low-power systems. With a +2.5 V supply, the part is guaranteed to drive up to eight standard loads (for example, 64 other MAX3471s or 56 MAX3471s plus one standard load). Drive capability increases significantly with supply. For example, with $a+5 \mathrm{~V}$ supply, the MAX3471 typically meets the RS-485 driver output specifications (1.5 V with 54Ω differential termination). See the Typical Operating Characteristics.

Figure 1. Driver DC Test Load

Figure 2. Receiver Enable/Disable Timing Test Load

Table 2. Receiving

INPUTS			OUTPUT
$\overline{\mathrm{RE}}$	$\mathbf{D E}$	$\mathbf{A - B}$	RO
0	0	$\geq-0.05 \mathrm{~V}$	1
0	0	$\leq-0.45 \mathrm{~V}$	0
0	0	Open/Shorted	1
1	0	X	Z

X = Don't care
Z = Receiver output high impedance

Reduced EMI and Reflections

The MAX3471 is slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. In general, the rise time of a transmitter directly relates to the length of an unterminated stub, which can be driven with only minor waveform reflections. The following equation expresses this relationship conservatively:

$$
\text { Length }=\text { tRISE } /(10 \times 1.5 \mathrm{~ns} / \mathrm{foot})
$$

where tRISE is the transmitter's rise time.
For example, the MAX3471's rise time is typically $1.3 \mu \mathrm{~s}$, which results in excellent waveforms with a stub length up to 82 feet. In general, systems operate well with longer unterminated stubs, even with severe reflections, if the waveform settles out before the UART samples them.

Driver Output Protection

Excessive output current and power dissipation caused by faults or bus contention are prevented by foldback current limiting. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics).

Figure 3. Driver Test Circuit

1.6 AA, RS-485/RS-422, Half-Duplex, Differential Transceiver for Battery-Powered Systems

Figure 4. Driver Enable/Disable Timing Test Load

Figure 6. Driver Enable and Disable Times

Figure 8. Receiver Enable and Disable Times

Figure 5. Driver Differential Propagation Delay and Rise/Fall Times

Figure 7. Receiver Propagation Delay

Figure 9. Receiver Propagation Delay and Maximum DataRate Test Circuit

Chip Information
TRANSISTOR COUNT: 351

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NSI83085 WS3088EESA-GEC ADM2687EBRIZ-RL7 MAX489CPD+ MAX485ESA+T MAX491EPD+ MAX488EEPA+ MAX3080CPD+ MXL1535EEWI+ SN65LBC173DR DS16F95J/883 MAX490ESA+T LTM2881IY-3\#PBF LT1791CN\#PBF LTM2881CY-3\#PBF LTC2857IMS8-2\#PBF LT1791ACN\#PBF LTC487CS\#PBF MAX1487CUA+T XR3074XID-F XR3082XID-F SP1481EEN-L SN75ALS173NSR ADM3491ARZ-REEL ADM485JN ADM1485ANZ ADM1485JNZ ADM1490EBRMZ ADM489ABRZ ADM1491EBRZ-REEL7 ADM3070EYRZ ADM3073EARZ ADM4850ACPZ-REEL7 ADM4850ARMZ-REEL7 ADM485ANZ ADM485ARMZ ADM485JNZ ADM488ANZ ADM489ANZ ADM489ARUZ ADM3488ARZ ADM3488EARZ ADM3490ARZ ADM3493ARZ ADM4856ARZ-REEL7 ADM487EARZ-REEL7 ADM488ABRZ ADM1486ARZ ADM3075EWYRZ ADM3490ARZREEL7

