1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

General Description

The MAX3786 is an AC-coupled, serial-ATA (SATA)compatible, 1.5Gbps multiplexer/buffer (mux/buffer) IC that provides the capability to switch a single serial data signal between two redundant I/O channels.
SATA out-of-band (OOB) signaling is supported using loss-of-signal (LOS) detect on all three inputs and shutdown on the corresponding outputs. The high-speed inputs and outputs are all internally terminated, compatible with 100Ω differential systems, and must be AC-coupled to the controller IC and SATA-compatible disk drive.
Receive equalization (EQ) and transmit preemphasis (PE) are provided on the dual I/O channels to mitigate the effects of intersymbol interference in the signal path. Loopback can be enabled on the nonselected I/O channel.
The MAX3786 operates from a single +3.3 V supply and typically consumes 520 mW with PE and EQ enabled. It is available in a $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 32-lead thin QFN exposed-pad package and operates over a $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

1.5Gbps Serial ATA Redundancy

Features

- < 50psp-p Total Residual Jitter (20in FR-4, EQ and PE On)
- Supports SATA OOB Signaling
- Loopback of Nonselected Channel
- Receive Equalization and Transmit Preemphasis on Controller-Side I/O Channels
- $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operation
- 32-Pin, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Thin QFN Package
- +3.3V Power Supply

Ordering Information

PART	TEMP RANGE PIN-PACKAGE	PKG CODE	
MAX3786UTJ	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN-EP* $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$	T3255-2
MAX3786UTJ+	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN-EP* $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$	-

[^0]Typical Application Circuit

Pin Configuration and Functional Diagram appear at end of data sheet.

1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

ABSOLUTE MAXIMUM RATINGS

S	-0.5V to +5.0V
Continuous Current at Outputs $(T X \pm, \text { OUT } 1 \pm, O U T 0 \pm) .$	$\pm 22 \mathrm{~mA}$
Input Voltage $(R X \pm, I N 1 \pm, I N O \pm)$	-0.5V to (Vcc + 0.5V)
Differential Input Voltage $(R X \pm,\|N 1 \pm\| N 0 \pm$,	

Voltage at PE1EN, PE0EN, EQ1EN, EQ0EN, LB_EN, SEL, CM1, CMO-0.5V to (VCC + 0.5V)
ontinuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\right)$
32-Pin Thin QFN (derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+85^{\circ} \mathrm{C}$) .1384 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range-55 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) 300

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	IcC	EQ and PE off		125	150	mA
		EQ and PE on		158	220	
Maximum Data Rate		(Note 1)	1.5			Gbps
Differential Input Voltage (RX, IN1, INO)		(Note 2)	250		600	mVP-P
Input Termination		Differential	85	100	115	Ω
Input Return Loss	IS11]	100 MHz to 2.5 GHz		14		dB
Input Equalization		At 750MHz		4.5		dB
Differential Output Voltage (TX, OUTO, OUT1) (Note 2)		PE off	400	500	600	mVP-P
		Output disabled by OOB signaling			30	
Output Termination		Single ended to VCC	42.5	50	57.5	Ω
Output Transition Time		1.5Gbps data, 20\% to 80\% (Notes 1, 3)	135	200	270	ps
Output Preemphasis		At 750MHz (Note 4)		4.5		dB
Output Jitter		DJ + 14RJ, EQ and PE off (Notes 1, 5, 8)		30	40	pSP-P
Total Residual Jitter		DJ + 14RJ, EQ and PE on (Notes 1, 6, 8)		40	50	pSP-P
Differential Output Skew		(Note 1)			20	ps
LOS Detector Threshold			50		150	mVP-P
Output Startup/Shutdown Time		(Note 7)			5	ns
LVCMOS Input High Voltage	V_{IH}		1.5			V

1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
MVCMOS Input Low Voltage	V_{IL}		0.5	V
LVCMOS Input High Current	IOH	$\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$	150	$\mu \mathrm{~A}$
LVCMOS Input Low Current	IOL	$\mathrm{V}_{\mathrm{IL}}=-0.3 \mathrm{~V}$ to +0.8 V		150

Note 1: AC specifications are guaranteed by design and characterization.
Note 2: Differential voltage is defined as $V_{P-P}=\left(V_{+}-V_{-}\right)$. Inputs and outputs must be AC-coupled for proper operation.
Note 3: Output transition time measured using a 0000011111 pattern, with transmit PE off.
Note 4: Transmit PE compensates for 20in of 6-mil-wide differential stripline in FR-4 or equivalent path loss.
Note 5: Jitter after paths from RX to OUT_ or IN_ to TX. Measured with no jitter on the input, using a \pm K28.5 pattern, and a path consisting of the MAX3786 alone.
Note 6: Jitter after EQ for the paths from RX to OUT_ or IN_ to TX. Measured with no jitter on the input, using a \pm K28.5 pattern, and a path consisting of the MAX3786 plus 20in of 6-mil-wide differential stripline in FR-4 on the output.
Note 7: Total time for LOS to enable/disable the outputs.
Note 8: Measured with a 100 mV sinusoidal common-mode signal in the $2 \mathrm{MHz} \leq f \leq 200 \mathrm{MHz}$ range.

Typical Operating Characteristics
$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.

OUTPUT EYE DIAGRAM, RECEIVE EQ ON
(10in FR-4 STRIPLINE AT INO, \pm K28.5 PATTERN)

100ps/div

OUTPUT EYE DIAGRAM, RECEIVE EQ ON (20in FR-4 STRIPLINE AT INO, \pm K28.5 PATTERN)

100ps/div

OUTPUT EYE DIAGRAM, TRANSMIT PE ON
(10in FR-4 STRIPLINE
AT OUTO, \pm K28.5 PATTERN)

100ps/div

OUTPUT EYE DIAGRAM, TRANSMIT PE ON (20in FR-4 STRIPLINE AT OUTO, \pm K28.5 PATTERN)

100ps/div

1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

Pin Description

PIN	NAME	FUNCTION
$\begin{aligned} & 1,4,8,15 \\ & 17,20,21, \\ & 24,26,30 \end{aligned}$	VCC	+3.3V Supply Voltage
2	TX+	Positive TX Data Output, CML. Serial ATA compatible.
3	TX-	Negative TX Data Output, CML. Serial ATA compatible.
5	SEL	Multiplex Select Control Input, LVCMOS. Set high to connect RX/TX to OUT1/IN1.
6	RX-	Negative RX Data Input, CML. Serial ATA compatible.
7	RX+	Positive RX Data Input, CML. Serial ATA compatible.
9	$\overline{\text { PE1EN }}$	Channel 1 Preemphasis Enable Input, LVCMOS. Set low to enable OUT1 PE.
10	EQ1EN	Channel 1 Equalization Enable Input, LVCMOS. Set low to enable IN1 EQ.
11	LB_EN	Loopback Enable Input, LVCMOS. Set low to loopback data on nonselected channel.
12	CM1	Input 1 Common-Mode Point. Normally not connected; can be connected to V_{CC} through $1.0 \mu \mathrm{~F}$ capacitor. See Figure 1.
13	IN1-	Negative Channel 1 Data Input, CML. Serial ATA compatible.
14	IN1+	Positive Channel 1 Data Input, CML. Serial ATA compatible.
16, 25	GND	Supply Ground
18	OUT1-	Negative Channel 1 Data Output, CML. Serial ATA compatible.
19	OUT1+	Positive Channel 1 Data Output, CML. Serial ATA compatible.
22	OUTO-	Negative Channel 0 Data Output, CML. Serial ATA compatible.
23	OUTO+	Positive Channel 0 Data Output, CML. Serial ATA compatible.
27	INO-	Negative Channel 0 Data Input, CML. Serial ATA compatible.
28	INO+	Positive Channel 0 Data Input, CML. Serial ATA compatible.
29	CMO	Input 0 Common-Mode Point. Normally not connected; can be connected to V_{CC} through $1.0 \mu \mathrm{~F}$ capacitor. See Figure 1.
31	EQ0EN	Channel 0 Equalization Enable Input, LVCMOS. Set low to enable INO EQ.
32	$\overline{\text { PEOEN }}$	Channel 0 Preemphasis Enable Input, LVCMOS. Set low to enable OUTO PE.
EP	Exposed pad	Ground. The exposed pad must be soldered to the circuit board ground for proper thermal and electrical performance.

Detailed Description

The MAX3786 consists of three multiplexers, I/O buffers, and LOS-detection circuitry (see the Functional Diagram). The buffers on the controller side provide EQ on the inputs and PE on the outputs.

Mux/Buffer Logic By means of the LVCMOS input SEL, a SATA-compatible device at $T X / R X$ can be connected to either INO/OUTO or IN1/OUT1. When SEL is low, TX/RX are connected to INO/OUTO, and when SEL is high, TX/RX are connected to IN1/OUT1. Use of the SEL input provides the ability to operate a single SATA disk drive
from redundant controllers. Loopback is provided on the IN_/OUT_ side and is controlled by the LVCMOS input $\overline{\text { LB_EN }}$. When $\overline{\text { LB_EN }}$ is low, the nonselected IN_/OUT_ loops back (see Table 1). The SEL and LB_EN control lines are internally pulled high through $40 \mathrm{k} \Omega$ resistors (see the Functional Diagram).

Loss-of-Signal Logic

At each high-speed input to the MAX3786, an LOS circuit is provided. In this circuit, a differential signal of $50 \mathrm{mVP}-\mathrm{p}$ or less is detected as OFF, and a signal of greater than $150 \mathrm{mVP-P}$ is detected as ON. The LOS detectors, in combination with the select logic, control their associated high-speed output-disable circuits, so

1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

Figure 1. Input Structure (INO, IN1)
that OOB signaling is transmitted through the MAX3786 (see Table 1). The time for the LOS circuit to detect an inactive input and disable the associated output, or detect an active input and enable the output, is less than 5ns.

Equalization and Preemphasis High-speed inputs INO and IN1 have integrated equalization, and high-speed outputs OUTO and OUT1 have integrated PE to mitigate the effects of intersymbol interference in an FR-4 transmission line signal path. These circuits provide EQ or PE that matches the typical path loss of a 20in, 6-mil FR-4 differential stripline.
Four active-low LVCMOS inputs, $\overline{\mathrm{EQ} 0 E N}, \overline{\mathrm{EQ1EN}}$, $\overline{\mathrm{PE} 0 E N}$, and $\overline{\mathrm{PE} 1 E N}$ are provided to enable EQ and PE independently. All four control lines are internally pulled high through $40 k \Omega$ resistors (see the Functional Diagram). EQ and PE should be enabled when the total path loss exceeds approximately 2.5 dB .

Input Terminations

All high-speed inputs accept current-mode logic (CML) and are SATA compatible. The inputs contain internal 100Ω differential termination, and must be AC-coupled to the controller IC and SATA-compatible disk drive for proper operation.
Two pins (CMO and CM1) provide access to the INO and IN1 common-mode points. CMO and CM1 are normally left unconnected; however, a capacitor up to $1.0 \mu \mathrm{~F}$ can be connected from each CM_ pin to V_{CC}, providing a low-impedance AC common-mode path to VCC (see Figure 1).

Figure 2. Output Structure (OUTO, OUT1)

Output Terminations

The MAX3786 uses CML for its high-speed outputs. They are SATA compatible and provide 50Ω terminations to VCC (see Figure 2). The high-speed outputs must be AC-coupled to the controller IC and SATAcompatible disk drive for proper operation.

Applications Information

Hot Swap
The MAX3786 is designed so that arbitrary sequencing of V_{CC} and I/O signals during startup does not affect operation of the part.

Exposed-Pad Package The MAX3786 is available in a $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 32 -pin thin QFN package with EP for signal integrity and placement flexibility. The exposed pad provides thermal and electrical connectivity to the IC, and must be soldered to a high-frequency ground plane. It is recommended to use at least nine vias to connect the ground pad underneath the 32-lead thin QFN package to the PC board ground plane.

Layout Considerations

Use controlled-impedance transmission lines to interface with the MAX3786 high-speed inputs and outputs. Power-supply decoupling capacitors should be placed as close as possible to the VCC pins.

1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

Table 1. Operation Truth Table

INPUT CONTROLS		LOSS-OF-SIGNAL DETECT			OUTPUT FUNCTION		
SEL	$\overline{\text { LB_EN }}$	LOS_RX	LOS_0	LOS_1	TX	OUTO	OUT1
Low	Low	False	False	False	INO	RX	IN1
Low	Low	False	False	True	INO	RX	OFF
Low	Low	False	True	False	Off	RX	IN1
Low	Low	False	True	True	Off	RX	Off
Low	Low	True	False	False	INO	Off	IN1
Low	Low	True	False	True	INO	Off	Off
Low	Low	True	True	False	Off	Off	IN1
Low	Low	True	True	True	Off	Off	Off
Low	High	False	False	X	INO	RX	Off
Low	High	False	True	X	Off	RX	Off
Low	High	True	False	X	INO	Off	Off
Low	High	True	True	X	Off	Off	Off
High	Low	False	False	False	IN1	INO	RX
High	Low	False	False	True	Off	INO	RX
High	Low	False	True	False	IN1	Off	RX
High	Low	False	True	True	Off	Off	RX
High	Low	True	False	False	IN1	INO	Off
High	Low	True	False	True	Off	INO	Off
High	Low	True	True	False	IN1	Off	Off
High	Low	True	True	True	Off	Off	Off
High	High	False	X	False	IN1	Off	RX
High	High	False	X	True	Off	Off	RX
High	High	True	X	False	IN1	Off	Off
High	High	True	X	True	Off	Off	Off

SEL = Low connects TX/RX to INO/OUTO, high connects TX/RX to IN1/OUT1.
LOS = True indicates loss of signal.
$\overline{L B _E N}=$ Low enables loopback of nonselected channel.
$X=$ Don't care.

1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

\qquad Functional Diagram

Pin Configuration

TRANSISTOR COUNT: 2848
PROCESS: SiGe BiCMOS

1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

1.5Gbps Serial ATA-Compatible Mux/Buffer with Loopback and Equalization

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS													EXPOSED PAD VARIATIONS												
PKG.	16L 5x5			20L 5x5			28L 5x5			32L 5x5			PKG. CODES	D2			E2			L	DOWN BONDS ALLOWED				
SYMBOL	MIN.	NOM.	MAX.		MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	± 0.15														
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	T1655-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	T1655-2	3.00	3.10	3.20	3.00	3.10	3.20	**	YES				
A3	0.20 REF.			T1655N-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO													
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30	T2055-2	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	T2055-3	3.00	3.10	3.20	3.00	3.10	3.20	**	YES				
E	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	T2055-4	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
e	0.80 BSC.			0.65 BSC.			0.50 BSC.			0.50 BSC .			T2055-5	3.15	3.25	3.35	3.15	3.25	3.35	0.40	Y				
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	,	-	T2855-1	3.15	3.25	3.35	3.15	3.25	3.35	**	NO				
L	0.30	0.40	0.50	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	T2855-2	2.60	2.70	2.80	2.60	2.70	2.80	**	NO				
L1		0.40	0.50	0.45	0.55	0.65	0.45		0.65	0.30		0.50	T2855-3	3.15	3.25	3.35	3.15	3.25	3.35	**	YES				
				20			28			32			T2855-4	2.60	2.70	2.80	2.60	2.70	2.80	**	YES				
N	16						T2855-5	2.60	2.70				2.80	2.60	2.70	2.80	**	NO							
ND	4			5									8			T2855-6	3.15	3.25	3.35	3.15	3.25	3.35	**	NO	
NE	4			5			7			8			T2855-7	2.60	2.70	2.80	2.60	2.70	2.80	**	YES				
JEDEC	WHHB			WHHC			WHHD-1			WHHD-2			T2855-8	3.15	3.25	3.35	3.15	3.25	3.35	0.40	Y				
NOTES: 1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS.													T2855N-1	3.15	3.25	3.35	3.15	3.25	3.35	**	N				
													T3255-2	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
													T3255-3	3.00	3.10	3.20	3.00	3.10	3.20	**	YES				
													T3255-4	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
													T3255N-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.														**SEE COMMON DIMENSIONS TABLE											
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.																									
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.																									
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1, T2855-3 AND T2855-6.															IDDALLAS										
10. WARPAGE SHALL NOT E MARKING IS FOR PACKA 12. NUMBER OF LEADS SHO -DRAWING NOT TO SCALE-				XCEED 0.10 mm . GE ORIENTATION REFERENCE ONL											Trill PACKAGE OUTLINE,										
				WN ARE FOR REFERENCE ONLY.																					
																		APPROVAL			$\begin{aligned} & \text { Documen iontroumo } \\ & 21-0140 \end{aligned}$			$\begin{gathered} \text { Rav. } \\ G \end{gathered}$	2/2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210
5962-8607001EA NTE74LS247 5962-8756601EA 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA JM38510/30702BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8 SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D. 652 74HC257D. 652 74HCT153D. 652

[^0]: +Denotes lead-free package.
 *EP = Exposed pad.

