MMXIM
 High-Voltage, Fault-Protected Analog Multiplexers

\qquad General Description
The MAX378 8-channel single-ended (1-of-8) multiplexer and the MAX379 4-channel differential (2 -of-8) multiplexer use a series N -channel/P-channel/ N -channel structure to provide significant fault protection. If the power supplies to the MAX378/MAX379 are inadvertently turned off while input voltages are still applied, all channels in the muxes are turned off, and only a few nanoamperes of leakage current will flow into the inputs. This protects not only the MAX378/MAX379 and the circuitry they drive, but also the sensors or signal sources that drive the muxes.
The series N -channel/P-channel/ N -channel protection structure has two significant advantages over the simple current-limiting protection scheme of the industry's firstgeneration fault-protected muxes. First, the Maxim protection scheme limits fault currents to nanoamp leakage values rather than many milliamperes. This prevents damage to sensors or other sensitive signal sources. Second, the MAX378/MAX379 fault-protected muxes can withstand a continuous $\pm 60 \mathrm{~V}$ input, unlike the first generation, which had a continuous $\pm 35 \mathrm{~V}$ input limitation imposed by power dissipation considerations.
All digital inputs have logic thresholds of 0.8 V and 2.4 V , ensuring both TTL and CMOS compatibility without requiring pull-up resistors. Break-before-make operation is guaranteed. Power dissipation is less than 2 mW .

Applications

Data Acquisition Systems
Industrial and Process Control Systems
Avionics Test Equipment
Signal Routing Between Systems

Features

- Fault Input Voltage $\pm 75 \mathrm{~V}$ with Power Supplies Off
- Fault Input Voltage $\pm 60 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ Power Supplies
- All Switches Off with Power Supplies Off
- On Channel Turns OFF if Overvoltage Occurs on Input or Output
- Only Nanoamperes of Input Current Under All Fault Conditions
- No Increase in Supply Currents Due to Fault Conditions
- Latchup-Proof Construction
- Operates from $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Supplies
- All Digital Inputs are TTL and CMOS Compatible
- Low-Power Monolithic CMOS Design

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX378CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX378CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX378CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 CERDIP
MAX378C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice**
MAX378EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX378EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX378EJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
MAX378MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
MAX378MLP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 LCC*

Ordering Information continued at end of data sheet.

* Contact factory for availability.
${ }^{* *}$ The substrate may be allowed to float or be tied to $V+$ (JI CMOS).

MAXIA

Call toll free 1-800-998-8800 for free samples or literature.

High-Voltage, Fault-Protected Analog Multiplexers

ABSOLUTE MAXIMUM RATINGS

Voltage between Supply Pins ...44V
V+ to Ground ...+22V
V- to Ground...
Digital Input Overvoltage:
VEN, VA
$\left\{\begin{array}{l}\text { V+ } \\ \text { V- }\end{array}\right.$ \qquad
ut with Multiplexer Power On.............................. $\pm 65 \mathrm{~V}$
\{Recommended \} V++15V
\{Power Supplies $\}$ V--15V
Analog Input with Multiplexer Power Off................................. $\pm 80 \mathrm{~V}$

Continuous Current, IN or OUT...20mA
Peak Current, IN or OUT
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max) 40 mA Power Dissipation (Note 1) (CERDIP)1.28W Operating Temperature Range

MAX378/379C \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX378/379E... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX378/379M ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note 1: Derate $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}(\right.$ Logic Level High $)=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
STATIC										
ON Resistance	rDS(ON)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		2.0	3.0		2.0	3.5	$\mathrm{k} \Omega$
			Full		3.0	4.0		3.0	4.0	
OFF Input Leakage Current	IIN(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \text { VOUT }=\mp 10 \mathrm{~V} \\ & \mathrm{~V}_{\text {EN }}=0.8 \mathrm{~V}(\text { Note } 6) \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.03	0.5	-1.0	0.03	1.0	nA
			Full	-50		50	-50		50	
OFF Output Leakage Current	IOUT(OFF)	$\begin{array}{ll} \text { VOUT }= \pm 10 \mathrm{~V}, \mathrm{~V} \text { IN }=\mp 10 \mathrm{~V} \\ \mathrm{VEN}=0.8 \mathrm{~V} & \text { MAX378 } \\ \text { (Note 6) } & \text { MAX379 } \end{array}$	$+25^{\circ} \mathrm{C}$	-1.0	0.1	1.0	-2.0	0.1	2.0	nA
			Full	-200		200	-200		200	
			Full	-100		100	-100		100	
ON Channel Leakage Current	IOUT(ON)	$\begin{array}{ll} V_{I N}(\mathrm{ALL})=\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ V_{\text {AH }}=\mathrm{V}_{\text {EN }}=2.4 \mathrm{~V} & \text { MAX378 } \\ \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}(\text { Note } 5) & \text { MAX379 } \end{array}$	$+25^{\circ} \mathrm{C}$	-10	0.1	10	-20	0.1	20	nA
			Full	-600		600	-600		600	
			Full	-300		300	-300		300	
Analog Signal Range	$\mathrm{V}_{\text {AN }}$	(Note 2)	Full	-15		+15	-15		+15	V
Differential OFF Output Leakage Current	IDIFF	MAX379 only (Note 6)	Full	-50		50	-50		50	nA
FAULT										
Output Leakage Current (with Input Overvoltage)	IOUT(OFF)	$\begin{aligned} & \text { Vout }=0 \mathrm{~V}, \text { VIN }= \pm 60 \mathrm{~V} \\ & (\text { Notes } 3,4) \end{aligned}$	$+25^{\circ} \mathrm{C}$	20			20			nA
			Full			10			20	$\mu \mathrm{A}$
Input Leakage Current (with Overvoltage)	IIN(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 60 \mathrm{~V}, \text { VOUT }= \pm 10 \mathrm{~V} \\ & (\text { Notes } 3,4) \end{aligned}$	$+25^{\circ} \mathrm{C}$			25			40	$\mu \mathrm{A}$
Input Leakage Current (with Power Supplies Off)	IIN(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{VOUT}=0 \mathrm{~V} \\ & \mathrm{~A}_{0}=\mathrm{A}_{1}=\mathrm{A}_{2}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$			10			20	$\mu \mathrm{A}$
CONTROL										
Input Low Threshold	$\mathrm{V}_{\text {AL }}$	(Note 4)	Full			0.8			0.8	V
Input High Threshold	$\mathrm{V}_{\text {AH }}$	(Note 4)	Full	2.4			2.4			V
Input Leakage Current (High or Low)	IA	$\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}$ or 0 V (Note 5)	Full	-1.0		1.0	-1.0		1.0	$\mu \mathrm{A}$

High-Voltage, Fault-Protected Analog Multiplexers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}\right.$; $\mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { and } \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		UNITS
				MIN	TYP MAX	MIN	TYP MAX	
DYNAMIC								
Access Time	t_{A}	Figure 1	$+25^{\circ} \mathrm{C}$		0.51 .0		0.51 .0	$\mu \mathrm{s}$
Break-Before-Make Delay (Figure 2)	ton-toff	$\mathrm{V}_{\mathrm{EN}}=+5 \mathrm{~V}, \mathrm{~V} I \mathrm{~N}= \pm 10 \mathrm{~V}$ A_{0}, A_{1}, A_{2} strobed	$+25^{\circ} \mathrm{C}$	25	200	25	200	ns
Enable Delay (ON)	ton(EN)	Figure 3	$+25^{\circ} \mathrm{C}$		400750		4001000	ns
			Full		1000		1500	
Enable Delay (OFF)	toff(EN)	Figure 3	$+25^{\circ} \mathrm{C}$		300500		300	ns
			Full		1000		1000	
$\begin{array}{\|r\|} \hline \text { Settling Time (} 0.1 \% \text {) } \\ (0.01 \%) \end{array}$	tSETT		$+25^{\circ} \mathrm{C}$		1.2		1.2	$\mu \mathrm{s}$
					3.5		3.5	
"OFF Isolation"	OFF(ISO)	$\begin{aligned} & V_{E N}=0.8 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF} \\ & \mathrm{~V}=7 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$	50	68	50	68	dB
Channel Input Capacitance	CIN(OFF)		$+25^{\circ} \mathrm{C}$		5		5	pF
Channel Output Capacitance	Cout(OFF)	MAX378	$+25^{\circ} \mathrm{C}$		25		25	pF
		MAX379			12		12	
Digital Input Capacitance	$\mathrm{CA}_{\text {A }}$		$+25^{\circ} \mathrm{C}$		5		5	pF
Input to Output Capacitance	CdS(OFF)		$+25^{\circ} \mathrm{C}$		0.1		0.1	pF

Note 2: When the analog signal exceeds +13.5 V or -12 V , the blocking action of Maxim's gate structure goes into operation. Only leakage currents flow and the channel ON resistance rises to infinity.
Note 3: The value shown is the steady-state value. The transient leakage is typically $50 \mu \mathrm{~A}$. See Detailed Description.
Note 4: Guaranteed by other static parameters.
Note 5: Digital input leakage is primarily due to the clamp diodes. Typical leakage is less than 1 nA at $+25^{\circ} \mathrm{C}$.
Note 6: Leakage currents not tested at $\mathrm{T}_{\mathrm{A}}=$ cold temp.
Note 7: Electrical characteristics, such as ON Resistance, will change when power supplies other than $\pm 15 \mathrm{~V}$ are used.

High-Voltage, Fault-Protected Analog Multiplexers

MAX378/MAX379

Figure 1. Access Time vs. Logic Level (High)

High-Voltage, Fault-Protected Analog Multiplexers

Figure 2. Break-Before-Make Delay (tOPEN)

Figure 3. Enable Delay (ton(EN), toff(EN))

Figure 4. Input Leakage Current (Overvoltage)

Figure 5. Input Leakage Current (with Power Supplies OFF)

High-Voltage, Fault-Protected Analog Multiplexers

Truth Table-MAX378

A2	A1	A0	EN	ON SWITCH
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Truth Table-MAX379

A1	A0	EN	ON SWITCH
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

Note: Logic " 0 " $=V_{A L} \leq 0.8 \mathrm{~V}$, Logic " 1 " $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$

Figure 6. Typical Data Acquisition Front End

Typical Applications

Figure 6 shows a typical data acquisition system using the MAX378 multiplexer. Since the multiplexer is driving a high-impedance input, its error is a function of its own resistance ($\operatorname{RDS}(\mathrm{ON})$) times the multiplexer leakage current (IOUT(ON)) and the amplifier bias current (IBIAS):

$$
\begin{aligned}
\text { VERR } & =\operatorname{RDS}(\mathrm{ON}) \times(\mathrm{IOUT}(\mathrm{ON})+\mathrm{IBIAS}(\mathrm{MAX} 420)) \\
& =2.0 \mathrm{k} \Omega \times(2 \mathrm{nA}+30 \mathrm{pA}) \\
& =18.0 \mu \mathrm{~V} \text { maximum error }
\end{aligned}
$$

In most cases, this error is low enough that preamplification of input signals is not needed, even with very low-level signals such as $40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ from type J thermocouples.

In systems with fewer than eight inputs, an unused channel can be connected to the system ground reference point for software zero correction. A second channel connected to the system voltage reference allows gain correction of the entire data acquisition system as well.
A MAX420 precision op amp is connected as a pro-grammable-gain amplifier, with gains ranging from 1 to 10,000 . The guaranteed $5 \mu \mathrm{~V}$ unadjusted offset of the MAX420 maintains high signal accuracy, while programmable gain allows the output signal level to be scaled to the optimum range for the remainder of the data acquisition system, normally a Sample/Hold and A/D. Since the gain-changing multiplexer is not connected to the external sensors, it can be either a DG508A multiplexer or the fault-protected MAX358 or MAX378.

High-Voltage, Fault-Protected Analog Multiplexers

Input switching, however, must be done with a faultprotected MAX378 multiplexer, to provide the level of protection and isolation required with most data acquisition inputs. Since external signal sources may continue to supply voltage when the multiplexer and system power are turned off, non-fault-protected multiplexers, or even first-generation fault-protected devices, will allow many milliamps of fault current to flow from outside sources into the multiplexer. This could result in damage to either the sensors or the multiplexer. A non-fault-protected multiplexer will also allow input overvoltages to appear at its output, perhaps damaging Sample/Holds or A/Ds. Such input overdrives may also cause input-to-input shorts, allowing the high current output of one sensor to possibly damage another.
The MAX378 eliminates all of the above problems. It not only limits its output voltage to safe levels, with or without power applied ($\mathrm{V}+$ and V -), but also turns all channels off when power is removed. This allows it to draw only sub-microamp fault currents from the inputs, and maintain isolation between inputs for continuous input levels up to $\pm 75 \mathrm{~V}$ with power supplies off.

Detailed Description

Fault Protection Circ uitry
The MAX378/MAX379 are fully fault protected for continuous input voltages up to $\pm 60 \mathrm{~V}$, whether or not the V_{+} and V - power supplies are present. These devices use a "series FET" switching scheme which not only protects the multiplexer output from overvoltage, but also limits the input current to sub-microamp levels.
Figures 7 and 8 show how the series FET circuit protects against overvoltage conditions. When power is off, the gates of all three FETs are at ground. With a -60V input, N-channel FET Q1 is turned on by the +60 V gate-

Figure 7. -60V Overvoltage with Multiplexer Power OFF

Figure 8. +60V Overvoltage with Multiplexer Power OFF

Figure 9. -60V Overvoltage on an OFF Channel with Multiplexer Power Supply ON

Figure 10. +60 V Overvoltage Input to the ON Channel

High-Voltage, Fault-Protected Analog Multiplexers

to-source voltage. The P-channel device (Q2), however, has +60 V VGs and is turned off, thereby preventing the input signal from reaching the output. If the input voltage is +60 V , Q1 has a negative VGS, which turns it off. Similarly, only sub-microamp leakage currents can flow from the output back to the input, since any voltage will turn off either Q1 or Q2.
Figure 9 shows the condition of an OFF channel with $\mathrm{V}+$ and V - present. As with Figures 7 and 8, either an N -channel or a P-channel device will be off for any input voltage from -60 V to +60 V . The leakage current with negative overvoltages will immediately drop to a few nanoamps at $+25^{\circ} \mathrm{C}$. For positive overvoltages, that fault current will initially be $40 \mu \mathrm{~A}$ or $50 \mu \mathrm{~A}$, decaying over a few seconds to the nanoamp level. The time constant of this decay is caused by the discharge of stored charge from internal nodes, and does not compromise the fault-protection scheme.
Figure 10 shows the condition of the ON channel with V+ and V-present. With input voltages less than $\pm 10 \mathrm{~V}$, all three FETs are on and the input signal appears at the output. If the input voltage exceeds V_{+}minus the N channel threshold voltage (VTN), then the N -channel FET will turn off. For voltages more negative than Vminus the P-channel threshold (VTP), the P-channel device will turn off. Since VTN is typically 1.5 V and VTP is typically 3 V , the multiplexer's output swing is limited to about -12 V to +13.5 V with $\pm 15 \mathrm{~V}$ supplies.
The Typical Operating Characteristics graphs show typical leakage vs. input voltage curves. Although the maximum rated input of these devices is $\pm 65 \mathrm{~V}$, the MAX378/MAX379 typically have excellent performance up to $\pm 75 \mathrm{~V}$, providing additional margin for the unknown transients that exist in the real world. In summary, the MAX378/MAX379 provide superior protection from all fault conditions while using a standard, readily produced junction-isolated CMOS process.

Switching Characteristics and Charge Injection

Table 1 shows typical charge-injection levels vs. power-supply voltages and analog input voltage. Note that since the channels are well matched, the differential charge injection for the MAX379 is typically less than 5 pC. The charge injection that occurs during switching creates a voltage transient whose magnitude is inversely proportional to the capacitance on the multiplexer output.
The channel-to-channel switching time is typically 600 ns , with about 200ns of break-before-make delay. This 200ns break-before-make delay prevents the input-to-input short that would occur if two input channels were simultaneous-
ly connected to the output. In a typical data acquisition system, such as in Figure 6, the dominant delay is not the switching time of the MAX378 multiplexer, but is the settling time of the following amplifiers and S / H. Another limiting factor is the RC time constant of the multiplexer RDS(ON) plus the signal source impedance multiplied by the load capacitance on the output of the multiplexer. Even with low signal source impedances, 100pF of capacitance on the multiplexer output will approximately double the settling time to 0.01% accuracy.

Operation with Supply Voltage Other than $\pm 15 \mathrm{~V}$

 The main effect of supply voltages other than $\pm 15 \mathrm{~V}$ is the reduction in output signal range. The MAX378 limits the output voltage to about 1.5 V below $\mathrm{V}+$ and about 3 V above V -. In other words, the output swing is limited to +3.5 V to -2 V when operating from $\pm 5 \mathrm{~V}$. The Typical Operating Characteristics graphs show typical RDS(ON), for $\pm 15 \mathrm{~V}$, $\pm 10 \mathrm{~V}$, and $\pm 5 \mathrm{~V}$ power supplies. Maxim tests and guarantees the MAX378/MAX379 for operation from $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies. The switching delays are increased by about a factor of 2 at $\pm 5 \mathrm{~V}$, but break-before-make action is preserved.The MAX378/MAX379 can be operated with a single +9 V to +22 V supply, as well as asymmetrical power supplies such as +15 V and -5 V . The digital threshold will remain approximately 1.6 V above GND and the analog characteristics such as $\mathrm{RDS}(\mathrm{ON})$ are determined by the total voltage difference between $\mathrm{V}+$ and V -. Connect V - to OV when operating with $\mathrm{a}+9 \mathrm{~V}$ to +22 V single supply.
This means that the MAX378/MAX379 will operate with standard TTL-logic levels, even with $\pm 5 \mathrm{~V}$ power supplies. In all cases, the threshold of the EN pin is the same as the other logic inputs.
Table 1a. MAX378 Charge Injection

Supply Voltage	Analog Input Level	Injected Charge
$\pm 5 \mathrm{~V}$	+1.7 V	+100 pC
	0 V	+70 pC
	-1.7 V	+45 pC
$\pm 10 \mathrm{~V}$	+5 V	+200 pC
	0 V	+130 pC
	-5 V	+60 pC
$\pm 15 \mathrm{~V}$	+10 V	+500 pC
	0 V	+180 pC
	-10 V	+50 pC

Test Conditions: $C_{L}=1000 \mathrm{pF}$ on multiplexer output; the tabulated analog input level is applied to channel 1; channels 2 through 8 are open circuited. $\mathrm{EN}=+5 \mathrm{~V}, \mathrm{~A} 1=\mathrm{A} 2=0 \mathrm{~V}, \mathrm{~A} 0$ is toggled at 2 kHz rate between 0 V and 3 V . +100 pC of charge creates a +100 mV step when injected into a 1000 pF load capacitance.

High-Voltage, Fault-Protected Analog Multiplexers

Table 1b. MAX379 Charge Injection

Supply Voltage	Analog Input Level	Injected Charge		
		Out A	Out B	Differential $A-B$
$\pm 5 \mathrm{~V}$	+1.7V	+ 105pC	+107pC	-2pC
	OV	+73pC	$+74 \mathrm{pC}$	-1pC
	-1.7V	+48pC	+50pC	-2pC
$\pm 10 \mathrm{~V}$	+5V	+215pC	+220pC	-5pC
	OV	+135pC	+139pC	-4pC
	-5V	+62pC	+63pC	-1pC
$\pm 15 \mathrm{~V}$	+10V	+525pC	+530pC	-5pC
	OV	+180pC	+185pC	-5pC
	-10V	+55pC	+55pC	OpC

Test Conditions: $C_{L}=1000 \mathrm{pF}$ on Out A and Out B; the tabulated analog input level is applied to inputs 1A and 1B; channels 2 through 4 are open circuited. $\mathrm{EN}=+5 \mathrm{~V}, \mathrm{~A} 1=0 \mathrm{~V}, \mathrm{~A} 0$ is toggled from 0 V to 3 V at a 2 kHz rate.

Digital Interface Levels
The typical digital threshold of both the address lines and the EN pin is 1.6 V , with a temperature coefficient of about $-3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. This ensures compatibility with 0.8 V to 2.4V TTL-logic swings over the entire temperature range. The digital threshold is relatively independent of the supply voltages, moving from 1.6 V typical to 1.5 V typical as the power supplies are reduced from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$. In all cases, the digital threshold is referenced to GND.
The digital inputs can also be driven with CMOS-logic levels swinging from either V_{+}to V - or from V_{+}to GND. The digital input current is just a few nanoamps of leakage at all input voltage levels, with a guaranteed maximum of $1 \mu \mathrm{~A}$. The digital inputs are protected from ESD by a 30 V zener diode between the input and V_{+}, and can be driven $\pm 4 \mathrm{~V}$ beyond the supplies without drawing excessive current.

Operation as a Demultiplexer

The MAX378/MAX379 will function as a demultiplexer, where the input is applied to the OUT pin, and the input pins are used as outputs. The MAX378/MAX379 provide both break-before-make action and full fault protection when operated as a demultiplexer, unlike earlier generations of fault-protected multiplexers.

Channel-to-Channel Crosstalk,

 Off Isolation, and Digital Feedthrough At DC and low frequencies, channel-to-channel crosstalk is caused by variations in output leakage cur-rents as the off-channel input voltages are varied. The MAX378 output leakage varies only a few picoamps as all seven off inputs are toggled from -10 V to +10 V . The output voltage change depends on the impedance level at the MAX378 output, which is $\operatorname{RDS}(O N)$ plus the input signal source resistance in most cases, since the load driven by the MAX378 is usually a high impedance. For a signal source impedance of $10 \mathrm{k} \Omega$ or lower, the DC crosstalk exceeds 120 dB .
Table 2 shows typical AC crosstalk and off-isolation performance. Digital feedthrough is masked by the analog charge injection when the output is enabled. When the output is disabled, the digital feedthrough is virtually unmeasurable, since the digital pins are physically isolated from the analog section by the GND and V-pins. The ground plane formed by these lines is continued onto the MAX378/MAX379 die to provide over 100dB isolation between the digital and analog sections.

Table 2a. Typical Off-Isolation Rejection Ratio

Frequency	$\mathbf{1 0 0 k H z}$	$\mathbf{5 0 0 k H z}$	$\mathbf{1 M H z}$
One Channel Driven	74 dB	72 dB	66 dB
All Channels Driven	64 dB	48 dB	44 dB

Test Conditions: $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{VP-P}$ at the tabulated frequency, $R_{L}=1.5 \mathrm{k} \Omega$ between OUT and GND, $\mathrm{EN}=0 \mathrm{~V}$.

$$
\text { OIRR }=20 \log \frac{20 V_{P-P}}{V_{\text {OUT }}(P-P)}
$$

Table 2b. Typical Crosstalk Rejection Ratio

Frequency	$\mathbf{1 0 0 k H z}$	$\mathbf{5 0 0 k H z}$	$\mathbf{1 M H z}$
$\mathrm{FL}_{\mathrm{L}}=1.5 \mathrm{k}$	70 dB	68 dB	64 dB
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	62 dB	46 dB	42 dB

Test Conditions: Specified RL connected from OUT to GND, $\mathrm{EN}=+5 \mathrm{~V}, \mathrm{~A} 0=\mathrm{A} 1=\mathrm{A} 2=+5 \mathrm{~V}$ (Channel 1 selected). 20VP-P at the tabulated frequency is applied to Channel 2. All other channels are open circuited. Similar crosstalk rejection can be observed between any two channels.

High-Voltage, Fault-Protected Analog Multiplexers

High-Voltage, Fault-Protected Analog Multiplexers

_Ordering Information (continued)
PART TEMP. RANGE PIN-PACKAGE MAX379CPE $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ 16 Plastic DIP MAX379CWG $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ 24 Wide SO MAX379CJE $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ 16 CERDIP MAX379C/D $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Dice $*$ MAX379EPE $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ 16 Plastic DIP MAX379EWG $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ 24 Wide SO MAX379EJE $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ 16 CERDIP MAX379MJE $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 16 CERDIP MAX379MLP $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $20 \mathrm{LCC} *$

* Contact factory for availability.
**The substrate may be allowed to float or be tied to $V+$ (JI CMOS).

NOTE: Connect substrate to $\mathrm{V}+$ or leave it floating
MAX379

NOTE: Connect substrate to $\mathrm{V}+$ or leave it floating

High-Voltage, Fault-Protected Analog Multiplexers

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ HEF4053BT. 653 PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZRL7

