

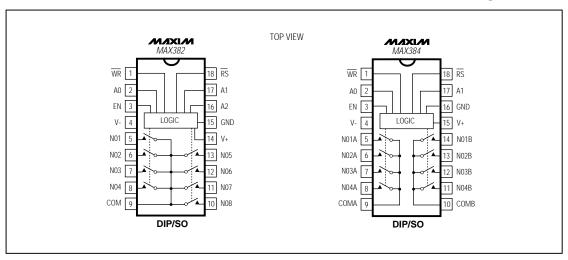
General Description

The MAX382/MAX384 are low-voltage, CMOS, 1-of-8 and dual 4-channel muxes with latchable digital inputs. They feature low-voltage operation from a +2.7V to +16.5V single supply and from ±3V to ±8V dual supplies. Pin compatible with the DG428/DG429, these muxes offer low on-resistance (100 Ω max) matched to within 4Ω max between channels. Additional features include off leakage less than 2.5nA at +85°C and guaranteed low charge injection (10pC max). ESD protection is greater than 2000V per Method 3015.7.

Applications

Battery-Operated Systems Audio Signal Routing Low-Voltage Data-Acquisition Systems Sample-and-Hold Circuits Automatic Test Equipment

- Pin-Compatible with Industry-Standard DG428/DG429, DG528/DG529, MAX368/MAX369
- ♦ Single-Supply Operation (+2.7V to +16.5V) Bipolar Supply Operation (±3V to ±8V)
- ♦ Low Power Consumption (<300µW)</p>
- **♦** Low On-Resistance, 100Ω max
- ♦ Guaranteed On-Resistance Match Between Channels, 4Ω max
- ♦ Low Leakage, 2.5nA at +85°C
- **♦ TTL/CMOS-Logic Compatible**


Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX382CPN	0°C to +70°C	18 Plastic DIP
MAX382CWN	0°C to +70°C	18 Wide SO
MAX382C/D	0°C to +70°C	Dice*
MAX382EPN	-40°C to +85°C	18 Plastic DIP
MAX382EWN	-40°C to +85°C	18 Wide SO
MAX382EJN	-40°C to +85°C	18 CERDIP**
MAX382MJN	-55°C to +125°C	18 CERDIP**

Ordering Information continued on last page.

- Contact factory for dice specifications.
- ** Contact factory for package availability.

Pin Configurations

/VIXI/VI

Maxim Integrated Products 1

Call toll free 1-800-998-8800 for free samples or literature.

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to GND
V+0.3V to +17V
V+0.3V to -17V
V+ to V0.3V to +17V
Voltage into Any Terminal (Note 1)(V 2V) to (V+ + 2V) or
30mA (whichever occurs first)
Current into Any Terminal30mA
Peak Current, Any Terminal
(pulsed at 1ms, 10% duty cycle max)100mA

Continuous Power Dissipation (T _A = +70°C)
Plastic DIP (derate 11.11mW/°C above +70°C)889mW
Wide SO (derate 9.52mW/°C above +70°C)762mW
CERDIP (derate 10.53mW/°C above +70°C)842mW
Operating Temperature Ranges
MAX38_C_ N0°C to +70°C
MAX38_E_ N40°C to +85°C
MAX38_MJN55°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10sec)+300°C

Note 1: Signals on any terminal exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+=+5V\pm10\%,\,V-=-5V\pm10\%,\,GND=0V,\,V_{A_H}=V_{ENH}=2.4V,\,V_{A_L}=V_{ENL}=0.8V,\,\overline{WR}=0V,\,\overline{RS}=2.4V,\,T_{A}=T_{MIN}\,\,to\,\,T_{MAX},\,unless\,otherwise\,noted.)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS								
SWITCH	•	•														
Analog Signal Range	V _{COM} , V _{NO}	(Note 3)				V-		V+	V							
Channel On-Resistance	RON	INO = 1mA, VCOM =	+3.5V	$T_A = +25^{\circ}C$			60	100	Ω							
Charmer on Resistance	NON	1110 - 1111/1, VCOM -	±3.5 V	TA = TMIN to	TMAX			125	32							
On-Resistance Matching	ΔRON	I _{NO} = 1mA, V _{COM} =	±3.5V,	$T_A = +25^{\circ}C$				4	Ω							
Between Channels (Note 4)	ON	V+ = 5V, V- = -5V		$T_A = T_{MIN}$ to	T _{MAX}			6								
On-Resistance Flatness	RFLAT(ON)	INO = 1mA, V _{COM} =	±3V,	$T_A = +25^{\circ}C$				10	Ω							
(Note 5)	TT LAT(ON)	V+ = 5V, V- = -5V		TA = TMIN to	Тмах			13								
NO-Off Leakage Current		VNO = ±4.5V, VCOM	_ = 1 5\/	$T_A = +25^{\circ}C$		-0.1		0.1								
(Note 6)	I _{NO(OFF)}	$V_{\text{NO}} = \pm 4.5V$, $V_{\text{COM}} = +4.5V$, $V_{\text{+}} = 5.5V$		TA = TMIN	C, E	-1.0		1.0	nA							
` '		·		to T _{MAX} M		-10		10								
		$V_{COM} = \pm 4.5V$,		$T_A = +25^{\circ}C$		-0.2		0.2								
		$V_{NO} = \mp 4.5V,$ V + = 5.5V, V - = -5.5V								MAX382	'A 'IVIIIN	C, E	-2.5		2.5	
COM-Off Leakage Current	ICOM(OFF)			to T _{MAX}	М	-20		20	nA							
(Note 6)		$V_{COM} = \pm 4.5 V_{c}$	MAX384	$T_A = +25^{\circ}C$		-0.1		0.1] '"`							
		$V_{NO} = \mp 4.5V$,		· A · IVIIIV	C, E	-1.5		1.5								
		V+ = 5.5V, V- = -5.5V		to T _{MAX}	М	-10		10								
				$T_A = +25^{\circ}C$		-0.4		0.4								
		4.50	MAX382	'A 'IVIIIN	C, E	-5		5								
COM-On Leakage Current	ICOM(ON)	$V_{COM} = \pm 4.5V,$ $V_{NO} = 4.5V,$		to T _{MAX}	М	-40		40	nA							
(Note 6)	ICOM(ON)	VNO = 4.5V,	VIVO - 4.5V,		T _A = +25°C		-0.2		0.2] ''^						
			MAX384	· A · IVIIIV	C, E	-2.5		2.5								
				to T _{MAX}	М	-20		20								

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+=+5V\pm10\%, V-=-5V\pm10\%, GND=0V, VA_H=VENH=2.4V, VA_L=VENL=0.8V, \overline{WR}=0V, \overline{RS}=2.4V, TA=T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS	
DIGITAL LOGIC INPUT	•							•
Logic High Input Voltage	V _{A_H} , V _{ENH}			$T_A = T_{MIN}$ to T_{MAX}	2.4			V
Logic Low Input Voltage	V _{A_L} , V _{ENL}			$T_A = T_{MIN}$ to T_{MAX}			0.8	V
Input Current with Input Voltage High	I _{A_H} , I _{ENH}	V _{A_H} = 2.4V, V _{A_L} =	V8.0		-0.1		0.1	μА
Input Current with Input Voltage Low	I _{A_L} , I _{ENL}	V _{A_H} = 2.4V, V _{A_L} =	0.8V		-0.1		0.1	μА
SUPPLY								
Power-Supply Range	V+, V-				±2.4		±8	V
Positive Supply Current	I+	V _{EN} = V _A = 0V/V+, V+ = 5.5V, V- = -5.5	V	$T_A = +25^{\circ}C$	-1		1	μA
Negative Supply Current	I-	V _{EN} = V _A = 0V/V+, V+ = 5.5V, V- = -5.5	V	TA = TMIN to TMAX	-1		1	μА
AX, EN Data Hold Time	t _H	Figure 5		$T_A = +25^{\circ}C$	100			ns
Reset Pulse Width	t _{RS}	Figure 6, V+ = 5V		$T_A = +25^{\circ}C$	100			ns
DYNAMIC								•
Transition Time	ttrans	Figure 1				100	275	ns
Break-Before-Make Interval	topen	Figure 2		T _A = +25°C	0	20		ns
Enable Turn-On Time	ton(EN)	Figure 3		T _A = +25°C		100	150	ns
Lilable fulli-Off fillie				TA = TMIN to TMAX			250	
Enable Turn-Off Time	toff(EN)	Figure 3		T _A = +25°C		80	150	ns
Lilable fulli-Oil fillie	(OFF(EN)	rigure 3		$T_A = T_{MIN}$ to T_{MAX}			250	1115
Write Turn-On Time	ton(WR)	Figure 4		T _A = +25°C			150	ns
Witte full of fille	(ON(WK)	riguie +		$T_A = T_{MIN}$ to T_{MAX}			250	113
Reset Turn-Off Time	toff(RS)	Figure 6		$T_A = +25^{\circ}C$			150	ns
Neset fulli-on fillie	(OFF(RS)	rigure o		TA = TMIN to TMAX			250	113
Charge Injection (Note 3)	V _{CTE}	$C_L = 100pF, V_{NO} = 0$	OV	$T_A = +25$ °C		2	5	рС
Off Isolation (Note 7)	V _{ISO}	$V_{EN} = 0V$, $R_L = 1k\Omega$,	f = 100kHz	$T_A = +25^{\circ}C$		-75		dB
Crosstalk Between Channels	Vст	V _{EN} = 2.4V, f = 100kl V _{GEN} = 1V _{p-p} , R _L = 1		T _A = +25°C		-92		dB
Logic Input Capacitance	C _{IN}	f = 1MHz		T _A = +25°C		8		pF
NO-Off Capacitance	C _{NO(OFF)}	f = 1MHz, V _{EN} = V _C	NO = NO	T _A = +25°C		11		pF
	, ,	f = 1MHz MAX382		T 0500		40		<u> </u>
COM-Off Capacitance	itance $C_{COM(OFF)}$ $V_{EN} = V_{COM} = 0V$ $MAX384$ $T_A = +25^{\circ}C$	IA = +25°C		20		pF		
COM On Conneiter					54			
COM-On Capacitance	C _{COM} (ON)			1A = +25°C		34		pF
MINIMUM INPUT TIMING R	EQUIREMEN	TS						
Write Pulse Width	tw	Figure 5		$T_A = +25^{\circ}C$	100			ns
AX, EN Data Setup Time	ts	Figure 5		T _A = +25°C	100			ns

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+=+5V\pm10\%,~V-=0V,~GND=0V,~VA_H=VENH=2.4V,~VA_L=VENL=0.8V,~\overline{WR}=0V,~\overline{RS}=2.4V,~TA=T_{MIN}~to~T_{MAX},~unless~otherwise~noted.)$

PARAMETER	SYMBOL		CONDITION	ıs		MIN	TYP (Note 2)	MAX	UNITS	
AX, EN Data Hold Time	t _H	Figure 5		$T_A = +25^{\circ}C$		100			ns	
Reset Pulse Width	tRS	Figure 6, V+ = 5V T		$T_A = +25^{\circ}C$		100			ns	
SWITCH	-									
Analog Signal Range	VCOM, VNO	(Note 3)				V-		V+	V	
On-Resistance	Ron	I _{NO} = 1mA, V _{COM}	= 3.5V,	T _A = +25°C			150	225	Ω	
OII-Resistance	KON	V + = 4.5V		TA = TMIN to	TMAX			280] 12	
On-Resistance Matching	ΔRon	INO = 1mA, VCOM	= 3.5V,	$T_A = +25^{\circ}C$				10	Ω	
Between Channels (Note 4)	AKUN	V+ = 4.5V		TA = TMIN to	TMAX			12	32	
On-Resistance Flatness	R _{FI AT}	I _{NO} = 1mA; V _{COM} :	= 3V, 2V, 1V;	$T_A = +25^{\circ}C$			10	16	Ω	
Off-Resistance Flatness	INFLAT	V+ = 5V		$T_A = T_{MIN}$ to	T _{MAX}		15	20	32	
NO Off Landana Comment		\/ 4 E\/ \/	0)./	T _A = +25°C		-0.1		0.1		
NO-Off Leakage Current (Note 8)	I _{NO(OFF)}	$V_{NO} = 4.5V, V_{COM}$ $V_{+} = 5.5V$	= UV,	$T_A = T_{MIN}$	C, E	-1.0		1.0	nA	
(11010 0)				to T _{MAX}	М	-10		10		
		V _{COM} = 4.5V,		$T_A = +25$ °C		-0.2		0.2		
		V _{NO} = 0V, MAX382 T		$T_A = T_{MIN}$	C, E	-2.5		2.5		
COM-Off Leakage Current	I _{COM(OFF)}	V+ = 5.5V		to T _{MAX}	М	-20		20	nA	
(Note 8)		V _{COM} = 4.5V, V _{NO} = 0V,		T _A = +25°C		-0.2		0.2		
			MAX384	$T_A = T_{MIN}$	C, E	-1.5		1.5		
		V + = 5.5V		to T _{MAX}	М	-10		10		
		V _{COM} = 4.5V, V _{NO} = 4.5V, V ₊ = 5.5V		$T_A = +25^{\circ}C$		-0.4		0.4		
			MAX382	$T_A = T_{MIN}$	C, E	-5		5		
COM-On Leakage Current	ICOM(ON)			to T _{MAX}	M	-40		40	nA	
(Note 8)	(COM(ON)			$T_A = +25^{\circ}C$		-0.2		0.2	7 IIA	
			MAX384	$T_A = T_{MIN}$	C, E	-2.5		2.5		
				to T _{MAX}	М	-20		20		
DIGITAL LOGIC INPUT										
Logic High Input Voltage	V _H , V _{ENH}			$T_A = T_{MIN}$ to	T _{MAX}	2.4			V	
Logic Low Input Voltage	V _L , V _{ENL}			$T_A = T_{MIN}$ to	T _{MAX}			0.8	V	
Input Current with Input Voltage High	IH, IENH	$V_H = 2.4V, V_L = 0.8$	V _H = 2.4V, V _L = 0.8V			-0.1		0.1	μА	
Input Current with Input Voltage Low	IL, IENL	V _H = 2.4V, V _L = 0.8V			-0.1		0.1	μА		
SUPPLY	·I	1							1	
Power-Supply Range						2.4		15	V	
Positive Supply Current	I+	VEN = VA = OV, V+	V + = 5.5V	V- = 0V		-1.0		1.0	μΑ	
Negative Supply Current	I-	$V_{EN} = V_A = 0V, V+$	V + = 5.5V	V- = 0V		-1.0		1.0	μA	
1	1	V _{EN} = V+, 0V; V _A =	= 0V;	T _A = +25°C		-1.0		1.0		
IGND Supply Current	IGND	V+ = 5.5V; V- = 0V		$T_A = T_{MIN}$ to T_{MAX}		-1.0		1.0	μΑ	

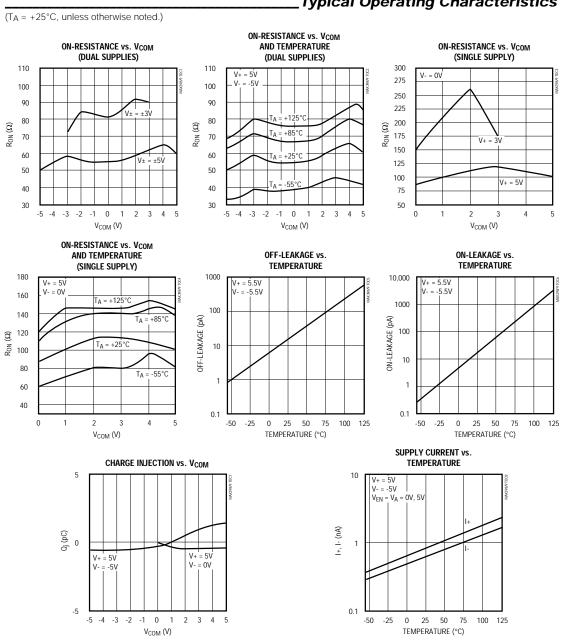
4 ______M/1XI/M

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

(V+ = +5V \pm 10%, V- = 0V, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, \overline{WR} = 0V, \overline{RS} = 2.4V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
DYNAMIC							
Transition Time	ttrans	Figure 1, V _{NO} = 3V			90	280	ns
Break-Before-Make Interval	topen	Figure 2 (Note 3)	$T_A = +25^{\circ}C$	5	40		ns
Enable Turn-On Time	to=	Figure 3	T _A = +25°C		130	200	nc
(Note 3)	ton(EN)	rigule 3	$T_A = T_{MIN}$ to T_{MAX}			275	ns
Enable Turn-Off Time	torren	Figure 3	T _A = +25°C		80	200	ns
(Note 3)	toff(EN)	Tigule 3	$T_A = T_{MIN}$ to T_{MAX}			275] 113
Write Turn-On Time	tonana	Figure 4	T _A = +25°C			200	nc
(Note 3)	ton(WR)	rigure 4	TA = TMIN to TMAX			275	ns
Reset Turn-Off Time	+	Figure 4	$T_A = +25^{\circ}C$			200	no
(Note 3)	toff(RS)	Figure 4	$T_A = T_{MIN}$ to T_{MAX}			275	ns
Charge Injection (Note 3)	V _{CTE}	Figure 7, C _L = 100pF, V _{NO} = 0V	T _A = +25°C		1.5	5	рС

ELECTRICAL CHARACTERISTICS—Single +3V Supply


(V+ = +3V \pm 10%, V- = 0V, GND = 0V, VA_H = VENH = 2.4V, VA_L = VENL = 0.8V, \overline{WR} = 0V, \overline{RS} = 2.4V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
SWITCH	•			•			
Analog Signal Range	V _{ANALOG}	(Note 3)		V-		V+	V
On-Resistance	Ron	I _{NO} = 1mA, V _{COM} = 1.5V,	T _A = +25°C		230	375	Ω
OII-RESISIANCE	KON	V+ = 3V	$T_A = T_{MIN}$ to T_{MAX}			425] \\ \\ \
DYNAMIC	•						
Transition Time (Note 3)	ttrans	Figure 1, V _{IN} = 2.4V, V _{N01} = 1.5V, V _{N08} = 0V	T _A = +25°C		230	575	ns
Enable Turn-On Time (Note 3)	ton(EN)	Figure 3, V _{INH} = 2.4V, V _{INL} = 0V, V _{N01} = 1.5V	T _A = +25°C		200	500	ns
Enable Turn-Off Time (Note 3)	toff(EN)	Figure 3, V _{INH} = 2.4V, V _{INL} = 0V, V _{N01} = 1.5V	T _A = +25°C		75	400	ns
Write Turn-On Time (Note 3)	ton(WR)	Figure 4	$T_A = +25^{\circ}C$		200	500	ns
Reset Turn-Off Time (Note 3)	toff(RS)	Figure 4 $T_A = +25^{\circ}C$			75	400	ns
Charge Injection (Note 3)	VCTE	Figure 7, C _L = 100pF, V _{NO} = 0V	T _A = +25°C		1	5	рС

- Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Guaranteed by design.
- Note 4: $\Delta R_{ON} = R_{ON}(max) R_{ON}(min)$.
- Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges, i.e., $V_{NO} = 3V$ to 0V and 0V to -3V.
- Note 6: Leakage parameters are 100% tested at maximum rated hot operating temperature, and guaranteed by correlation at +25°C.
- $\textbf{Note 7:} \quad \text{Worst-case isolation is on channel 4 because of its proximity to the COM pin. Off isolation = 20 log V_{COM}/V_{NO}, V_{COM} = output, V_{NO} = input to off switch.}$
- Note 8: Leakage testing at single supply is guaranteed by correlation testing with dual supplies.

Typical Operating Characteristics

MIXIM

Pin Description

F	PIN		FUNCTION				
MAX382	MAX384	- NAME*	FUNCTION				
1	1	WR	WRITE Logic Input				
2, 16, 17	_	A0, A2, A1	Address Logic Inputs (see Truth Tables at end of data sheet)				
_	2, 17	A0, A1	Address Logic Inputs (see Truth Tables at end of data sheet)				
3	3	EN	Enable Logic Input (see Truth Tables at end of data sheet)				
4	4	V-	Negative Supply Voltage Input. Connect to GND for single-supply operation.				
5–8	_	NO1-NO4	Analog Signal Inputs—bidirectional				
_	5–8	NO1A-NO4A	Analog Signal Inputs—bidirectional				
9	_	COM	Analog Signal Output—bidirectional				
_	9, 10	COMA, COMB	Analog Signal Outputs—bidirectional				
10–13	_	NO8-NO5	Analog Signal Inputs—bidirectional				
_	11–14	NO4B-NO1B	Analog Signal Inputs—bidirectional				
14	15	V+	Positive Supply Voltage Input				
15	16	GND	Ground				
18	18	RS	RESET Logic Input				

^{*}Analog inputs and outputs are names of convenience only. Inputs and outputs are identical and interchangeable

Applications Information

The internal structures of the MAX382/MAX384 include translators for the A2/A1/EN/WR/RS digital inputs, latches, and a decode section for channel selection (see *Truth Tables*). The analog-signal switches consist of parallel combinations of N and P MOSFETs.

WRITE (WR) and RESET (RS) strobes are provided for interfacing with μ P-bus lines, alleviating the need for the μ P to provide constant address inputs to the mux to hold a particular channel (Figures 2–7).

When the $\overline{\text{WR}}$ strobe is in the low state (less than 0.8V) and the $\overline{\text{RS}}$ strobe is in the high state (greater than 2.4V), the muxes are in the transparent mode—they act similar to nonlatching devices, such as the MAX398/MAX399.

When the \overline{WR} goes high, the previous BCD address input is latched and held in that state indefinitely.

RS turns off all channels when it is low. All switches stay off until RS and EN are high and WR is low.

The MAX382/MAX384 work with both single and dual supplies and function over the +2.4V to +16V single-supply range. For example, with a single +5V power supply, analog signals in the 0V to +5V range can be switched normally. If negative signals around 0V are expected, a negative supply is needed.

The EN latch allows all switches to be turned off under program control. This is useful when two or more are cascaded to build 16-line and larger analog-signal multiplexers.

Test Circuits/Timing Diagrams

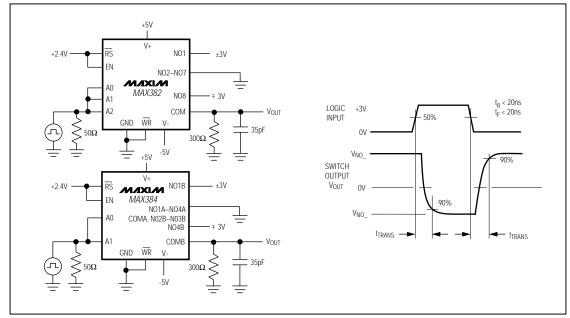


Figure 1. Transition Time

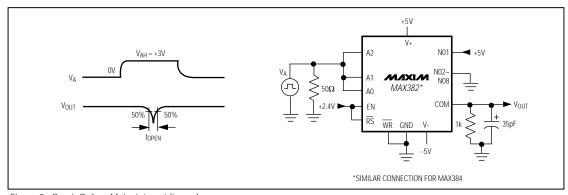


Figure 2. Break-Before-Make Interval (t_{OPEN})

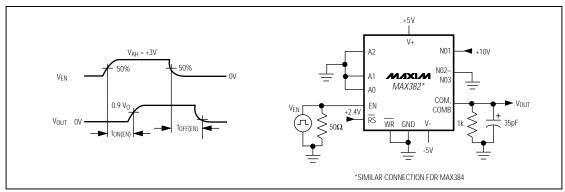


Figure 3. Enable Delay (ton(EN), toff(EN))

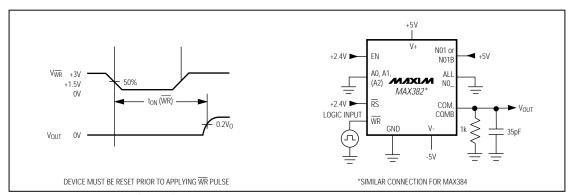


Figure 4. Write Turn-On Time (ton(\overline{WR}))

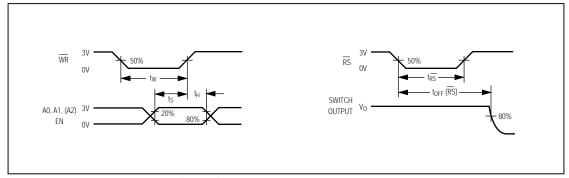


Figure 5. Write, Setup, and Hold Timing (tw, ts, th)

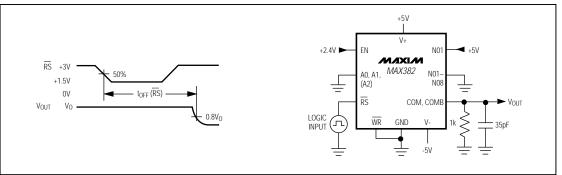


Figure 6. Reset Turn-Off Time (tOFF(RS))

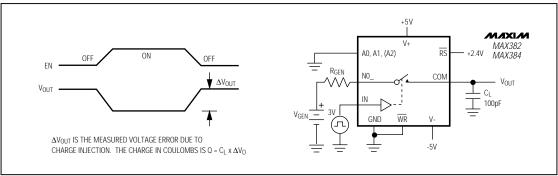


Figure 7. Charge Injection (VCTE)

Operation with Supply Voltages Other than ±5V

Using supply voltages less than $\pm 5V$ reduces the analog signal range. The MAX382/MAX384 muxes operate with $\pm 3V$ to $\pm 8V$ bipolar supplies or with a $\pm 2.7V$ to $\pm 16.5V$ single supply. Connect V- to GND when operating with a single supply. Both devices can also operate with unbalanced supplies, such as $\pm 10V$ and $\pm 5V$. The *Typical Operating Characteristics* graphs show typical on-resistance with $\pm 3V$, $\pm 5V$, $\pm 3V$ and $\pm 5V$ supplies. (Switching times increase by a factor of two or more for operation at $\pm 5V$ or below.)

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 8). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 17V. These protection diodes are not recommended when using a single supply.

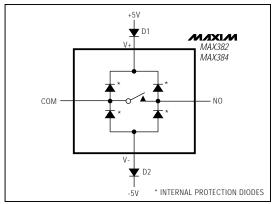
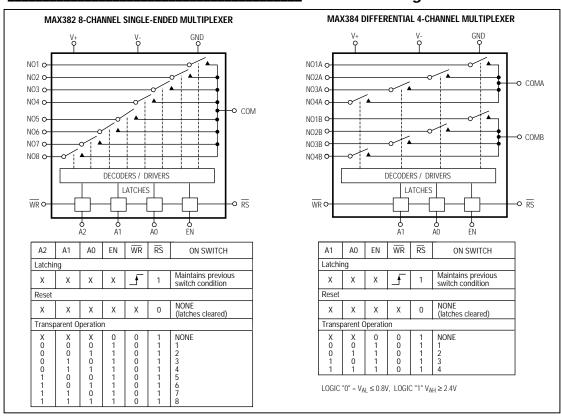
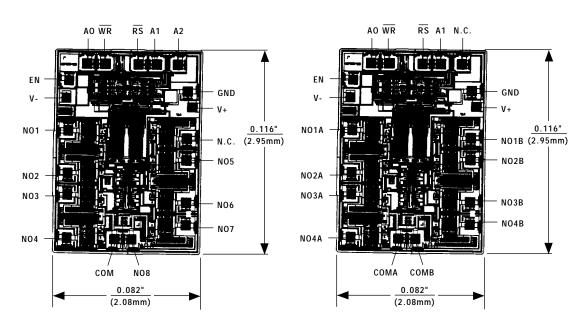



Figure 8. Overvoltage Protection Using External Blocking Diodes

Functional Diagrams/Truth Tables


_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX384CPN	0°C to +70°C	18 Plastic DIP
MAX384CWN	0°C to +70°C	18 Wide SO
MAX384C/D	0°C to +70°C	Dice*
MAX384EPN	-40°C to +85°C	18 Plastic DIP
MAX384EWN	-40°C to +85°C	18 Wide SO
MAX384EJN	-40°C to +85°C	18 CERDIP**
MAX384M IN	-55°C to +125°C	18 CERDIP**

Contact factory for dice specifications.

_Chip Topographies

MAX382 MAX384

TRANSISTOR COUNT: 165 SUBSTRATE CONNECTED TO V+

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1995 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

^{**} Contact factory for package availability.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC
PI2SSD3212NCE NLAS3257CMX2TCG PI5A3157BC6EX PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX
PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 TC4066BP-NF HEF4053BT.653 PI3L720ZHEX
ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4
ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP.125 74HC4052DB.112 74HC4052PW.112 74HC4053DB.112
74HC4067DB.112 74HC4351DB.112 74HCT4052D.112 74HCT4052DB.112 74HCT4053DB.112 74HCT4351D.112 74LV4051PW.112
FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1439BRUZ