General Description

The MAX396/MAX397 low-voltage, CMOS analog multiplexers (muxes) offer low on-resistance (100Ω max), which is matched to within 6Ω between switches and remains flat over the specified signal range (10Ω max). They also offer low leakage over temperature (input off-leakage current less than 1 nA at $+85^{\circ} \mathrm{C}$) and fast switching speeds (transition time less than 250ns). The MAX396 is a 16-channel device, and the MAX397 is a dual, 8-channel device.
The MAX396/MAX397 are fabricated with Maxim's lowvoltage silicon-gate process. Design improvements yield extremely low charge injection (5pC max) and guarantee electrostatic-discharge (ESD) protection greater than 2000V per Method 3015.7
These muxes operate with a single +2.7 V to +16 V supply or with $\pm 2.7 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ dual supplies, while retaining CMOSlogic input compatibility and fast switching. The MAX396/ MAX397 are pin compatible with the industry standard MAX306/MAX307, DG406/DG407, and DG506A/DG507A.

Benefits and Features

- Pin-Compatible with MAX306/MAX307, DG406/DG407, DG506A/DG507A
- Single-Supply Operation (+2.7V to +16 V) Dual-Supply Operation ($\pm 2.7 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$)
- Low On-Resistance (100 10 max)
- Guaranteed RON Match Between Channels (6Ω max)
- Guaranteed RON Flatness over Specified Signal Range (10ת max)
- Guaranteed Low Charge Injection (5pC max)
- Input Off-Leakage Current $<1 \mathrm{nA}$ at $+85^{\circ} \mathrm{C}$
- Output Off-Leakage Current $<2.5 n \mathrm{~A}$ at $+85^{\circ} \mathrm{C}$
- Low Power Consumption < $10 \mu \mathrm{~W}$
- TTL/CMOS Compatible

Applications

- Sample-and-Hold Circuits - Automatic Test Equipment
- Avionics - Communications Systems
- Battery-Operated Equipment - Audio Signal Routing
- Low-Voltage Data Acquisition - Industrial Process Control Systems

Functional Diagrams/Truth Tables

MAX396						
A3	A2	A1	A0	EN	ON SWITCH	
X	X	X	X	0	NONE	
0	0	0	0	1	1	
0	0	0	1	1	2	
0	0	1	0	1	3	
0	0	1	1	1	4	
0	1	0	0	1	5	
0	1	0	1	1	6	
0	1	1	0	1	7	
0	1	1	1	1	8	
1	0	0	0	1	9	
1	0	0	1	1	10	
1	0	1	0	1	11	
1	0	1	1	1	12	
1	1	0	0	1	13	
1	1	0	1	1	14	
1	1	1	0	1	15	
1	1	1	1	1	16	

LOGIC "O" $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$, LOGIC " 1 " $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$ Continued at end of data sheet.

Precision, 16-Channel/Dual 8-Channel, Low-Voltage, CMOS Analog Multiplexers

SSOP (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 762 mW	
CCC (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	842 mW
CERDIP (derate $16.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ}$	1333mW
rating Temperature Ranges	
MAX39_C_I	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX39_E_I	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX39_MJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
ead Temperature (soldering, 10	

Note 1: Signals on any terminal exceeding $V+$ or V - are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—Dual Supplies

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS				MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
SWITCH									
Analog Signal Range	$\mathrm{V}_{\text {COM }}, \mathrm{V}_{\text {NO }}$	(Note 3)				V-		V+	V
Channel On-Resistance	RON	$\mathrm{l}_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}= \pm 3.5 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			60	100	Ω
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				125	
On-Resistance Matching Between Channels (Note 4)	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}= \pm 3.5 \mathrm{~V}, \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1.8	6	Ω
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{T}_{\text {MAX }}$			8	
On-Resistance Flatness (Note 5)	R $\mathrm{FLAT}^{\text {(ON }}$)	$\begin{aligned} & I_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}= \pm 3 \mathrm{~V}, \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			5	10	Ω
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$	$\mathrm{T}_{\text {MAX }}$			13	
NO Off-Leakage Current (Note 6)	$\mathrm{I}_{\text {NO(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mp 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.1	0.03	0.1	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$	C, E	-1.0		1.0	
				to $\mathrm{T}_{\mathrm{MAX}}$	M	-10		10	
COM Off-Leakage Current (Note 6)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=\mp 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	MAX396	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.2	0.05	0.2	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	C, E	-2.5		2.5	
				to $\mathrm{T}_{\text {MAX }}$	M	-40		40	
		$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=\mp 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	MAX397	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.1	0.03	0.1	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	C, E	-2.5		2.5	
					M	-20		20	
COM On-Leakage Current (Note 6)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V} \end{aligned}$	MAX396	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.4	0.09	0.4	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	C, E	-5		5	
				to $\mathrm{T}_{\text {MAX }}$	M	-60		60	
			MAX397	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.2	0.05	0.2	
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	C, E	-2.5		2.5	
				to $\mathrm{T}_{\mathrm{MAX}}$	M	-30		30	

Electrical Characteristics —Dual Supplies (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

Electrical Characteristics—Single +5V Supply

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP (Note 2)	MAX	UNITS
SWITCH									
Analog Signal Range	$\mathrm{V}_{\text {COM }}, \mathrm{V}_{\text {NO }}$	(Note 3)				V-		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{l}_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=3.5 \mathrm{~V}, \\ & \mathrm{~V}+=4.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			120	225	Ω
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				280	
On-Resistance Matching Between Channels (Note 4)	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & l_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=3.5 \mathrm{~V}, \\ & \mathrm{~V}+=4.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			2	10	Ω
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{T}_{\mathrm{MAX}}$			12	
On-Resistance Flatness	$\mathrm{R}_{\text {FLAT }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, 2 \mathrm{~V}, 1 \mathrm{~V} ; \\ & \mathrm{V}+=5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			5	16	Ω
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{T}_{\mathrm{MAX}}$			20	
NO Off-Leakage Current (Note 8)	$\mathrm{I}_{\text {NO(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.1	0.03	0.1	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$	C, E	-1.0		1.0	
				to $\mathrm{T}_{\text {MAX }}$	M	-10		10	
COM Off-Leakage Current (Note 8)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V} \end{aligned}$	MAX396	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.2	0.05	0.2	nA
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	C, E	-2.5		2.5	
					M	-40		40	
		$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V} \end{aligned}$	MAX397	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.2	0.02	0.2	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	C, E	-2.5		2.5	
					M	-20		20	
COM On-Leakage Current (Note 6)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V} \end{aligned}$	MAX396	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.4	0.09	0.4	nA
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \\ & \hline \end{aligned}$	C, E	-5		5	
					M	-60		60	
			MAX397	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.2	0.04	0.2	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	C, E	-2.5		2.5	
					M	-30		30	
DIGITAL LOGIC INPUT									
Logic High Input Voltage	$\mathrm{V}_{\text {AH }}, \mathrm{V}_{\text {ENH }}$					2.4			V
Logic Low Input Voltage	$\mathrm{V}_{\mathrm{AL}}, \mathrm{V}_{\mathrm{ENL}}$							0.8	V
Input Current with Input Voltage High	$\mathrm{I}_{\text {AH, }} \mathrm{I}_{\text {ENH }}$	$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}$				-0.1	0.001	0.1	$\mu \mathrm{A}$
Input Current with Input Voltage Low	${ }^{\text {ALL }}$, $\mathrm{I}_{\text {ENL }}$	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V}$				-0.1	0.001	0.1	$\mu \mathrm{A}$
SUPPLY									
Power-Supply Range						2.7		15	V
Positive Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{~V}+; \mathrm{V}+=5.5 \mathrm{~V}$; $\mathrm{V}-=0 \mathrm{~V}$				-1.0	0.06	1.0	$\mu \mathrm{A}$
Negative Supply Current	I-	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{~V}+; \mathrm{V}+=5.5 \mathrm{~V}$; $\mathrm{V}-=0 \mathrm{~V}$				-1.0	0.08	1.0	$\mu \mathrm{A}$
Ground Current	$I_{\text {GND }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}+, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} ; \\ & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}-=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ & \hline \end{aligned}$		-1.0	0.08	1.0	$\mu \mathrm{A}$
				-1.0		1.0			

Electrical Characteristics -Single +5 V Supply (continued)
$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
DYNAMIC							
Transition Time (Note 3)	${ }^{\text {t }}$ TRANS	$\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		105	245	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			350	
Break-Before-Make Interval	topen	(Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10	65		ns
Enable Turn-On Time (Note 3)	ton(EN)		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		125	200	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			275	
Enable Turn-Off Time (Note 3)	toff(EN)		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		100	125	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			200	
Charge Injection (Note 3)	$\mathrm{V}_{\text {CTE }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V},$ Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.5	5	pC

Electrical Characteristics-Single +3V Supply

$\left(\mathrm{V}+=+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS
SWITCH							
Analog Signal Range	$V_{\text {ANALOG }}$	(Note 3)		V-		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & l_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \\ & \mathrm{~V}+=3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		315	550	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			650	
DYNAMIC							
Transition Time (Note 3)	${ }^{\text {t }}$ TRANS	Figure $2, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{N} 01}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{N} 08}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		230	575	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			750	
Enable Turn-On Time (Note 3)	ton(EN)	$\begin{aligned} & \text { Figure 3, } \mathrm{V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{INL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{N} 01}=1.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		260	500	ns
Enable Turn-Off Time (Note 3)	$t^{\text {toff(EN }}$)	Figure $3, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{INL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{N} 01}=1.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		135	400	ns
Charge Injection (Note 3)	$\mathrm{V}_{\text {CTE }}$	$C_{L}=100 \mathrm{pF}, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V} \text {, }$ Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	5	pC

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges, i.e., $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$ to 0 V and 0 V to -3 V .
Note 6: Leakage parameters are 100% tested at maximum rated hot operating temperature, and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
Note 7: Worst-case isolation is on channel 4 because of its proximity to the COM pin. Off-isolation $=20 \mathrm{log} \mathrm{V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 8: Leakage testing at single supply is guaranteed by correlation testing with dual supplies.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Configurations

Pin Description

PIN		NAME	
MAX396	MAX397		
1	1	V+	Positive Supply-Voltage Input
$2,3,13$	-	N.C.	No Internal Connection
-	2	COMB	Analog Signal B Output* (bidirectional)
-	$3,13,14$	N.C.	No Internal Connection
$4-11$	-	NO16-NO9	Analog Signal Inputs* (bidirectional)
-	$4-11$	NO8B-NO1B	Analog Signal B Inputs* (bidirectional)
12	12	GND	Logic Ground
$14-17$	-	A3-A0	Logic Address Inputs
-	$15,16,17$	A2, A1, A0	Logic Address Inputs
18	18	EN	Logic Enable Input
$19-26$	-	NO1-NO8	Analog Signal Inputs* (bidirectional)
-	$19-26$	NO1A-NO8A	Analog Signal A Inputs* (bidirectional)
27	27	V-	Negative Supply-Voltage Input
28	-	COM	Analog Signal Output* (bidirectional)
-	28	COMA	Analog Signal A Output* (bidirectional)

[^0]
Precision, 16-Channel/Dual 8-Channel, Low-Voltage, CMOS Analog Multiplexers

Applications Information

Operation with Supply Voltages Other than $\pm 5 \mathrm{~V}$

Using supply voltages less than $\pm 5 \mathrm{~V}$ reduces the analog signal range. The MAX396/MAX397 multiplexers (muxes) operate with $\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ bipolar supplies or with a +3 V to +15 V single supply. Connect V - to GND when operating with a single supply. Both devices can also operate with unbalanced supplies, such as +10 V and -5 V . The Typical Operating Characteristics graphs show typical on-resistance with $\pm 3 \mathrm{~V}$, $\pm 5 \mathrm{~V},+3 \mathrm{~V}$, and +5 V supplies.
These muxes operate with a single supply as low as 1 V , although on-resistance and switching times become extremely high. Performance is not guaranteed below 2.7 V . This is useful information only because it assures proper switch state while power supplies ramp up or down slowly.

Figure 1. Overvoltage Protection Using External Blocking Diodes

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $\mathrm{V}+$ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two smallsignal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog-signal range to one diode drop below $\mathrm{V}+$ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between $\mathrm{V}+$ and V - should not exceed 17 V . These protection diodes are not recommended when using a single supply.

Test Circuits/Timing Diagrams

Figure 2. Transition Time

Figure 3. Enable Switching Time

Test Circuits/Timing Diagrams (continued)

LOGIC INPUT

Figure 4. Break-Before-Make Interval

Figure 5. Charge Injection (VCTE)

Test Circuits/Timing Diagrams (continued)

NOTE: SIMILAR CONNECTION APPLIES FOR MAX397.
Figure 6. Off-Isolation (VISO)
Figure 7. Crosstalk (VCT)

Figure 8. NO/COM Capacitance

Functional Diagrams/Truth Tables (continued)

MAX397					
A2	A1	A0	EN	ON SWITCH	
X	X	X	0	NONE	
0	0	0	1	1	
0	0	1	1	2	
0	1	0	1	3	
0	1	1	1	4	
1	0	0	1	5	
1	0	1	1	6	
1	1	0	1	7	
1	1	1	1	8	

LOGIC "O" $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$, LOGIC "1" $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$

Chip Topographies

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX396CPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Plastic DIP
MAX396CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX396CAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX396CQI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 PLCC**
MAX396C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX396EPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Plastic DIP
MAX396EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX396EQI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 PLCC**
MAX396MJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 CERDIP**
MAX397CPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Plastic DIP
MAX397CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX397CAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX397CQI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 PLCC**
MAX397C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX397EPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Plastic DIP
MAX397EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX397EQI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 PLCC**
MAX397MJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 CERDIP**

*Contact factory for dice specifications.
**Contact factory for package availability.

Precision, 16-Channel/Dual 8-Channel,
Low-Voltage, CMOS Analog Multiplexers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$1 / 16$	Fixed typos, updated template	$1-14$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ HEF4053BT. 653 PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZRL7

[^0]: *Analog signal inputs and outputs are names of convenience only; they are identical and interchangeable.

