General Description

The MAX3984 is a single-channel, preemphasis driver with input equalization that operates from 1Gbps to 10.3Gbps. It provides compensation for copper links, such as 8.5 Gbps Fibre Channel and 10.3Gbps Ethernet, allowing spans of up to 10 m with 24 AWG cable. The driver provides four selectable preemphasis levels, and the selectable input equalizer compensates for up to 10in of FR-4 circuit board material at 10Gbps.

The MAX3984 also features SFP-compliant loss-of-signal (LOS) detection and TX_DISABLE. Selectable output swing reduces EMI and power consumption. The MAX3984 is packaged in a lead-free, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 16 -pin thin QFN and operates from a $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

8.5Gbps Fibre Channel	Active Cable Assemblies
10.3Gbps Ethernet	STM-64

Pin Configuration appears at end of data sheet.

- Drives Up to 10 m of 24 AWG Cable
- Drives Up to 30in of FR-4
- Selectable 1000mVp-p or 1200mVP-p Differential Output Swing
- Selectable Output Preemphasis
- Selectable Input Equalization
- LOS Detection with Built-In Squelch
- Transmit Disable
- Hot Pluggable

Ordering Information

PART
TEMP RANGE
:---:
CODE

Typical Operating Circuits

Typical Operating Circuits continued at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

ABSOLUTE MAXIMUM RATINGS

Sup	1 V
Continuous Output Current Range	
(OUT+, OUT-)	-25mA to +25mA
put Voltage Range ($\mathrm{IN+}, \mathrm{IN}$-)	-0.5V to (Vcc +0.5 V)

Logic Inputs Range (PE1, PEO,
TX_DISABLE, IN_LEV, OUT_LEV)-0.5V to (VCC + 0.5V)
LOS Open-Collector Supply Voltage Range
(with $\geq 4.7 \mathrm{k} \Omega$ pullup)
-0.5 V to +5.5 V
Storage Ambient Temperature Range (TSTG) $\ldots .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	$\mathrm{V}_{C C}$		3.0	3.3	3.6	V
Supply Noise Tolerance		$1 \mathrm{MHz} \leq \mathrm{f}<2 \mathrm{GHz}$		40		$m V_{P-P}$
Operating Ambient Temperature	TA		0	25	85	${ }^{\circ} \mathrm{C}$
Bit Rate		NRZ data	1.0	8.5	10.3	Gbps
Consecutive Identical Digits (CID)		CID (bits)			100	Bits
Input Swing (Measured differentially at data source, point A of Figure 2 and 3. Pins LOS and TX_DISABLE are floating.)		IN_LEV = high, Figure 2; 4.25Gbps < data rate $\leq 10.3 \mathrm{Gbps}$	360		1200	mVP-P
		IN_LEV = high, Figure 2; $1.25 \mathrm{Gbps}<$ data rate $\leq 4.25 \mathrm{Gbps}$	360		1600	
		$\begin{aligned} & \text { IN_LEV }=\text { high, Figure } 2 ; \\ & \text { 1.0Gbps } \leq \text { data rate } \leq 1.25 \mathrm{Gbps} \end{aligned}$	360		2400	
		IN_LEV = low, Figure 3; 1.0Gbps < data rate $\leq 10.3 \mathrm{Gbps}$	100		360	
Time to Reach 50\% Mark/Space Ratio					1	$\mu \mathrm{s}$

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
Supply Current	ICC	OUT_LEV = low, TX_DISABLE = low					100	124	mA
		OUT_LEV = high, TX_DISABLE = low					120	148	
Inrush Current		Beyond steady state supply current (Note 1)						10	mA
Power-On Delay		(Note 1)				1		30	ms
EQUALIZER AND DRIVE SPECIFICATIONS									
Input Return Loss	S11	100 MHz to 5 GHz				10			dB
Input Resistance		Measured differentially (Note 2)				85	100	115	Ω
Different Output Swing (Notes 3, 4)		Measured differentially at point B in Figure 2; TX_DISABLE = low, OUT_LEV = high, PE1 $=$ PE0 $=$ high				1000		1300	mVP-P
		Measured differentially at point B in Figure 2; TX_DISABLE = low, OUT_LEV = low, PE1 $=$ PE0 $=$ high				800		1100	
		TX_DISABLE = high, PE1 = PE0 = high						10	
Common-Mode Output (AC) (Note 4)		Measured at point B in Figure 2; TX_DISABLE = low, OUT_LEV = high (Note 5)						25	mVRMS
Output Resistance	Rout	OUT+ or OUT-, single-ended				42	50	58	Ω
Output Return Loss	S22	100 MHz to 5 GHz					12		dB
Output Transition Time 20\% to 80\%	$t r r, ~ t f ~_{\text {l }}$	20\% to 80\% (Note 6)					32	40	ps
Random Jitter (Note 4)		Measured at point D in Figure 3 (Note 7)						0.8	pSRMS
Output Preemphasis		Figure 1 (Note 3)		PE1	PE0				dB
				0	0		3.5		
				0	1		6.5		
				1	0		9.5		
				1	1		13		
Residual Output Deterministic Jitter at 1.0Gbps (Notes 4, 8, and 9)		Source to IN	OUT to load	PE1	PE0			0.02	Ulp-P
		6-mil, 10in of FR-4	3 m , 24 AWG	0	0				
			5 m , 24 AWG	0	1				
			7 m , 24 AWG	1	0				
			10m, 24 AWG	1	1				

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
Residual Output Deterministic Jitter at 5.0Gbps (Notes 4, 8, and 9)		Source to IN	OUT to load	PE1	PEO		0.09	0.12	Ulp-p
		6-mil, 10in of FR-4	$\begin{gathered} \text { 3m, } \\ 24 \text { AWG } \end{gathered}$	0	1				
			5 m , 24 AWG	1	0				
			$\begin{gathered} 7 \mathrm{~m}, \\ 24 \mathrm{AWG} \end{gathered}$	1	0				
			10m, 24 AWG	1	1				
Residual Output Deterministic Jitter at 8.5Gbps (Notes 4, 8, and 9)		Source to IN	OUT to load	PE1	PEO		0.15	0.20	Ulp-p
		6-mil, 10in of FR-4	$\begin{gathered} 3 \mathrm{~m}, \\ 24 \mathrm{AWG} \end{gathered}$	0	1				
			5 m , 24 AWG	1	0				
			7 m , 24 AWG	1	0				
			10m, 24 AWG	1	1				
Residual Output Deterministic Jitter at 10Gbps (Notes 4, 8, and 9)		Source to IN	OUT to load	PE1	PE0		0.18	0.25	Ulp-P
		6-mil, 10in of FR-4	$\begin{gathered} \text { 3m, } \\ 24 \text { AWG } \end{gathered}$	0	1				
			5 m , 24 AWG	1	0				
			7 m , 24 AWG	1	1				
			10m, 24 AWG	1	1				
Residual Output Deterministic Jitter at 10.0Gbps (Notes 4, 8, and 10)		10in of FR-4 at OUT \pm; no cable; see Figure 3		PE1 0	PE0		0.10		Ulp-p
Propagation Delay							230		ps
STATUS OUTPUT: LOS									
LOS Deassert		IN_LEV = high (Note 11)						300	mVP-P
		IN_LEV = low (Note 11)						100	
LOS Assert		IN_LEV = high	(Note 11)			80			
LOS Hysteresis (Note 4)		IN_LEV = high (Note 11)				20			mVP-P
		IN_LEV = low (Note 11)					10		

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOS Open-Collector Current Sink		LOS asserted	0		25	$\mu \mathrm{A}$
		LOS asserted; $\mathrm{V}_{\text {OL }} \leq 0.4 \mathrm{~V}$	1.0			mA
		(Note 12)	0		25	$\mu \mathrm{A}$
LOS Response Time (Note 4)		Time from VIN dropping below deassert level or rising above assert level to 50% point of LOS output transition			10	$\mu \mathrm{s}$
LOS Transition Time		Rise time or fall time (10% to 90%); pullup supply $=5.5 \mathrm{~V}$; external pullup $R \geq 4.7 \mathrm{k} \Omega$		200		ns
CONTROL INPUTS: TX_DISABLE, PE0, PE1, OUT_LEV, IN_LEV						
Logic-High Voltage	V_{IH}		2.0			V
Logic-Low Voltage	V_{IL}				0.8	V
Logic-High Current	IIH	Current required to maintain logic-high state at $\mathrm{V}_{\mathrm{IH}}>+2.0 \mathrm{~V}$			-150	$\mu \mathrm{A}$
Logic-Low Current	IIL	Current required to maintain logic-low state at $\mathrm{V}_{\text {IL }}<+0.8 \mathrm{~V}$			350	$\mu \mathrm{A}$

Note 1: Supply voltage to reach 90% of final value in less than 100μ s, but not less than $10 \mu \mathrm{~s}$. Power-on delay interval measured from the 50% level of the final voltage at the filter's device side to 50% level of final current. The supply is to remain at or above 3 V for at least 100 ms . Only one full-scale transition is permitted during this interval. Aberrations on the transition are limited to less than 100 mV .
Note 2: $\quad \mathrm{IN}+$ and IN - are single-ended, 50Ω terminations to $\left(\mathrm{V}_{C C}-1.5 \mathrm{~V}\right) \pm 0.2 \mathrm{~V}$.
Note 3: Load is $50 \Omega \pm 1 \%$ at each side and the pattern is 0000011111 or equivalent pattern at 2.5 Gbps .
Note 4: Guaranteed by design and characterization.
Note 5: PE1 = PE0 = logic-high (maximum preemphasis), load is $50 \Omega \pm 1 \%$ at each side. The pattern is 11001100 (50% edge density) at 10Gbps. AC common-mode output is computed as:

$$
\left.V_{A C C M}{ }_{\text {AMS }}=R M S\left[\left(V_{P}+V_{N}\right) / 2\right)-V_{D C C M}\right]
$$

where:
$V_{P}=$ time-domain voltage measured at OUT+ with at least 10 GHz bandwidth.
$\mathrm{V}_{\mathrm{N}}=$ time-domain voltage measured at OUT- with at least 10 GHz bandwidth.
AC common-mode voltage ($V_{\text {ACCM_RMS }}$) expressed as an RMS value.
DC common-mode voltage $\left(V_{D C C M}\right)=$ average DC voltage of $\left(V_{P}+V_{N}\right) / 2$.
Note 6: Using 0000011111 or equivalent pattern at 2.5 Gbps . PEO $=$ PE1 $=$ logic-low for minimum preemphasis. Measured within 2in of the output pins with Rogers 4350 dielectric, or equivalent, and ≥ 10-mil line width. For transition time, the 0\% reference is the steady state level after four zeros, just before the transition, and the 100% reference level is the steady state level after four consecutive logic ones.
Note 7: Pattern is 0000011111 or equivalent pattern at 10 Gbps and 100 mV P_P differential swing. IN_LEV = logic-low and PEO = PE1 = logic-low for minimum preemphasis. Signal transition time is controlled by the 4th-order BT filter (7.5GHz bandwidth) or equivalent. See Figure 3 for setup.
Note 8: Test pattern (464 bits): 100 zeros, 1010, PRBS7, 100 ones, 0101, PRBS7.
Note 9: Input range selection is IN_LEV = logic-high for FR-4 input equalization. Cables are unequalized, Amphenol Spectra-Strip (160-2499-997) 24 AWG or equivalent. Residual deterministic jitter is the difference between the source jitter at point A and the load jitter point D in Figure 2. The deterministic jitter (DJ) at the output of the transmission line must be from media induced loss and not from clock source modulation. $D J$ is measured at point D of Figure 2.
Note 10: Input range selection is IN_LEV = logic-low. Residual deterministic jitter is the difference between the source jitter at point A and the load jitter point D in Figure 3. The deterministic jitter (DJ) at the output of the transmission line must be from media induced loss and not from clock source modulation. DJ is measured at point D of Figure 3.
Note 11: Measured with 101010... pattern at 10Gbps with less than 1in of FR-4 at the input.
Note 12: True open-collector outputs. $\mathrm{V}_{\mathrm{CC}}=0$ and the external $4.7 \mathrm{k} \Omega$ pullup resistor is connected to +5.5 V .

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Figure 1. TX Preemphasis in $d B$

Figure 2. Transmit Test Setup (The points labeled A, B, and D are referenced for AC parameter test conditions. Deterministic jitter and eye diagrams measured at point D.)

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Figure 3. Receive-Side Test Setup (The points labeled A and D are referenced for $A C$ parameter tests.)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{PRBS7}+100 \mathrm{CID}\right.$ pattern is PRBS $2^{7}, 100$ zeros, 1010 , PRBS 27, 100 ones, 0101, OUT_LEV $=$ high, 10 in of FR-4 at the input, IN_LEV = high, 360 mV P-P at input of FR-4, unless otherwise noted.)

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

$\left(\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, PRBS7 +100 CID pattern is PRBS $2^{7}, 100$ zeros, 1010, PRBS $2^{7}, 100$ ones, 0101 , OUT_LEV $=$ high, 10 in of FR-4 at the input, IN_LEV = high, 360 mV P-P at input of FR-4, unless otherwise noted.)

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, PRBS7 +100 CID pattern is PRBS $2^{7}, 100$ zeros, 1010 , PRBS $2^{7}, 100$ ones, 0101 , OUT_LEV $=$ high, 10 in of FR-4 at the input, IN_LEV = high, 360 mV P-p at input of FR-4, unless otherwise noted.)

VERTICAL EYE OPENING
vs. FR-4 LENGTH (5Gbps)

10m 24 AWG CABLE ASSEMBLY OUTPUT WITHOUT MAX3984 AT 8.5Gbps

20ps/div

10m 24 AWG CABLE ASSEMBLY OUTPUT WITH MAX3984 AT 5Gbps (PREEMPHASIS, PE[1,0] = 11, OUT_LEV = HIGH)

50ps/div

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Pin Description

PIN	NAME	FUNCTION
1	$\mathrm{V}_{\mathrm{CC} 1}$	Power-Supply Connection for Inputs. Connect to +3.3V.
2	IN+	Positive Data Input, CML. This input is internally terminated with 50Ω.
3	IN-	Negative Data Input, CML. This input is internally terminated with 50Ω.
4, 8, 9, 16	GND	Circuit Ground
5	OUT_LEV	Output-Swing Control Input, LVTTL with $20 \mathrm{k} \Omega$ Internal Pullup. Set to TTL high or open for maximum output swing, or set to TTL low for reduced swing.
6	PE1	Output Preemphasis Control Input, LVTTL with $10 \mathrm{k} \Omega$ Internal Pullup. This pin is the most significant bit of the 2-bit preemphasis control. Set high or open to assert this pin.
7	PEO	Output Preemphasis Control Input, LVTTL with 10k Ω Internal Pullup. This pin is the least significant bit of the 2-bit preemphasis control. Set high or open to assert this pin.
10	OUT-	Negative Data Output, CML. This output is terminated with 50Ω to VCC2.
11	OUT+	Positive Data Output, CML. This output is terminated with 50Ω to $\mathrm{V}_{\mathrm{CC} 2}$.
12	VCC2	Power-Supply Connection for Output. Connect to +3.3V.
13	TX_DISABLE	Transmitter Disable Input, LVTTL with $10 \mathrm{k} \Omega$ Internal Pullup. When high or open, differential output is less than 10mVp-p. Set low for normal operation.
14	LOS	Loss-of-Signal Detect, Open-Collector TTL Output. Requires an external pullup $\geq 4.7 \mathrm{k} \Omega(+5.5 \mathrm{~V}$ maximum). This output sinks current when the input signal is above the LOS deassert level. To disable squelch pull LOS to ground.
15	IN_LEV	Receive Equalization Control Input, LVTTL 40k Ω Internal Pullup. Set to TTL high or open for higher LOS assert/deassert levels and 10in FR-4 compensation. Set to TTL low for lower LOS assert/deassert levels and to bypass the FR-4 equalization.
-	EP	Exposed Pad. For optimal thermal conductivity, this pad must be soldered to the circuit board ground.

Detailed Description

The MAX3984 is composed of a receiver, a driver, and an LOS detector with selectable threshold. Equalization is provided in the receiver. Selectable preemphasis and selectable output amplitude are included in the transmitter. The MAX3984 also includes transmit disable control for the output.

Receiver Data is fed into the MAX3984 through a CML input stage and a selectable equalization stage. The fixed equalizer in the receiver corrects for up to 10in of PCB loss on FR-4 material at 10Gbps. The fixed equalizer can be bypassed by setting the IN_LEV pin to a logic-low.

Driver

The driver includes four-state preemphasis to compensate for up to 10 m of 24 AWG, 100Ω balanced cable, or 30in of FR-4. The OUT_LEV pin selects the output amplitude. When OUT_LEV is low, the peak-to-peak amplitude is 1000 mV P-P. When OUT_LEV is high, the peak-to-peak amplitude is 1200 mV P-P.

Loss of Signal (LOS)

Input LOS detection is provided. This is an open-collector output and requires an external pullup resistor ($\geq 4.7 \mathrm{k} \Omega$). The pullup resistors should be connected from LOS to a supply in the +3.0 V to +5.5 V range. The LOS output is not valid until power-up is complete.

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Figure 4. Functional Diagram

The IN_LEV pin sets the LOS assert and deassert levels. When IN_LEV is LVTTL high or open, the LOS assert threshold is 300 mVp -p. When IN_LEV is LVTTL low, the LOS assert threshold is $100 \mathrm{mVP}-\mathrm{P}$.
TX_DISABLE provides manual control for turning the output off. The MAX3984 has a squelch function that disables the output when there is an LOS condition. To disable the squelch function, connect LOS to ground (see the Squelch section).

Applications Information

Squelch

The MAX3984 can automatically detect an incoming signal and enable or disable the data outputs. To enable squelch, the LOS pin must be connected to a TTL high or VCC with a pullup resistor ($\geq 4.7 \mathrm{k} \Omega$). Internally, TX_DISABLE and LOS are connected through an OR-gate to control the CML outputs. The outputs are disabled if LOS asserts. To turn off the squelch function, LOS must be pulled to TTL low. The output can also be disabled when TX_DISABLE is forced high.

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Typical Characteristics at $\mathbf{- 4 0}{ }^{\circ} \mathrm{C}$

The MAX3984 is guaranteed to work from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Table 1 indicates typical performance outside the guaranteed limits.

Table 1. Typical Characteristics at $-40^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
Different Output Swing (Note 1)		Measured differentially at point B in Figure 2; TX_DISABLE = low, OUT_LEV = high, PE1 = PE0 = high					1100		
		Measured differentially at point B in Figure 2; TX_DISABLE = low, OUT_LEV = low, PE1 = PE0 $=$ high					920		mVP-P
		TX_DISABLE $=$ high, PE1 = PE0 $=$ high					3.5		
Common-Mode Output (AC)		Measured at point B in Figure 2; TX_DISABLE = low, OUT_LEV = high (Note 2)					5		mV ${ }_{\text {RMS }}$
Random Jitter		Measured at point D in Figure 3 (Note 3)					0.5		psRms
Residual Output Deterministic Jitter at 1.0Gbps (Notes 4, 5)		Source to IN	OUT to load	PE1	PE0		0.02		Ulp-P
		6 -mil, 10in of FR-4	$\begin{gathered} 3 \mathrm{~m}, \\ 24 \mathrm{AWG} \end{gathered}$	0	0				
			$\begin{array}{\|c} \hline 5 \mathrm{~m}, \\ 24 \mathrm{AWG} \\ \hline \end{array}$	0	1				
			$\begin{array}{\|c} \hline 7 \mathrm{~m}, \\ 24 \mathrm{AWG} \\ \hline \end{array}$	1	0				
			$\begin{array}{\|c\|} \hline 10 \mathrm{~m}, \\ 24 \mathrm{AWG} \\ \hline \end{array}$	1	1				
Residual Output Deterministic Jitter at 5.0Gbps (Notes 4, 5)		Source to IN	OUT to load	PE1	PE0		0.12		Ulp-P
		6-mil, 10in of FR-4	$\begin{gathered} 3 \mathrm{~m}, \\ 24 \mathrm{AWG} \end{gathered}$	0	1				
			$\begin{array}{\|c} \hline 5 \mathrm{~m}, \\ 24 \mathrm{AWG} \\ \hline \end{array}$	1	0				
			$\begin{array}{\|c} \hline 7 \mathrm{~m}, \\ 24 \mathrm{AWG} \end{array}$	1	0				
			10m, 24 AWG	1	1				
Residual Output Deterministic Jitter at 8.5Gbps (Notes 4, 5)		Source to IN	OUT to load	PE1	PE0		0.2		Ulp-P
		6-mil, 10in of FR-4	$\begin{gathered} 3 \mathrm{~m}, \\ 24 \mathrm{AWG} \\ \hline \end{gathered}$	0	1				
			$\begin{gathered} 5 \mathrm{~m}, \\ 24 \mathrm{AWG} \end{gathered}$	1	0				
			$\begin{array}{\|c} \hline 7 \mathrm{~m}, \\ 24 \mathrm{AWG} \\ \hline \end{array}$	1	0				
			$\begin{gathered} \text { 10m, } \\ 24 \text { AWG } \end{gathered}$	1	1				

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Table 1. Typical Characteristics at $-40^{\circ} \mathrm{C}$ (continued)

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
Residual Output Deterministic Jitter at 10Gbps (Notes 4, 5)		Source to IN	OUT to load	PE1	PE0		0.25		Ulp-P
		6-mil, 10in of FR-4	$\begin{gathered} 3 \mathrm{~m}, \\ 24 \mathrm{AWG} \end{gathered}$	0	1				
			5m, 24 AWG	1	0				
			$\begin{gathered} 7 \mathrm{~m}, \\ 24 \mathrm{AWG} \end{gathered}$	1	1				
			$\begin{array}{\|c} \hline 10 \mathrm{~m}, \\ 24 \mathrm{AWG} \\ \hline \end{array}$	1	1				

Note 1: Load is $50 \Omega \pm 1 \%$ at each side and the pattern is 0000011111 or equivalent pattern at 2.5 Gbps .
Note 2: PE1 = PE0 = logic-high (maximum preemphasis), load is $50 \Omega \pm 1 \%$ at each side. The pattern is 11001100 (50\% edge density) at 10Gbps. AC common-mode output is computed as:

$$
\left.V_{A C C M} \text { RMS }=R M S\left[\left(V_{P}+V_{N}\right) / 2\right)-V_{D C C M}\right]
$$

where:
$V_{P}=$ time-domain voltage measured at OUT + with at least 10 GHz bandwidth.
$\mathrm{V}_{\mathrm{N}}=$ time-domain voltage measured at OUT- with at least 10 GHz bandwidth.
AC common-mode voltage (VACCM_RMS) expressed as an RMS value.
DC common-mode voltage $\left(V_{D C C M}\right)=$ average $D C$ voltage of $\left(V_{P}+V_{N}\right) / 2$.
Note 3: Pattern is 0000011111 or equivalent pattern at 10 Gbps and 100 mV P-P differential swing. IN_LEV = logic-low and PE0 = PE1 $=$ logic-low for minimum preemphasis. Signal transition time is controlled by the 4 th-order BT filter (7.5 GHz bandwidth) or equivalent. See Figure 3 for setup.
Note 4: Test pattern (464 bits): 100 zeros, 1010, PRBS7, 100 ones, 0101, PRBS7.
Note 5: Input range selection is IN_LEV = logic-high for FR-4 input equalization. Cables are unequalized, Amphenol Spectra-Strip (160-2499-997) 24 AWG or equivalent. Residual deterministic jitter is the difference between the source jitter at point A and the load jitter point D in Figure 2. The deterministic jitter (DJ) at the output of the transmission line must be from media induced loss and not from clock source modulation. DJ is measured at point D of Figure 2.

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Layout Considerations

Circuit board layout and design can significantly affect the performance of the MAX3984. Use good high-frequency design techniques, including minimizing ground inductance and using controlled-impedance transmission lines on the data signals. Power-supply decoupling should also be placed as close as possible to the VCC pins. Always connect all Vcc pins to a power plane. Take care to isolate the input from the output signals to reduce feed through.

Exposed-Pad Package
The exposed-pad, 16-pin thin QFN package incorporates features that provide a very low thermal resistance path for heat removal from the IC. The exposed pad on the MAX3984 must be soldered to the circuit board for proper thermal performance. Refer to Maxim Application Note HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages for additional information.

Interface Schematics

Figure 5. IN+/IN-Equivalent Input Structure

Figure 6. OUT+/OUT- Equivalent Output Structure

PIN NAME	$\mathrm{V}_{\text {CCX }}$	RPuLLup $(\mathrm{k} \Omega$)
IN_LEV	$\mathrm{V}_{\text {CC1 }}$	40
OUT_LEV	$\mathrm{V}_{\text {CC2 }}$	20
TX_DISABLE, PEO, PE1	$\mathrm{V}_{\text {CC2 }}$	10

Figure 7. LVTTL Equivalent Input Structure

Figure 8. Loss-of-Signal Equivalent Output Structure

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Typical Operating Circuits (continued)

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

Pin Configuration
PROCESS: SiGe Bipolar

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

\qquad Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

1Gbps to 10Gbps Preemphasis Driver with Receive Equalizer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

PKG	8L 3x3			12L 3x3			16L 3x3		
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
b	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30
D	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10
E	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10
e	0.65 BSC.			0.50 BSC .			0.50 BSC.		
L	0.35	0.55	0.75	0.45	0.55	0.65	0.30	0.40	0.50
N	8			12			16		
ND	2			3			4		
NE	2			3			4		
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05
A2	0.20 REF			0.20 REF			0.20 REF		
k	0.25	-	-	0.25	-	-	0.25	-	-

EXPOSED PAD VARIATIONS								
PKG. CODES	D2			E2			PIN ID	JEDEC
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
TQ833-1	0.25	0.70	1.25	0.25	0.70	1.25	$0.35 \times 45^{\circ}$	WEEC
T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1633-2	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633FH-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633-5	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
S. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP.
5. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
6. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
7. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS DRAWING CONFORMS TO JEDEC MO220 REVISION C.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
9. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
(1)DALLAS /VINXI/VI
10. WARPAGE NOT TO EXCEED 0.10 mm .

TTLE: PACKAGE OUTLINE
$8,12,16 \mathrm{~L}$ THIN QFN, $3 \times 3 \times 0.8 \mathrm{~mm}$
-DRAWING NOT TO SCALE-

\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Equalisers category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
M22554G-12 M21424G-13 PTN3944EWY M21518G-13 EQCO30T5.2 AD8195ACPZ-R7 AD8192ACPZ-RL7 AD8124ACPZ AD8128ACPZ-R2 AD8192ACPZ AD8194ACPZ AD8195ACPZ AD8197AASTZ ADV3002BSTZ ADV3003ACPZ ADV3003ACPZ-R7 GS1524-CKDE3 MAX3814CHJ+T MAX3802UTK+D MAX3980UTH+ MAX3815CCM+TD EQCO30R5.D MAX3814CHJ+ EQCO125T40C1T-I/8EX GS3440-INTE3 MAX3984UTE+ GS2964-INE3 GS6042-INE3 GS2974ACNE3 GS2984-INE3 GS3440-INE3 GS2993-INE3 SN75LVPE802RTJT NB7VQ1006MMNG QPC7334SR QPC7335SR ISL54102ACQZ GS12141-INE3 GS12341-INE3 GS12190-INE3 GS3590-INE3 VSC7224XJV-02 LMH0044SQE/NOPB LMH0074SQE/NOPB DS30EA101SQ/NOPB LMH0344SQE/NOPB LMH0344SQ/NOPB LMH0384SQE/NOPB LMH0384SQ/NOPB LMH0394SQ/NOPB

