Evaluates: MAX40203

General Description

The MAX40203 evaluation kit (EV kit) provides a proven design to evaluate the MAX40203 "ideal-diode". This EV kit demonstrates the MAX40203 in a space-saving 5-pin SOT23 (MAX40203AUK+). This EV kit can be used to evaluate the MAX40203AUK+ as well.

The MAX40203 EV kit PCB comes with two MAX40203AUK+ devices installed. The MAX40203 device is a current-switch, which drops so little voltage as to approximate an "ideal diode".

The MAX40203 is also available in a tiny 0.8mm x 0.8mm 4-bump WLP with a 0.35mm bump pitch and has lower voltage drop. These devices operate over the automotive -40°C to +125° C temperature range.

Features

- Drops Only 100mV at 500mA
- Less than 10nA Leakage When Reverse-Biased From $\mathsf{V}_{\mathsf{D}\mathsf{D}}$
- Supply Voltage Range: Between 1.2V and 5.5V
- Low Supply Quiescent Current: 300nA (typ), 500nA (max)
- Thermally Self-Protecting
- -40°C to +125°C Temperature Range
- Evaluates MAX40203AUK+
- Accommodates Easy-to-Use Components
- Proven PCB Layout
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.

MAX40203 EV Kit Photo

Evaluates: MAX40203

Quick Start

Required Equipment

- MAX40203 EV kit
- +6V DC power supply
- Electronic load capable of sinking 1A (e.g., HP6060B)
- Precision voltmeter

Procedure

The EV kit is fully assembled and tested. Follow the below instructions to verify board operation. **Caution: Do not turn on the power supply or the electronic load until all the connections are complete.**

- 1. Set the DC power supply to 3.6V output. Connect the positive terminal of the 3.6V supply to the V_{DD} pad. Connect the negative terminal of the 3.6V supply to the GND pad.
- 2. Connect the electronic load's positive terminal to the OUT pad and the negative terminal to the GND pad and set to 500mA sink.

- 3. Connect the voltmeter across the V_{DD} and OUT pads.
- 4. Verify all the shunts are in default positions, as shown in <u>Table 1</u>.
- 5. Do not install J3.
- 6. Turn on the power supply.
- 7. Turn on the electronic load and verify that the current flowing is equal to the set value of 500mA.
- 8. Verify that the forward voltage or ($V_{DD} V_{OUT}$) voltmeter reading is approximately 100mV.
- 9. Turn off the electronic load.
- 10.Set the electronic load to sink 100mA.
- 11. Turn on the electronic load.
- 12. Verify that the forward voltage or (V_{DD} V_{OUT}) voltmeter reading is approximately 28mV.

Table 1. Jumper Functions (J1 – J3)

JUMPER LABEL	SHUNT POSITION	DESCRIPTION		
J1	1-2*	Enables U1		
JI	2-3	Disables U1		
J2	1-2*	Enables U2		
JZ	2-3	Disables U2		
	Not Installed*	Devices U1 and U2 Enable operates independently		
J3**	Installed	Connects Enable (EN) input of U1 and U2 together. User-supplied enable input signal		
J4	Not Installed*	Devices operate independently		
J4	Installed	Connect OUT(U1) and OUT(U2) together for ORing application		

*Default position.

**When installing J3, remove J1 and J2 from the EV kit.

Detailed Description of Hardware

The MAX40203 EV kit provides a proven design to evaluate the MAX40203 5-pin SOT23, space-saving, "ideal-diode." The device blocks reverse voltages and passes current when forward-biased, just as a normal diode would. The device, when forward-biased and enabled, conducts with as little as 100mV of voltage drop while carrying currents as high as 500mA. At higher currents (up to 1A), the voltage drop increases linearly. The MAX40203 protects itself, and any down-stream circuitry, from overtemperature conditions.

When disabled (EN = low), the MAX40203 can block voltages up to 6V in either direction, making it suitable for most low-voltage portable electronic devices. The low (300nA, typ.) supply current is independent of the load current. The MAX40203 operates from supplies within the range of 1.2V and 5.5V.

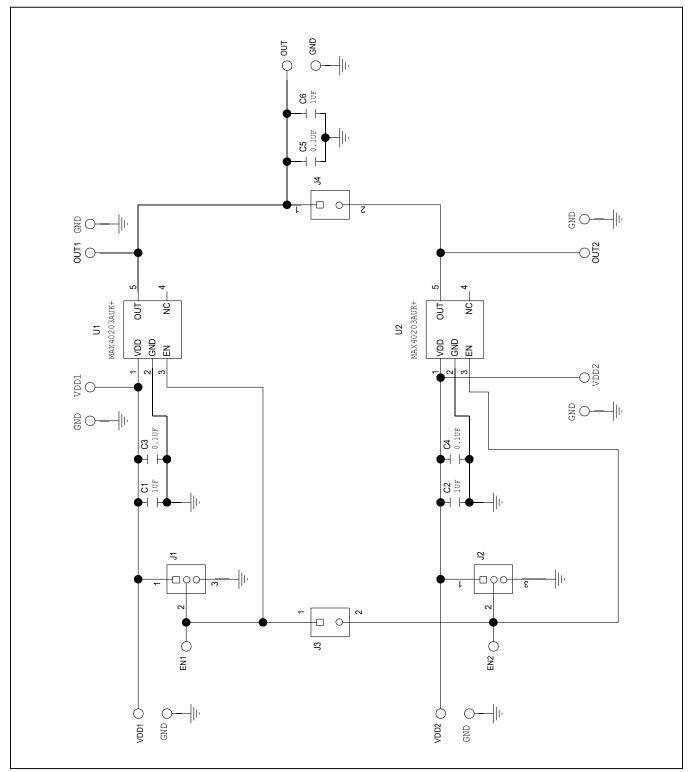
Theory of Operation

The two "ideal-diode" devices may be used independently or together. The PCB circuit mimics a typical wall adaptor/ battery-charging circuit having different V_{DD1} and V_{DD2} . They are connected to the common output, where the load is connected.

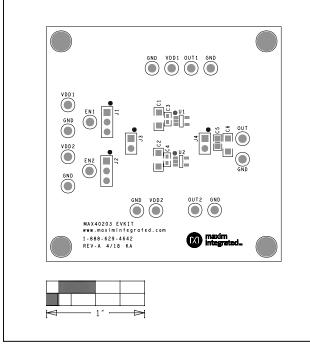
When used independently or together, enable inputs EN1 and EN2 turn the device on or off. The device that is turned on conducts current to the load. The device that is turned off does not conduct current to the load from its V_{DD} input.

Ordering Information

PART	TYPE						
MAX40203EVKIT#	EV Kit						

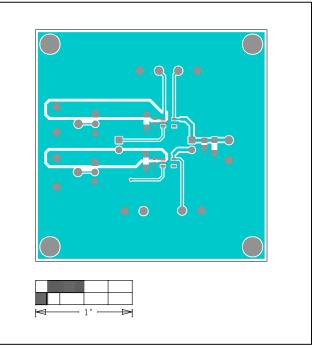

#Denotes RoHS compliant.

ITEM	REF_DES	DNI/ DNP	QTY	MFG PART #	MFG	VALUE	DESCRIPTION
1	C1, C2, C6	-		C1206C105K3RAC;ECJ- 3YB1E105K	KEMET;PANA SONIC		CAPACITOR; SMT (1206); CERAMIC CHIP; 1UF; 25V; TOL=10%; MODEL=X7R; TG=- 55 DEGC TO +125 DEGC; TC=+/-
2	C3, C4	-	2	C1608X7R1E104K080AA	трк	0.1UF	CAPACITOR; SMT (0603); CERAMIC CHIP; 0.1UF; 25V; TOL=10%; MODEL=C SERIES; TG=-55 DEGC TO +125 DEGC; TC=X7R
3	C5	-	1	C2012X7T2E104K125	ток		CAPACITOR; SMT (0805); CERAMIC CHIP; 0.1UF; 250V; TOL=10%; MODEL=C SERIES; TG=-55 DEGC TO +125 DEGC; TC=X7T
4	EN1, EN2, OUT, OUT1, OUT2, TP5, TP6, VDD1, VDD2	-	9	5005	KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.35IN; BOARD HOLE=0.063IN; RED; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;
5	GND, TP1-TP4, TP9, TP10	-	7	5006	KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.35IN; BOARD HOLE=0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;
6	J1, J2	-	2	PBC03SAAN	SULLINS	PBC03SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3PINS; -65 DEGC TO +125 DEGC
7	J3, J4	-	2	PBC02SAAN	SULLINS ELECTRONIC S CORP.	PBC02SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 2PINS
8	U1, U2	-	2	MAX40203AUK+	MAXIM		EVKIT PART - IC; ULTRA-TINY NANOPOWER; 1A IDEAL DIODE WITH ULTRA-LOW VOLTAGE DROP; PACKAGE OUTLINE DRAWING NUMBER: 21-0057; PACKAGE LAND PATTERN: 90-0174; PACKAGE CODE: U5+2; SOT23-5
9	РСВ	-	1	MAX40203	МАХІМ	РСВ	PCB:MAX40203
TOTAL			29				

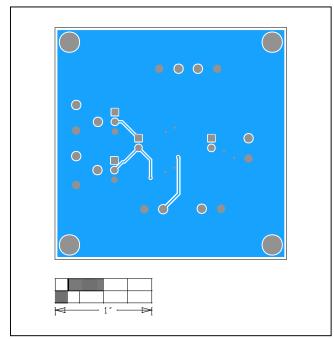

MAX40203 EV Kit Bill of Materials

NOTE: DNI--> DO NOT INSTALL(PACKOUT) ; DNP--> DO NOT PROCURE

MAX40203 EV Kit Schematic



Evaluates: MAX40203



MAX40203 EV Kit PCB Layout Diagrams

MAX40203 EV Kit—Top Silkscreen

MAX40203 EV Kit—Top

MAX40203 EV Kit—Bottom

Evaluates: MAX40203

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	7/18	Initial release	—

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.8-EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1874-0.3-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZ-REDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250-S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM UCC28810EVM-002 XILINXPWR-083 LMR22007YMINI-EVM LP38501ATJ-EV